Remote access

How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

   1a. To purchase any ebook backfile or to subscibe to the current year of Contemporary Mathematics, please download this required license agreement,

   1b. To subscribe to the current year of Memoirs of the AMS, please download this required license agreement.

   2. Complete and sign the license agreement.

   3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2294  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046

Visit the AMS Bookstore for individual volume purchases.

Browse the current eBook Collections price list

Powered by MathJax

Topological classification of families of diffeomorphisms without small divisors

About this Title

Javier Ribón, UFF, Instituto de Matemática, Valonguinho, Rua Mário Santos Braga, s/n, Centro, Niterói, RJ - Brasil 24020-140

Publication: Memoirs of the American Mathematical Society
Publication Year: 2010; Volume 207, Number 975
ISBNs: 978-0-8218-4748-0 (print); 978-1-4704-0589-2 (online)
Published electronically: April 30, 2010
MathSciNet review: 2676138
Keywords:Diffeomorphisms, topological classification, bifurcation theory, normal form, structural stability, tangent to the identity germs of diffeomorphism.
MSC: Primary 37C15; Secondary 37F45, 37F75, 37G05, 37G10

View full volume PDF

View other years and numbers:

Table of Contents


  • Preface
  • Chapter 1. Outline of the monograph
  • Chapter 2. Flower type vector fields
  • Chapter 3. A clockwork orange
  • Chapter 4. The $T$-sets
  • Chapter 5. The long limits
  • Chapter 6. Topological conjugation of (NSD) vector fields
  • Chapter 7. Families of diffeomorphisms without small divisors
  • Chapter 8. Topological invariants of (NSD) diffeomorphisms
  • Chapter 9. Tangential conjugations


We give a complete topological classification for germs of one-parameter families of one-dimensional complex analytic diffeomorphisms without small divisors. In the non-trivial cases the topological invariants are given by some functions attached to the fixed points set plus the analytic class of the element of the family corresponding to the special parameter. The proof is based on the structure of the limits of orbits when we approach the special parameter.

References [Enhancements On Off] (What's this?)

  • [AR95] Patrick Ahern and Jean-Pierre Rosay, Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables, Trans. Amer. Math. Soc. 347 (1995), no. 2, 543–572. MR 1276933, 10.1090/S0002-9947-1995-1276933-6
  • [Brj71] A. D. Brjuno, Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč. 25 (1971), 119–262; ibid. 26 (1972), 199–239 (Russian). MR 0377192
  • [Cam78] César Camacho, On the local structure of conformal mappings and holomorphic vector fields in ${\bf C}^{2}$, Journées Singulières de Dijon (Univ. Dijon, Dijon, 1978) Astérisque, vol. 59, Soc. Math. France, Paris, 1978, pp. 3, 83–94. MR 542732
  • [DES] A. Douady, F. Estrada, and P. Sentenac, Champs de vecteurs polynômiaux sur $\mathbb{C}$, To appear in the Proceedings of Boldifest.
  • [Éca75] J. Écalle, Théorie itérative: introduction à la théorie des invariants holomorphes, J. Math. Pures Appl. (9) 54 (1975), 183–258 (French). MR 0499882
  • [Éca78] Jean Écalle, Les fonctions résurgentes et leurs applications à l’analyse harmonique sur certaines groupes, Séminaire d’Analyse Harmonique (1977/1978), Publ. Math. Orsay 78, vol. 12, Univ. Paris XI, Orsay, 1978, pp. 10–37 (French). MR 554479
  • [Lea97] Léopold Leau, Étude sur les équations fonctionnelles à une ou à plusieurs variables, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 11 (1897), no. 3, E25–E110 (French). MR 1508188
  • [Lor99] F. Loray, 5 leçons sur la structure transverse d'une singularité de feuilletage holomorphe en dimension 2 complexe., Monographies Red TMR Europea Sing. Ec. Dif. Fol. (1999), no. 1, 1-92.
  • [Mal82] Bernard Malgrange, Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 59–73 (French). MR 689526
  • [MR83] Jean Martinet and Jean-Pierre Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 4, 571–621 (1984) (French). MR 740592
  • [PM97] Ricardo Pérez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), no. 2, 243–294. MR 1607557, 10.1007/BF02392745
  • [Rey96] Jérome Rey, Diffomorphismes rsonnants de $(\mathbb{C},0)$, Thesis. Université Paul Sabatier, 1996.
  • [Rib01] J. Ribón, Germes de difféomorphisme de $(\mathbb{C}^{2},0)$ tangents à  l'identité qui préservent la fibration de Hopf, Ph.D. thesis, Universidad de Valladolid, 2001.
  • [Ris99] Emmanuel Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mém. Soc. Math. Fr. (N.S.) 77 (1999), viii+102 (French, with English and French summaries). MR 1779976
  • [Shc82] A. A. Shcherbakov, Topological classification of germs of conformal mappings with an identical linear part, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 (1982), 52–57, 111 (Russian, with English summary). MR 671059
  • [Vor81] S. M. Voronin, Analytic classification of germs of conformal mappings $({\bf C},\,0)\rightarrow ({\bf C},\,0)$, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 1–17, 96 (Russian). MR 609790
  • [Vor93] S. M. Voronin, The Darboux-Whitney theorem and related questions, Nonlinear Stokes phenomena, Adv. Soviet Math., vol. 14, Amer. Math. Soc., Providence, RI, 1993, pp. 139–233. MR 1206044
  • [Yoc95] Jean-Christophe Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque 231 (1995), 3–88 (French). Petits diviseurs en dimension $1$. MR 1367353