AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Symplectic actions of $2$-tori on $4$-manifolds
About this Title
Alvaro Pelayo, University of California–Berkeley, Mathematics Department, 970 Evans Hall # 3840, Berkeley, California 94720-3840
Publication: Memoirs of the American Mathematical Society
Publication Year:
2010; Volume 204, Number 959
ISBNs: 978-0-8218-4713-8 (print); 978-1-4704-0573-1 (online)
DOI: https://doi.org/10.1090/S0065-9266-09-00584-5
Published electronically: November 13, 2009
Keywords: Symplectic manifold,
torus action,
four-manifold,
orbifold,
monodromy,
flat connection,
connection,
classification,
holonomy,
invariants,
symplectic orbits,
Lagrangian orbits,
Atiyah-Guillemin,
Sternberg and Benoist theory
MSC: Primary 53D35; Secondary 57M60, 53C12, 55R10
Table of Contents
Chapters
- Acknowledgements
- 1. Introduction
- 2. The orbit space
- 3. Global model
- 4. Global model up to equivariant diffeomorphisms
- 5. Classification: Free case
- 6. Orbifold homology and geometric mappings
- 7. Classification
- 8. The four-dimensional classification
- 9. Appendix: (sometimes symplectic) orbifolds
Abstract
In this paper we classify symplectic actions of $2$-tori on compact connected symplectic $4$-manifolds, up to equivariant symplectomorphisms. This extends results of Atiyah, Guillemin-Sternberg, Delzant and Benoist. The classification is in terms of a collection of invariants of the topology of the manifold, of the torus action and of the symplectic form. We construct explicit models of such symplectic manifolds with torus actions, defined in terms of these invariants.
We also classify, up to equivariant symplectomorphisms, symplectic actions of $(2n-2)$-dimensional tori on compact connected $2n$-dimensional symplectic manifolds, when at least one orbit is a $(2n-2)$-dimensional symplectic submanifold. Then we show that a compact connected $2n$-dimensional symplectic manifold $(M, \, \sigma )$ equipped with a free symplectic action of a $(2n-2)$-dimensional torus with at least one symplectic orbit is equivariantly diffeomorphic to $M/T \times T$ equipped with the translational action of $T$. Thus two such symplectic manifolds are equivariantly diffeomorphic if and only if their orbit spaces are surfaces of the same genus.
The paper also contains a description of symplectic actions of a torus $T$ on compact connected symplectic manifolds with at least one $\operatorname {dim}T$-dimensional symplectic orbit, and where the torus is not necessarily $(2n-2)$-dimensional.
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- Michèle Audin, Torus actions on symplectic manifolds, Second revised edition, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 2004. MR 2091310, DOI 10.1007/978-3-0348-7960-6
- Yves Benoist, Actions symplectiques de groupes compacts, Geom. Dedicata 89 (2002), 181–245 (French, with English summary). MR 1890958, DOI 10.1023/A:1014253511289
- Y. Benoist: Correction to “Actions symplectiques de groupes compacts”. http://www.dma.ens.fr/ benoist.
- Joan S. Birman, On Siegel’s modular group, Math. Ann. 191 (1971), 59–68. MR 280606, DOI 10.1007/BF01433472
- Michel Boileau, Sylvain Maillot, and Joan Porti, Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses [Panoramas and Syntheses], vol. 15, Société Mathématique de France, Paris, 2003 (English, with English and French summaries). MR 2060653
- Joseph E. Borzellino, Orbifolds with lower Ricci curvature bounds, Proc. Amer. Math. Soc. 125 (1997), no. 10, 3011–3018. MR 1415575, DOI 10.1090/S0002-9939-97-04046-X
- A. C. da Silva: Lectures on Symplectic Geometry. Springer–Verlag 2000.
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339 (French, with English summary). MR 984900
- J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431, DOI 10.1007/978-3-642-56936-4
- Johannes Jisse Duistermaat and Alvaro Pelayo, Symplectic torus actions with coisotropic principal orbits, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 7, 2239–2327 (English, with English and French summaries). Festival Yves Colin de Verdière. MR 2394542
- Johannes J. Duistermaat and Alvaro Pelayo, Reduced phase space and toric variety coordinatizations of Delzant spaces, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 3, 695–718. MR 2496353, DOI 10.1017/S0305004108002077
- J.J. Duistermaat and A. Pelayo: Complex structures on $4$-manifolds with symplectic $2$-torus actions. Preprint.
- J.J. Duistermaat and A. Pelayo: Topology of symplectic torus actions with symplectic orbits. Preprint.
- David S. Dummit and Richard M. Foote, Abstract algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. MR 1138725
- B. Farb and D. Margalit: A Primer on Mapping Class Groups, version of January 2006. Preliminary Version.
- Viktor L. Ginzburg, Some remarks on symplectic actions of compact groups, Math. Z. 210 (1992), no. 4, 625–640. MR 1175727, DOI 10.1007/BF02571819
- Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, vol. 98, American Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman. MR 1929136, DOI 10.1090/surv/098
- Victor Guillemin, Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Progress in Mathematics, vol. 122, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301331, DOI 10.1007/978-1-4612-0269-1
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- André Haefliger, Groupoïdes d’holonomie et classifiants, Astérisque 116 (1984), 70–97 (French). Transversal structure of foliations (Toulouse, 1982). MR 755163
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Y. Karshon, P. Iglesias, M. Zadka: Orbifolds as diffeologies, Trans. Amer. Math. Soc., to appear.
- L. K. Hua and I. Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. 65 (1949), 415–426. MR 29942, DOI 10.1090/S0002-9947-1949-0029942-0
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- Peter J. Kahn, Symplectic torus bundles and group extensions, New York J. Math. 11 (2005), 35–55. MR 2154346
- Yael Karshon, Periodic Hamiltonian flows on four-dimensional manifolds, Mem. Amer. Math. Soc. 141 (1999), no. 672, viii+71. MR 1612833, DOI 10.1090/memo/0672
- Yael Karshon and Susan Tolman, Complete invariants for Hamiltonian torus actions with two dimensional quotients, J. Symplectic Geom. 2 (2003), no. 1, 25–82. MR 2128388, DOI 10.4310/JSG.2004.v2.n1.a2
- Yael Karshon and Susan Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc. 353 (2001), no. 12, 4831–4861. MR 1852084, DOI 10.1090/S0002-9947-01-02799-4
- Helmut Klingen, Charakterisierung der Siegelschen Modulgruppe durch ein endliches System definierender Relationen, Math. Ann. 144 (1961), 64–82 (German). MR 133303, DOI 10.1007/BF01396543
- K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751–798. MR 187255, DOI 10.2307/2373157
- Mikhail Kogan, On completely integrable systems with local torus actions, Ann. Global Anal. Geom. 15 (1997), no. 6, 543–553. MR 1608655, DOI 10.1023/A:1006592123988
- J. L. Koszul, Sur certains groupes de transformations de Lie, Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, Centre National de la Recherche Scientifique, Paris, 1953, pp. 137–141 (French). MR 0059919
- N.C. Leung and M. Symington: Almost toric symplectic four-manifolds. arXiv:math.SG/0312165v1, 8 Dec 2003.
- Y. Lin and A. Pelayo: Geography of non-Kähler symplectic torus actions, Quart. J. of Math., to appear.
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- Charles-Michel Marle, Classification des actions hamiltoniennes au voisinage d’une orbite, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 7, 249–252 (French, with English summary). MR 762732
- J. McCarthy and U. Pinkall: Representing homology automorphisms of nonorientable surfaces, Max Planck Inst. preprint MPI/SFB 85-11, revised version written on February 26, 2004, PDF. Available at http://www.math.msu.edu/ mccarthy/publications/selected.papers.html
- John D. McCarthy and Jon G. Wolfson, Symplectic gluing along hypersurfaces and resolution of isolated orbifold singularities, Invent. Math. 119 (1995), no. 1, 129–154. MR 1309973, DOI 10.1007/BF01245176
- Dusa McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988), no. 2, 149–160. MR 1029424, DOI 10.1016/0393-0440(88)90001-0
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- S. Nakajima: Über konvexe Kurven und Flächen. Tôhoku Math. J. 29 (1928) 227–230.
- S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982), no. 5(227), 3–49, 248 (Russian). MR 676612
- Peter Orlik and Frank Raymond, Actions of the torus on $4$-manifolds. I, Trans. Amer. Math. Soc. 152 (1970), 531–559. MR 268911, DOI 10.1090/S0002-9947-1970-0268911-3
- Juan-Pablo Ortega and Tudor S. Ratiu, A symplectic slice theorem, Lett. Math. Phys. 59 (2002), no. 1, 81–93. MR 1894237, DOI 10.1023/A:1014407427842
- Juan-Pablo Ortega and Tudor S. Ratiu, Momentum maps and Hamiltonian reduction, Progress in Mathematics, vol. 222, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2021152, DOI 10.1007/978-1-4757-3811-7
- R. S. Palais and T. E. Stewart, Torus bundles over a torus, Proc. Amer. Math. Soc. 12 (1961), 26–29. MR 123638, DOI 10.1090/S0002-9939-1961-0123638-3
- Peter Sie Pao, The topological structure of $4$-manifolds with effective torus actions. I, Trans. Amer. Math. Soc. 227 (1977), 279–317. MR 431231, DOI 10.1090/S0002-9947-1977-0431231-4
- A. Pelayo and S. Vũ Ngọc: Semitoric integrable systems on symplectic $4$-manifolds: Invent. Math. 177 (2009) 571-597.
- A. Pelayo and S. Vũ Ngọc: Constructing integrable systems of semitoric type. Acta Math., to appear.
- I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363. MR 79769, DOI 10.1073/pnas.42.6.359
- Ichirô Satake, The Gauss-Bonnet theorem for $V$-manifolds, J. Math. Soc. Japan 9 (1957), 464–492. MR 95520, DOI 10.2969/jmsj/00940464
- A. Sergi and M. Ferrario: Non–Hamiltonian equations of motion with a conserved energy, Phys. Rev. E, 64 (2001) 056125.
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Margaret Symington, Four dimensions from two in symplectic topology, Topology and geometry of manifolds (Athens, GA, 2001) Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc., Providence, RI, 2003, pp. 153–208. MR 2024634, DOI 10.1090/pspum/071/2024634
- Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR 666554
- Heinrich Tietze, Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen, Math. Z. 28 (1928), no. 1, 697–707 (German). MR 1544985, DOI 10.1007/BF01181191
- Hassler Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159–160. MR 7783
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
- W. P. Thurston: The Geometry and Topology of $3$-manifolds Electronic version 1.1 -March 2002. http://www.msri.org/ publications/books/gt3m/.
- M. E. Tuckerman, C.J. Mundy and G.J. Martyna: On the Classical Statistical Mechanics of non-Hamiltonian Systems, Europhys. Lett. 45, 149 (1999).
- M E. Tuckerman, Y. Liu, G. Ciccotti and G. J. Martyna: Non–Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems, J. Chem. Phys., 115, 1678 (2001).
- Vasily E. Tarasov, Stationary solutions of Liouville equations for non-Hamiltonian systems, Ann. Physics 316 (2005), no. 2, 393–413. MR 2125879, DOI 10.1016/j.aop.2004.11.001
- Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR 722297