#### How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

2. Complete and sign the license agreement.

3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2294  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046
Email: cust-serv@ams.org

Visit the AMS Bookstore for individual volume purchases.

Browse the current eBook Collections price list

# memo_has_moved_text();Toroidal Dehn fillings on hyperbolic 3-manifolds

Cameron McA. Gordon and Ying-Qing Wu

Publication: Memoirs of the American Mathematical Society
Publication Year 2008: Volume 194, Number 909
ISBNs: 978-0-8218-4167-9 (print); 978-1-4704-0515-1 (online)
DOI: http://dx.doi.org/10.1090/memo/0909
MathSciNet review: 2419168
MSC: Primary 57N10; Secondary 57M50

View full volume PDF

View other years and numbers:

Chapters

• 1. Introduction
• 2. Preliminary lemmas
• 3. $\hat \Gamma ^+_a$ has no interior vertex
• 4. Possible components of $\hat \Gamma ^+_a$
• 5. The case $n_1$, $n_2 > 4$
• 6. Kleinian graphs
• 7. If $n_a = 4$, $n_b \geq 4$ and $\hat \Gamma ^+_a$ has a small component then $\Gamma _a$ is kleinian
• 8. If $n_a = 4$, $n_b \geq 4$ and $\Gamma _b$ is non-positive then $\hat \Gamma ^+_a$ has no small component
• 9. If $\Gamma _b$ is non-positive and $n_a = 4$ then $n_b \leq 4$
• 10. The case $n_1 = n_2 = 4$ and $\Gamma _1$, $\Gamma _2$ non-positive
• 11. The case $n_a = 4$, and $\Gamma _b$ positive
• 12. The case $n_a = 2$, $n_b \geq 3$, and $\Gamma _b$ positive
• 13. The case $n_a = 2$, $n_b > 4$, $\Gamma _1$, $\Gamma _2$ non-positive, and $\max (w_1 + w_2, w_3 + w_4) = 2n_b - 2$
• 14. The case $n_a = 2$, $n_b > 4$, $\Gamma _1$, $\Gamma _2$ non-positive, and $w_1 = w_2 = n_b$
• 15. $\Gamma _a$ with $n_a \leq 2$
• 16. The case $n_a = 2$, $n_b = 3$ or $4$, and $\Gamma _1$, $\Gamma _2$ non-positive
• 17. Equidistance classes
• 18. The case $n_b = 1$ and $n_a = 2$
• 19. The case $n_1 = n_2 = 2$ and $\Gamma _b$ positive
• 20. The case $n_1 = n_2 = 2$ and and both $\Gamma _1$, $\Gamma _2$ non-positive
• 21. The main theorems
• 22. The construction of $M_i$ as a double branched cover
• 23. The manifolds $M_i$ are hyperbolic
• 24. Toroidal surgery on knots in $S^3$