Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Basic global relative invariants for nonlinear differential equations

About this Title

Roger Chalkley

Publication: Memoirs of the American Mathematical Society
Publication Year: 2007; Volume 190, Number 888
ISBNs: 978-0-8218-3991-1 (print); 978-1-4704-0494-9 (online)
DOI: https://doi.org/10.1090/memo/0888
MathSciNet review: 2356350
MSC: Primary 34A34; Secondary 12H20, 34A25, 34C14, 34M15

PDF View full volume as PDF

Read more about this volume

View other years and numbers:

Table of Contents

Chapters

  • Part 1. Foundations for a general theory
  • 1. Introduction
  • 2. The coefficients $c^*_{i,j}(z)$ of (1.3)
  • 3. The coefficients $c^{**}_{i,j}(\zeta )$ of (1.5)
  • 4. Isolated results needed for completeness
  • 5. Composite transformations and reductions
  • 6. Related Laguerre-Forsyth canonical forms
  • Part 2. The basic relative invariants for $Q_m=0$ when $m\ge 2$
  • 7. Formulas that involve $L_{i,j}(z)$
  • 8. Basic semi-invariants of the first kind for $m \geq 2$
  • 9. Formulas that involve $V_{i,j}(z)$
  • 10. Basic semi-invariants of the second kind for $m \geq 2$
  • 11. The existence of basic relative invariants
  • 12. The uniqueness of basic relative invariants
  • 13. Real-valued functions of a real variable
  • Part 3. Supplementary results
  • 14. Relative invariants via basic ones for $m \geq 2$
  • 15. Results about $Q_m$ as a quadratic form
  • 16. Machine computations
  • 17. The simplest of the Fano-type problems for (1.1)
  • 18. Paul Appell’s condition of solvability for $Q_m = 0$
  • 19. Appell’s condition for $Q_2 = 0$ and related topics
  • 20. Rational semi-invariants and relative invariants
  • Part 4. Generalizations for $H_{m,n}=0$
  • 21. Introduction to the equations $H_{m,n} = 0$
  • 22. Basic relative invariants for $H_{1,n} = 0$ when $n \geq 2$
  • 23. Laguerre-Forsyth forms for $H_{m,n} = 0$ when $m \geq 2$
  • 24. Formulas for basic relative invariants when $m \geq 2$
  • 25. Extensions of Chapter 7 to $H_{m,n} = 0$, when $m \geq 2$
  • 26. Extensions of Chapter 9 to $H_{m,n} = 0$, when $m \geq 2$
  • 27. Basic relative invariants for $H_{m,n} = 0$ when $m \geq 2$
  • Part 5. Additional classes of equations
  • 28. The class of equations specified by $y''(z) y’(z)$
  • 29. Formulations of greater generality
  • 30. Invariants for simple equations unlike (29.1)