
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Schrödinger model for the minimal representation of the indefinite orthogonal group $O(p, q)$
About this Title
Toshiyuki Kobayashi, Graduate School of Mathematical Sciences, IMPU, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan and Gen Mano, Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan
Publication: Memoirs of the American Mathematical Society
Publication Year:
2011; Volume 213, Number 1000
ISBNs: 978-0-8218-4757-2 (print); 978-1-4704-0617-2 (online)
DOI: https://doi.org/10.1090/S0065-9266-2011-00592-7
Published electronically: February 4, 2011
Keywords: Minimal representation,
Schrödinger model,
generalization of the Fourier transform,
Weil representation,
indefinite orthogonal group,
unitary representation,
isotropic cone,
Bessel functions,
Meijer’s $G$-functions
MSC: Primary 22E30; Secondary 22E46, 43A80
Table of Contents
Chapters
- 1. Introduction
- 2. Two models of the minimal representation of $O(p,q)$
- 3. $K$-finite eigenvectors in the Schrödinger model $L^2(C)$
- 4. Radial part of the inversion
- 5. Main theorem
- 6. Bessel distributions
- 7. Appendix: special functions
Abstract
We introduce a generalization of the Fourier transform, denoted by $\mathcal {F}_C$, on the isotropic cone $C$ associated to an indefinite quadratic form of signature $(n_1,n_2)$ on $\mathbb {R}^n$ ($n=n_1+n_2$: even). This transform is in some sense the unique and natural unitary operator on $L^2(C)$, as is the case with the Euclidean Fourier transform $\mathcal {F}_{\mathbb {R}^n}$ on $L^2(\mathbb {R}^n)$. Inspired by recent developments of algebraic representation theory of reductive groups, we shed new light on classical analysis on the one hand, and give the global formulas for the $L^2$-model of the minimal representation of the simple Lie group $G=O(n_1+1,n_2+1)$ on the other hand.
The transform $\mathcal {F}_C$ expands functions on $C$ into joint eigenfunctions of fundamental differential operators which are mutually commuting, self-adjoint, and of second order. We decompose $\mathcal {F}_C$ into the singular Radon transform and the Mellin–Barnes integral, find its distribution kernel, and establish the inversion and the Plancherel formula. The transform $\mathcal {F}_C$ reduces to the Hankel transform if $G$ is $O(n,2)$ or $O(3,3) \approx SL(4,\mathbb {R})$.
The unitary operator $\mathcal {F}_C$ together with multiplications and translations coming from the conformal transformation group $CO(n_1,n_2)\ltimes \mathbb {R}^{n_1+n_2}$ generates the minimal representation of the indefinite orthogonal group $G$. Various different models of the same representation have been constructed by Kazhdan, Kostant, Binegar–Zierau, Gross–Wallach, Zhu–Huang, Torasso, Brylinski, and Kobayashi–Ørsted, and others. Among them, our model gives the global formula of the whole group action on the simple Hilbert space $L^2(C)$, and generalizes the classic Schrödinger model $L^2(\mathbb R^n)$ of the Weil representation. Here, $\mathcal {F}_C$ plays a similar role to $\mathcal {F}_{\mathbb {R}^n}$.
Yet another motif is special functions. Large group symmetries in the minimal representation yield functional equations of various special functions. We find explicit $K$-finite vectors on $L^2(C)$, and give a new proof of the Plancherel formula for Meijer’s $G$-transforms.
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques: Polynomes d’Hermite, Gauthiers-Villars, Paris, 1926.
- W. N. Bailey, Some infinite integrals involving Bessel functions, Proc. London Math. Soc. (2) 40 (1935–36), 37–48.
- Dan Barbasch and David A. Vogan Jr., The local structure of characters, J. Functional Analysis 37 (1980), no. 1, 27–55. MR 576644, DOI 10.1016/0022-1236(80)90026-9
- V. Bargmann and I. T. Todorov, Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of $\textrm {SO}(n)$, J. Mathematical Phys. 18 (1977), no. 6, 1141–1148. MR 486330, DOI 10.1063/1.523383
- I. N. Bernšteĭn and S. I. Gel′fand, Meromorphy of the function $P^{\lambda }$, Funkcional. Anal. i Priložen. 3 (1969), no. 1, 84–85 (Russian). MR 0247457
- B. Binegar and R. Zierau, Unitarization of a singular representation of $\textrm {SO}(p,q)$, Comm. Math. Phys. 138 (1991), no. 2, 245–258. MR 1108044
- Ranee Brylinski and Bertram Kostant, Differential operators on conical Lagrangian manifolds, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 65–96. MR 1327531, DOI 10.1007/978-1-4612-0261-5_{3}
- Jean-Louis Clerc, Laplace transform and unitary highest weight modules, J. Lie Theory 5 (1995), no. 2, 225–240. MR 1389431
- Lokenath Debnath and Dambaru Bhatta, Integral transforms and their applications, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2253985
- Hongming Ding, Kenneth I. Gross, Ray A. Kunze, and Donald St. P. Richards, Bessel functions on boundary orbits and singular holomorphic representations, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998) Proc. Sympos. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000, pp. 223–254. MR 1767898, DOI 10.1090/pspum/068/1767898
- Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153–213 (French). MR 688348, DOI 10.1007/BF02392353
- Alexander Dvorsky, Tensor square of the minimal representation of $\textrm {O}(p,q)$, Canad. Math. Bull. 50 (2007), no. 1, 48–55. MR 2296624, DOI 10.4153/CMB-2007-005-x
- Alexander Dvorsky and Siddhartha Sahi, Explicit Hilbert spaces for certain unipotent representations. II, Invent. Math. 138 (1999), no. 1, 203–224. MR 1714342, DOI 10.1007/s002220050347
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR 0065685
- Jacques Faraut and Adam Korányi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1446489
- Y. Flicker, D. Kazhdan, and G. Savin, Explicit realization of a metaplectic representation, J. Analyse Math. 55 (1990), 17–39. MR 1094709, DOI 10.1007/BF02789195
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- Charles Fox, The $G$ and $H$ functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98 (1961), 395–429. MR 131578, DOI 10.1090/S0002-9947-1961-0131578-3
- Wee Teck Gan and Gordan Savin, Uniqueness of Joseph ideal, Math. Res. Lett. 11 (2004), no. 5-6, 589–597. MR 2106228, DOI 10.4310/MRL.2004.v11.n5.a4
- Wee Teck Gan and Gordan Savin, On minimal representations definitions and properties, Represent. Theory 9 (2005), 46–93. MR 2123125, DOI 10.1090/S1088-4165-05-00191-3
- Stephen Gelbart, Examples of dual reductive pairs, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 287–296. MR 546603
- I. M. Gel′fand and S. G. Gindikin, Complex manifolds whose spanning trees are real semisimple Lie groups, and analytic discrete series of representations, Funkcional. Anal. i Priložen. 11 (1977), no. 4, 19–27, 96 (Russian). MR 0492076
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- I. M. Gel′fand, M. I. Graev, and N. Ya. Vilenkin, Generalized functions. Vol. 5: Integral geometry and representation theory, Academic Press, New York-London, 1966. Translated from the Russian by Eugene Saletan. MR 0207913
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York-London, 1965. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceĭtlin; Translated from the Russian by Scripta Technica, Inc; Translation edited by Alan Jeffrey. MR 0197789
- Benedict H. Gross and Nolan R. Wallach, A distinguished family of unitary representations for the exceptional groups of real rank $=4$, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 289–304. MR 1327538, DOI 10.1007/978-1-4612-0261-5_{1}0
- Victor Guillemin and Shlomo Sternberg, Variations on a theme by Kepler, American Mathematical Society Colloquium Publications, vol. 42, American Mathematical Society, Providence, RI, 1990. MR 1104658
- H. Hankel, Die Fourier’schen Reihen und Integrale für Cylinderfunctionen, Math. Ann. 8 (1875), 471–494.
- G. H. Hardy, Summation of a series of polynomials of Laguerre, J. London Math. Soc. 7 (1932), 138–139, 192.
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Joachim Hilgert, Karl-Hermann Neeb, and Bent Ørsted, Conal Heisenberg algebras and associated Hilbert spaces, J. Reine Angew. Math. 474 (1996), 67–112. MR 1390692
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Roger Howe, Wave front sets of representations of Lie groups, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Springer-Verlag, Berlin-New York, 1981, pp. 117–140. MR 633659
- Roger Howe, The oscillator semigroup, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 61–132. MR 974332, DOI 10.1090/pspum/048/974332
- Roger E. Howe and Eng-Chye Tan, Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 1, 1–74. MR 1172839, DOI 10.1090/S0273-0979-1993-00360-4
- A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 1–29. MR 404366
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- David Kazhdan, The minimal representation of $D_4$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 125–158. MR 1103589
- D. Kazhdan and G. Savin, The smallest representation of simply laced groups, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 209–223. MR 1159103
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Shoshichi Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. MR 1336823
- Toshiyuki Kobayashi, Conformal geometry and global solutions to the Yamabe equations on classical pseudo-Riemannian manifolds, Proceedings of the 22nd Winter School “Geometry and Physics” (Srní, 2002), 2003, pp. 15–40. MR 1982432
- Toshiyuki Kobayashi and Gen Mano, Integral formulas for the minimal representation of $\mathrm O(p,2)$, Acta Appl. Math. 86 (2005), no. 1-2, 103–113. MR 2134314, DOI 10.1007/s10440-005-0464-2
- Toshiyuki Kobayashi and Gen Mano, Integral formula of the unitary inversion operator for the minimal representation of $\textrm {O}(p,q)$, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 3, 27–31. MR 2317306
- Toshiyuki Kobayashi and Gen Mano, The inversion formula and holomorphic extension of the minimal representation of the conformal group, Harmonic analysis, group representations, automorphic forms and invariant theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 12, World Sci. Publ., Hackensack, NJ, 2007, pp. 151–208. MR 2401813, DOI 10.1142/9789812770790_{0}006
- Toshiyuki Kobayashi and Bent Ørsted, Analysis on the minimal representation of $\mathrm O(p,q)$. I. Realization via conformal geometry, Adv. Math. 180 (2003), no. 2, 486–512. MR 2020550, DOI 10.1016/S0001-8708(03)00012-4
- Toshiyuki Kobayashi and Bent Ørsted, Analysis on the minimal representation of $\mathrm O(p,q)$. II. Branching laws, Adv. Math. 180 (2003), no. 2, 513–550. MR 2020551, DOI 10.1016/S0001-8708(03)00013-6
- Toshiyuki Kobayashi and Bent Ørsted, Analysis on the minimal representation of $\mathrm O(p,q)$. III. Ultrahyperbolic equations on ${\Bbb R}^{p-1,q-1}$, Adv. Math. 180 (2003), no. 2, 551–595. MR 2020552, DOI 10.1016/S0001-8708(03)00014-8
- Bertram Kostant, The vanishing of scalar curvature and the minimal representation of $\textrm {SO}(4,4)$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 85–124. MR 1103588
- N. N. Lebedev, Special functions and their applications, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR 0350075
- Jian-Shu Li, Minimal representations & reductive dual pairs, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 293–340. MR 1737731
- P. Macaulay-Owen, Parseval’s theorem for Hankel transforms, Proc. London Math. Soc. 45 (1939), 458–474. MR 0000314, DOI 10.1112/plms/s2-45.1.458
- G. Mano, Radon transform of functions supported on a homogeneous cone, preprint.
- C. S. Meijer, On the $G$-function. I, Nederl. Akad. Wetensch., Proc. 49 (1946), 227–237 = Indagationes Math. 8, 124–134 (1946). MR 17452
- Pierre-Denis Methée, Systèmes différentiels du type de Fuchs en théorie des distributions, Comment. Math. Helv. 33 (1959), 38–46 (French). MR 117548, DOI 10.1007/BF02565905
- Wera Myller-Lebedeff, Die Theorie der Integralgleichungen in Anwendung auf einige Reihenentwicklungen, Math. Ann. 64 (1907), no. 3, 388–416 (German). MR 1511448, DOI 10.1007/BF01476024
- G. I. Ol′shanskiĭ, Complex Lie semigroups, Hardy spaces and the Gel′fand-Gindikin program, Differential Geom. Appl. 1 (1991), no. 3, 235–246. MR 1244445, DOI 10.1016/0926-2245(91)90002-Q
- Patrice Perrin, Représentations de Schrödinger, indice de Maslov et groupe metaplectique, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 370–407 (French). MR 644841
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series. Vol. 3, Gordon and Breach Science Publishers, New York, 1990. More special functions; Translated from the Russian by G. G. Gould. MR 1054647
- Stephen Rallis and Gérard Schiffmann, Weil representation. I. Intertwining distributions and discrete spectrum, Mem. Amer. Math. Soc. 25 (1980), no. 231, iii+203. MR 567800, DOI 10.1090/memo/0231
- Hervé Sabourin, Une représentation unipotente associée à l’orbite minimale: le cas de $\textrm {SO}(4,3)$, J. Funct. Anal. 137 (1996), no. 2, 394–465 (French, with English and French summaries). MR 1387517, DOI 10.1006/jfan.1996.0052
- Siddhartha Sahi, Explicit Hilbert spaces for certain unipotent representations, Invent. Math. 110 (1992), no. 2, 409–418. MR 1185591, DOI 10.1007/BF01231340
- Wilfried Schmid and Kari Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups, Ann. of Math. (2) 151 (2000), no. 3, 1071–1118. MR 1779564, DOI 10.2307/121129
- Tonny Albert Springer, Jordan algebras and algebraic groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 75, Springer-Verlag, New York-Heidelberg, 1973. MR 0379618
- Robert J. Stanton, Analytic extension of the holomorphic discrete series, Amer. J. Math. 108 (1986), no. 6, 1411–1424. MR 868896, DOI 10.2307/2374530
- E. M. Stein, Analysis in matrix spaces and some new representations of $\textrm {SL}(N,\,C)$, Ann. of Math. (2) 86 (1967), 461–490. MR 219670, DOI 10.2307/1970611
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Masaru Takeuchi, Modern spherical functions, Translations of Mathematical Monographs, vol. 135, American Mathematical Society, Providence, RI, 1994. Translated from the 1975 Japanese original by Toshinobu Nagura. MR 1280269, DOI 10.1090/mmono/135
- Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. MR 1395148, DOI 10.1007/978-1-4684-9320-7
- E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 3rd ed., Chelsea Publishing Co., New York, 1986. MR 942661
- Pierre Torasso, Quantification géométrique, opérateurs d’entrelacement et représentations unitaires de $(\widetilde \textrm {SL})_3(\textbf {R})$, Acta Math. 150 (1983), no. 3-4, 153–242 (French). MR 709141, DOI 10.1007/BF02392971
- Pierre Torasso, Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle, Duke Math. J. 90 (1997), no. 2, 261–377 (French). MR 1484858, DOI 10.1215/S0012-7094-97-09009-8
- M. Vergne and H. Rossi, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1976), no. 1-2, 1–59. MR 480883, DOI 10.1007/BF02392042
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
- David A. Vogan Jr., Singular unitary representations, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 506–535. MR 644845
- David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. MR 908078
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922.
- Chen-Bo Zhu and Jing-Song Huang, On certain small representations of indefinite orthogonal groups, Represent. Theory 1 (1997), 190–206. MR 1457244, DOI 10.1090/S1088-4165-97-00031-9