Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
AMS Home | AMS Bookstore | Customer Services
Mobile Device Pairing

How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

   1a. To purchase any ebook backfile or to subscibe to the current year of Contemporary Mathematics, please download this required license agreement,

   1b. To subscribe to the current year of Memoirs of the AMS, please download this required license agreement.

   2. Complete and sign the license agreement.

   3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2294  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046
Email: cust-serv@ams.org

Visit the AMS Bookstore for individual volume purchases.
 

Powered by MathJax

The Schrödinger model for the minimal representation of the indefinite orthogonal group


About this Title

Toshiyuki Kobayashi, Graduate School of Mathematical Sciences, IMPU, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan and Gen Mano, Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan

Publication: Memoirs of the American Mathematical Society
Publication Year 2011: Volume 213, Number 1000
ISBNs: 978-0-8218-4757-2 (print); 978-1-4704-0617-2 (online)
DOI: http://dx.doi.org/10.1090/S0065-9266-2011-00592-7
Published electronically: February 4, 2011
MathSciNet review: 2858535
Keywords: Minimal representation, Schrödinger model, generalization of the Fourier transform, Weil representation, indefinite orthogonal group, unitary representation, isotropic cone, Bessel functions, Meijer’s -functions
MSC (2000): Primary 22E30; Secondary 22E46, 43A80

View full volume PDF

View other years and numbers:

Table of Contents


Chapters

  • Chapter 1. Introduction
  • Chapter 2. Two models of the minimal representation of
  • Chapter 3. -finite eigenvectors in the Schrödinger model
  • Chapter 4. Radial part of the inversion
  • Chapter 5. Main theorem
  • Chapter 6. Bessel distributions
  • Chapter 7. Appendix: Special functions

Abstract


We introduce a generalization of the Fourier transform, denoted by , on the isotropic cone associated to an indefinite quadratic form of signature on (: even). This transform is in some sense the unique and natural unitary operator on , as is the case with the Euclidean Fourier transform on . Inspired by recent developments of algebraic representation theory of reductive groups, we shed new light on classical analysis on the one hand, and give the global formulas for the -model of the minimal representation of the simple Lie group on the other hand.

The transform expands functions on into joint eigenfunctions of fundamental differential operators which are mutually commuting, self-adjoint, and of second order. We decompose into the singular Radon transform and the Mellin–Barnes integral, find its distribution kernel, and establish the inversion and the Plancherel formula. The transform reduces to the Hankel transform if is or .

The unitary operator together with multiplications and translations coming from the conformal transformation group generates the minimal representation of the indefinite orthogonal group . Various different models of the same representation have been constructed by Kazhdan, Kostant, Binegar–Zierau, Gross–Wallach, Zhu–Huang, Torasso, Brylinski, and Kobayashi–Ørsted, and others. Among them, our model gives the global formula of the whole group action on the simple Hilbert space , and generalizes the classic Schrödinger model of the Weil representation. Here, plays a similar role to .

Yet another motif is special functions. Large group symmetries in the minimal representation yield functional equations of various special functions. We find explicit -finite vectors on , and give a new proof of the Plancherel formula for Meijer's -transforms.

References [Enhancements On Off] (What's this?)