Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Points and curves in the Monster tower

About this Title

Richard Montgomery, Mathematics Dept., UC Santa Cruz, Santa Cruz, CA 95064, USA and Michail Zhitomirskii, Dept. of Mathematics, Technion, 32000 Haifa, Israel

Publication: Memoirs of the American Mathematical Society
Publication Year: 2010; Volume 203, Number 956
ISBNs: 978-0-8218-4818-0 (print); 978-1-4704-0570-0 (online)
DOI: https://doi.org/10.1090/S0065-9266-09-00598-5
Published electronically: August 26, 2009
Keywords: Legendrian curve singularities, Goursat distributions, prolongation, blow-up
MSC: Primary 58A30; Secondary 58A17, 53A55, 58K50

PDF View full volume as PDF

View other years and numbers:

Table of Contents

Chapters

  • Preface
  • 1. Introduction
  • 2. Prolongations of integral curves. Regular, vertical, and critical curves and points
  • 3. RVT classes. RVT codes of plane curves. RVT and Puiseux
  • 4. Monsterization and Legendrization. Reduction theorems
  • 5. Reduction algorithm. Examples of classification results
  • 6. Determination of simple points
  • 7. Local coordinate systems on the Monster
  • 8. Prolongations and directional blow-up. Proof of Theorems A and B
  • 9. Open questions
  • A. Classification of integral Engel curves
  • B. Contact classification of Legendrian curves
  • C. Critical, singular and rigid curves

Abstract

Cartan introduced the method of prolongation which can be applied either to manifolds with distributions (Pfaffian systems) or integral curves to these distributions. Repeated application of prolongation to the plane endowed with its tangent bundle yields the Monster tower, a sequence of manifolds, each a circle bundle over the previous one, each endowed with a rank $2$ distribution. In an earlier paper (2001), we proved that the problem of classifying points in the Monster tower up to symmetry is the same as the problem of classifying Goursat distribution flags up to local diffeomorphism. The first level of the Monster tower is a three-dimensional contact manifold and its integral curves are Legendrian curves. The philosophy driving the current work is that all questions regarding the Monster tower (and hence regarding Goursat distribution germs) can be reduced to problems regarding Legendrian curve singularities. Here we establish a canonical correspondence between points of the Monster tower and finite jets of Legendrian curves. We show that each point of the Monster can be realized by evaluating the $k$-fold prolongation of an analytic Legendrian curve. Singular points arise from singular curves. The first prolongation of a point, i.e. a constant curve, is the circle fiber over that point. These curves are called vertical curves. The union of the vertical curves and their prolongations form the abnormal curves (in the sense of sub-Riemannian geometry) for the Monster distribution. Using these curves we define three types of points - regular (R), vertical (V) , and tangency (T) and from them associated singularity classes, the RVT classes. The RVT classes corresponds to singularity classes in the space of germs of Legendrian curves. All previous classification results for Goursat flags (many obtained by long calculation) now follow from this correspondence as corollaries of well-known results in the classification of Legendrian curve germs. Using the same correspondence we go beyond known results and obtain the determination and classification of all simple points of the Monster, and hence all simple Goursat germs. Finally, as spin-off to these ideas we prove that any plane curve singularity admits a resolution via a finite number of prolongations.

References [Enhancements On Off] (What's this?)

References
  • V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295, DOI 10.1007/978-1-4757-2063-1
  • V. I. Arnol′d, Simple singularities of curves, Tr. Mat. Inst. Steklova 226 (1999), no. Mat. Fiz. Probl. Kvantovoĭ Teor. Polya, 27–35 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(226) (1999), 20–28. MR 1782550
  • S. P. Novikov (ed.), Dynamical systems. IV, Encyclopaedia of Mathematical Sciences, vol. 4, Springer-Verlag, Berlin, 1990. Symplectic geometry and its applications; A translation of Sovremennye problemy matematiki. Fundamental′nye napravleniya, Tom 4, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985 [ MR0842907 (87j:58032)]; Translation by G. Wassermann; Translation edited by V. I. Arnol′d and S. P. Novikov. MR 1042758, DOI 10.1007/978-3-662-06793-2
  • V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985. The classification of critical points, caustics and wave fronts; Translated from the Russian by Ian Porteous and Mark Reynolds. MR 777682, DOI 10.1007/978-1-4612-5154-5
  • A. V. Bäcklund, Ueber Flächentransformationen, Math. Ann. 9 (1875), no. 3, 297–320 (German). MR 1509862, DOI 10.1007/BF01443337
  • J. W. Bruce and T. J. Gaffney, Simple singularities of mappings $\textbf {C},0\rightarrow \textbf {C}^{2},0$, J. London Math. Soc. (2) 26 (1982), no. 3, 465–474. MR 684560, DOI 10.1112/jlms/s2-26.3.465
  • Robert L. Bryant and Lucas Hsu, Rigidity of integral curves of rank $2$ distributions, Invent. Math. 114 (1993), no. 2, 435–461. MR 1240644, DOI 10.1007/BF01232676
  • E. Cartan, Sur l’équivalence absolue de certains systèmes d’équations différentielles. C.R. Acad. Sci., 158 (1914), pp. 326-330; Ouevres completes, partie II, 2, 1129-1132, Gauthier Villars, 1953.
  • E. Cartan, Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France 42 (1914), 12–48 (French). MR 1504722
  • E. Cartan, Sur l’intégration de certains sytèmes indéterminés d’équations différentielles. J. für die reine und angew. Math. 145 (1915), p. 86-91; Ouevres completes, partie II, 2, 1169-1174,Gauthier Villars, 1953.
  • Elie Cartan, Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192 (French). MR 1509120
  • André Giaro, Antonio Kumpera, and Ceferino Ruiz, Sur la lecture correcte d’un résultat d’Élie Cartan, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A241–A244 (French, with English summary). MR 507769
  • C. G. Gibson and C. A. Hobbs, Simple singularities of space curves, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 2, 297–310. MR 1198413, DOI 10.1017/S0305004100075976
  • M. Gaspar, Sobre la clasificacion de sistemas de Pfaff en bandera (Span.) Proceedings of the 10-th Spanish-Portuguese Conference on Mathematics, University of Murcia, 1985, 67 - 74
  • E. Goursat, Lecons sur le problem de Pfaff. Hermann, Paris, 1923.
  • Brendan Hassett, Local stable reduction of plane curve singularities, J. Reine Angew. Math. 520 (2000), 169–194. MR 1748273, DOI 10.1515/crll.2000.020
  • Go-o Ishikawa, Classifying singular Legendre curves by contactomorphisms, J. Geom. Phys. 52 (2004), no. 2, 113–126. MR 2088971, DOI 10.1016/j.geomphys.2004.02.004
  • Frédéric Jean, The car with $n$ trailers: characterisation of the singular configurations, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 241–266. MR 1411581, DOI 10.1051/cocv:1996108
  • János Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. MR 2289519
  • A. Kumpera and C. Ruiz, Sur l’équivalence locale des systèmes de Pfaff en drapeau, Monge-Ampère equations and related topics (Florence, 1980) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1982, pp. 201–248 (French). MR 704040
  • Wensheng Liu and Héctor J. Sussman, Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc. 118 (1995), no. 564, x+104. MR 1303093, DOI 10.1090/memo/0564
  • Richard Montgomery, Engel deformations and contact structures, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 103–117. MR 1736216, DOI 10.1090/trans2/196/07
  • Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002. MR 1867362, DOI 10.1090/surv/091
  • Richard Montgomery, Abnormal minimizers, SIAM J. Control Optim. 32 (1994), no. 6, 1605–1620. MR 1297101, DOI 10.1137/S0363012993244945
  • Richard Montgomery and Michail Zhitomirskii, Geometric approach to Goursat flags, Ann. Inst. H. Poincaré C Anal. Non Linéaire 18 (2001), no. 4, 459–493 (English, with English and French summaries). MR 1841129, DOI 10.1016/S0294-1449(01)00076-2
  • Richard Montgomery, Vidya Swaminathan, and Mikhail Zhitomirskii, Resolving singularities with Cartan’s prolongation, J. Fixed Point Theory Appl. 3 (2008), no. 2, 353–378. MR 2434453, DOI 10.1007/s11784-008-0080-7
  • Mohamad Cheaito and Piotr Mormul, Rank-2 distributions satisfying the Goursat condition: all their local models in dimension 7 and 8, ESAIM Control Optim. Calc. Var. 4 (1999), 137–158 (English, with English and French summaries). MR 1816509, DOI 10.1051/cocv:1999107
  • P. Mormul, Local classification of rank-2 distributions satisfying the Goursat condition in dimension 9. in: Singularites et Geometrie Sous-Riemannienne. Travaux en Cours 62 (2000), P.Orro, F. Pelletier Eds, Paris, 89-119
  • Piotr Mormul, Contact Hamiltonians distinguishing locally certain Goursat systems, Poisson geometry (Warsaw, 1998) Banach Center Publ., vol. 51, Polish Acad. Sci. Inst. Math., Warsaw, 2000, pp. 219–230. MR 1764448
  • Piotr Mormul, Goursat flags: classification of codimension-one singularities, J. Dynam. Control Systems 6 (2000), no. 3, 311–330. MR 1763671, DOI 10.1023/A:1009586221220
  • P. Mormul, Discrete models of codimension-two singularities of Goursat flags of arbitrary length with one flag’s member in singular position, Tr. Mat. Inst. Steklova 236 (2002), no. Differ. Uravn. i Din. Sist., 491–502. MR 1931048
  • Piotr Mormul, Geometric classes of Goursat flags and the arithmetics of their encoding by small growth vectors, Cent. Eur. J. Math. 2 (2004), no. 5, 859–883. MR 2172057, DOI 10.2478/BF02475982
  • Piotr Mormul, Examples of exotic moduli in local classification of Goursat flags, Univ. Iagel. Acta Math. 38 (2000), 17–28. Geometry and topology manifolds (Krynica, 1999). MR 1812099
  • Richard M. Murray, Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems, Math. Control Signals Systems 7 (1994), no. 1, 58–75. MR 1359021, DOI 10.1007/BF01211485
  • A. M. Vershik and V. Ya. Gershkovich, Estimation of the functional dimension of the orbit space of germs of distributions in general position, Mat. Zametki 44 (1988), no. 5, 596–603, 700 (Russian); English transl., Math. Notes 44 (1988), no. 5-6, 806–810 (1989). MR 980580, DOI 10.1007/BF01158419
  • C. T. C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, vol. 63, Cambridge University Press, Cambridge, 2004. MR 2107253, DOI 10.1017/CBO9780511617560
  • Keizo Yamaguchi, Contact geometry of higher order, Japan. J. Math. (N.S.) 8 (1982), no. 1, 109–176. MR 722524, DOI 10.4099/math1924.8.109
  • M. Zhitomirskii, Germs of integral curves in contact 3-space, plane and space curves. Isaac Newton Institute for Mathematical Sciences. Preprint NI00043-SGT, December 2000
  • M. Zhitomirskii, Germs and multigerms of Legendrian curves. Technion, Preprint, 2005
  • Michail Zhitomirskiĭ, Typical singularities of differential $1$-forms and Pfaffian equations, Translations of Mathematical Monographs, vol. 113, American Mathematical Society, Providence, RI; in cooperation with Mir Publishers, Moscow, 1992. Translated from the Russian. MR 1195792, DOI 10.1090/mmono/113
  • M. Zhitomirskiĭ, Rigid and abnormal line subdistributions of $2$-distributions, J. Dynam. Control Systems 1 (1995), no. 2, 253–294. MR 1333773, DOI 10.1007/BF02254641