AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
A von Neumann Algebra Approach to Quantum Metrics
About this Title
Greg Kuperberg, Department of Mathematics, University of California, Davis, California 95616 and Nik Weaver, Department of Mathematics, Washington University, St. Louis, Missouri 63130
Publication: Memoirs of the American Mathematical Society
Publication Year:
2012; Volume 215, Number 1010
ISBNs: 978-0-8218-5341-2 (print); 978-0-8218-8512-3 (online)
DOI: https://doi.org/10.1090/S0065-9266-2011-00637-4
Published electronically: March 29, 2011
Keywords: [A von Neumann Algebra Approach to Quantum Metrics] Quantum error correction,
quantum metrics,
quantum tori,
spectral triples,
von Neumann algebras; [Quantum Relations] Measurable metrics,
measurable relations,
operator reflexivity,
quantum relations,
quantum tori
MSC: Primary 46L89, 28A99; Secondary 46L10, 54E35, 81P70
Table of Contents
A von Neumann Algebra Approach to Quantum Metrics by Greg Kuperberg and Nik Weaver
- Introduction
- 1. Measurable and quantum relations
- 2. Quantum metrics
- 3. Examples
- 4. Lipschitz operators
- 5. Quantum uniformities
Quantum Relations by Nik Weaver
- Introduction
- 6. Measurable relations
- 7. Quantum relations
Abstract
A von Neumann Algebra Approach to Quantum Metrics by Greg Kuperberg and Nik Weaver
We propose a new definition of quantum metric spaces, or W*-metric spaces, in the setting of von Neumann algebras. Our definition effectively reduces to the classical notion in the atomic abelian case, has both concrete and intrinsic characterizations, and admits a wide variety of tractable examples. A natural application and motivation of our theory is a mutual generalization of the standard models of classical and quantum error correction.
Quantum Relations by Nik Weaver
We define a “quantum relation” on a von Neumann algebra ${\mathcal M}\subseteq {\mathcal B}(H)$ to be a weak* closed operator bimodule over its commutant ${\mathcal M}’$. Although this definition is framed in terms of a particular representation of ${\mathcal M}$, it is effectively representation independent. Quantum relations on $l^\infty (X)$ exactly correspond to subsets of $X^2$, i.e., relations on $X$. There is also a good definition of a “measurable relation” on a measure space, to which quantum relations partially reduce in the general abelian case.
By analogy with the classical setting, we can identify structures such as quantum equivalence relations, quantum partial orders, and quantum graphs, and we can generalize Arveson’s fundamental work on weak* closed operator algebras containing a masa to these cases. We are also able to intrinsically characterize the quantum relations on ${\mathcal M}$ in terms of families of projections in $\mathcal {M}\bar {\otimes } \mathcal {B}(l^2)$.
- Charles A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277–294. MR 0251545, DOI 10.1016/0022-1236(69)90015-9
- David P. Blecher, Tensor products of operator spaces. II, Canad. J. Math. 44 (1992), no. 1, 75–90. MR 1152667, DOI 10.4153/CJM-1992-004-5
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583
- F. F. Bonsall and J. Duncan, Numerical ranges. II, Cambridge University Press, New York-London, 1973. London Mathematical Society Lecture Notes Series, No. 10. MR 0442682
- R. B. Burckel, An Introduction to Classical Complex Analysis, vol. I, 1979.
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- Jan Cnops, An introduction to Dirac operators on manifolds, Progress in Mathematical Physics, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1917405
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Alain Connes and John Lott, The metric aspect of noncommutative geometry, New symmetry principles in quantum field theory (Cargèse, 1991) NATO Adv. Sci. Inst. Ser. B Phys., vol. 295, Plenum, New York, 1992, pp. 53–93. MR 1204452
- R. Duan, S. Severini, and A. Winter, Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász function, arXiv:1002.2514.
- Edward G. Effros and Zhong-Jin Ruan, On approximation properties for operator spaces, Internat. J. Math. 1 (1990), no. 2, 163–187. MR 1060634, DOI 10.1142/S0129167X90000113
- Masamichi Hamana, Tensor products for monotone complete $C^{\ast }$-algebras. I, II, Japan. J. Math. (N.S.) 8 (1982), no. 2, 259–283, 285–295. MR 722528, DOI 10.4099/math1924.8.259
- Francis Hirsch, Intrinsic metrics and Lipschitz functions, J. Evol. Equ. 3 (2003), no. 1, 11–25. Dedicated to Philippe Bénilan. MR 1977106, DOI 10.1007/s000280300001
- Francis Hirsch, Measurable metrics, intrinsic metrics and Lipschitz functions, Current trends in potential theory, Theta Ser. Adv. Math., vol. 4, Theta, Bucharest, 2005, pp. 47–61. MR 2243955
- Francis Hirsch, Measurable metrics and Gaussian concentration, Forum Math. 18 (2006), no. 3, 345–363. MR 2237926, DOI 10.1515/FORUM.2006.020
- Wilhelm P. A. Klingenberg, Riemannian geometry, 2nd ed., De Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995. MR 1330918
- Emanuel Knill, Raymond Laflamme, and Lorenza Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84 (2000), no. 11, 2525–2528. MR 1745959, DOI 10.1103/PhysRevLett.84.2525
- Warren Page, Topological uniform structures, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 515583
- Theodore W. Palmer, Banach algebras and the general theory of $*$-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. $*$-algebras. MR 1819503
- Marc A. Rieffel, Continuous fields of $C^*$-algebras coming from group cocycles and actions, Math. Ann. 283 (1989), no. 4, 631–643. MR 990592, DOI 10.1007/BF01442857
- Marc A. Rieffel, Noncommutative tori—a case study of noncommutative differentiable manifolds, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 191–211. MR 1047281, DOI 10.1090/conm/105/1047281
- Marc A. Rieffel, Gromov-Hausdorff distance for quantum metric spaces, Mem. Amer. Math. Soc. 168 (2004), no. 796, 1–65. Appendix 1 by Hanfeng Li; Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance. MR 2055927, DOI 10.1090/memo/0796
- Marc A. Rieffel, Leibniz seminorms for “matrix algebras converge to the sphere”, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 543–578. MR 2732064, DOI 10.1098/rsif.2009.0240
- John Roe, Elliptic operators, topology and asymptotic methods, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 395, Longman, Harlow, 1998. MR 1670907
- Zhong-Jin Ruan, On the predual of dual algebras, J. Operator Theory 27 (1992), no. 1, 179–192. MR 1241122
- Robert Schrader, Finite propagation speed and causal free quantum fields on networks, J. Phys. A 42 (2009), no. 49, 495401, 39. MR 2566278, DOI 10.1088/1751-8113/42/49/495401
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- András Vasy, Geometric optics and the wave equation on manifolds with corners, Recent advances in differential equations and mathematical physics, Contemp. Math., vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 315–333. MR 2259117, DOI 10.1090/conm/412/07784
- Nik Weaver, Nonatomic Lipschitz spaces, Studia Math. 115 (1995), no. 3, 277–289. MR 1351242, DOI 10.4064/sm-115-3-277-289
- Nik Weaver, Weak$^*$-closed derivations from $C[0,1]$ into $L^\infty [0,1]$, Canad. Math. Bull. 39 (1996), no. 3, 367–375. MR 1411080, DOI 10.4153/CMB-1996-044-8
- Nik Weaver, Lipschitz algebras and derivations of von Neumann algebras, J. Funct. Anal. 139 (1996), no. 2, 261–300. MR 1402766, DOI 10.1006/jfan.1996.0086
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645
- Nik Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal. 178 (2000), no. 1, 64–112. MR 1800791, DOI 10.1006/jfan.2000.3637
- ———, Mathematical Quantization, CRC Press, 2001.
- ———, Quantum Relations, to appear jointly with A von Neumann Algebra Approach to Quantum Metrics, Memoirs of the AMS, this volume, arXiv:math.OA/1005.0354.
- William Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433–532. MR 365167, DOI 10.2307/1970956
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- R. Duan, S. Severini, and A. Winter, Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász function, arXiv:1002.2514.
- J. A. Erdos, Reflexivity for subspace maps and linear spaces of operators, Proc. London Math. Soc. (3) 52 (1986), no. 3, 582–600. MR 833651, DOI 10.1112/plms/s3-52.3.582
- John Froelich, Compact operators, invariant subspaces, and spectral synthesis, J. Funct. Anal. 81 (1988), no. 1, 1–37. MR 967889, DOI 10.1016/0022-1236(88)90110-3
- Francis Hirsch, Intrinsic metrics and Lipschitz functions, J. Evol. Equ. 3 (2003), no. 1, 11–25. Dedicated to Philippe Bénilan. MR 1977106, DOI 10.1007/s000280300001
- Francis Hirsch, Measurable metrics, intrinsic metrics and Lipschitz functions, Current trends in potential theory, Theta Ser. Adv. Math., vol. 4, Theta, Bucharest, 2005, pp. 47–61. MR 2243955
- Francis Hirsch, Measurable metrics and Gaussian concentration, Forum Math. 18 (2006), no. 3, 345–363. MR 2237926, DOI 10.1515/FORUM.2006.020
- G. Kuperberg and N. Weaver, A von Neumann Algebra Approach to Quantum Metrics, to appear jointly with Quantum Relations, Memoirs of the AMS, this volume, arXiv:math.OA/1005.0353.
- David R. Larson, Annihilators of operator algebras, Invariant subspaces and other topics (Timişoara/Herculane, 1981), Operator Theory: Adv. Appl., vol. 6, Birkhäuser, Basel-Boston, Mass., 1982, pp. 119–130. MR 685459
- Theodore W. Palmer, Banach algebras and the general theory of $*$-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. $*$-algebras. MR 1819503
- Marc A. Rieffel, Noncommutative tori—a case study of noncommutative differentiable manifolds, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 191–211. MR 1047281, DOI 10.1090/conm/105/1047281
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- Nik Weaver, Nonatomic Lipschitz spaces, Studia Math. 115 (1995), no. 3, 277–289. MR 1351242, DOI 10.4064/sm-115-3-277-289
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645
- Nik Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal. 178 (2000), no. 1, 64–112. MR 1800791, DOI 10.1006/jfan.2000.3637
- ———, Mathematical Quantization, CRC Press, 2001.