
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Character identities in the twisted endoscopy of real reductive groups
About this Title
Paul Mezo
Publication: Memoirs of the American Mathematical Society
Publication Year:
2013; Volume 222, Number 1042
ISBNs: 978-0-8218-7565-0 (print); 978-0-8218-9507-8 (online)
DOI: https://doi.org/10.1090/S0065-9266-2012-00661-7
Published electronically: May 31, 2012
MSC: Primary 22E45, 11S37
Table of Contents
Chapters
- 1. Introduction
- 2. Notation
- 3. The foundations of real twisted endoscopy
- 4. The Local Langlands Correspondence
- 5. Tempered essentially square-integrable representations
- 6. Spectral transfer for essentially square-integrable representations
- 7. Spectral transfer for limits of discrete series
- A. Parabolic descent for geometric transfer factors
Abstract
Suppose $G$ is a real reductive algebraic group, $\theta$ is an automorphism of $G$, and $\omega$ is a quasicharacter of the group of real points $G(\mathbf {R})$. Under some additional assumptions, the theory of twisted endoscopy associates to this triple real reductive groups $H$. The Local Langlands Correspondence partitions the admissible representations of $H(\mathbf {R})$ and $G(\mathbf {R})$ into $L$-packets. We prove twisted character identities between $L$-packets of $H(\mathbf {R})$ and $G(\mathbf {R})$ comprised of essential discrete series or limits of discrete series.- J. Arthur. The endoscopic classification of representations: orthogonal and symplectic groups. Unpublished.
- James Arthur, The local behaviour of weighted orbital integrals, Duke Math. J. 56 (1988), no. 2, 223–293. MR 932848, DOI 10.1215/S0012-7094-88-05612-8
- James Arthur, Stability and endoscopy: informal motivation, Representation theory and automorphic forms (Edinburgh, 1996) Proc. Sympos. Pure Math., vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 433–442. MR 1476508, DOI 10.1090/pspum/061/1476508
- James Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 1–263. MR 2192011
- James Arthur, Problems for real groups, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 39–62. MR 2478455, DOI 10.1090/conm/472/09236
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR 546608
- Abderrazak Bouaziz, Sur les caractères des groupes de Lie réductifs non connexes, J. Funct. Anal. 70 (1987), no. 1, 1–79 (French). MR 870753, DOI 10.1016/0022-1236(87)90122-4
- Abderrazak Bouaziz, Relèvement des caractères d’un groupe endoscopique pour le changement de base $\textbf {C}/\textbf {R}$, Astérisque 171-172 (1989), 163–194 (French). Orbites unipotentes et représentations, II. MR 1021503
- Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 5, 573–609 (French, with English summary). MR 1296557
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Jean-Yves Ducloux, Méthode des orbites et formules du caractère pour les représentations tempérées d’un groupe algébrique réel réductif non connexe, J. Lie Theory 12 (2002), no. 1, 137–190 (French, with English summary). MR 1885040
- Michel Duflo, Construction de représentations unitaires d’un groupe de Lie, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 129–221 (French, with English summary). MR 777341
- Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234–253. MR 62747, DOI 10.1090/S0002-9947-1954-0062747-5
- Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241–318. MR 219665, DOI 10.1007/BF02391779
- Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457–508. MR 180631, DOI 10.1090/S0002-9947-1965-0180631-0
- Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
- Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104–204. MR 0399356, DOI 10.1016/0022-1236(75)90034-8
- John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205028
- Henryk Hecht and Wilfried Schmid, A proof of Blattner’s conjecture, Invent. Math. 31 (1975), no. 2, 129–154. MR 396855, DOI 10.1007/BF01404112
- James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773
- James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
- Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI 10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- A. W. Knapp and Gregg J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116 (1982), no. 2, 389–455. MR 672840, DOI 10.2307/2007066
- J.-P. Labesse, Stable twisted trace formula: elliptic terms, J. Inst. Math. Jussieu 3 (2004), no. 4, 473–530. MR 2094449, DOI 10.1017/S1474748004000143
- Jean-Pierre Labesse, Introduction to endoscopy, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 175–213. MR 2454335, DOI 10.1090/conm/472/09240
- R. P. Langlands, Stable conjugacy: definitions and lemmas, Canadian J. Math. 31 (1979), no. 4, 700–725. MR 540901, DOI 10.4153/CJM-1979-069-2
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- R. P. Langlands, Representations of abelian algebraic groups, Pacific J. Math. Special Issue (1997), 231–250. Olga Taussky-Todd: in memoriam. MR 1610871, DOI 10.2140/pjm.1997.181.231
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI 10.1007/BF01458070
- Paul Mezo, Automorphism-invariant representations of real reductive groups, Amer. J. Math. 129 (2007), no. 4, 1063–1085. MR 2343383, DOI 10.1353/ajm.2007.0027
- David Renard, Intégrales orbitales tordues sur les groupes de Lie réductifs réels, J. Funct. Anal. 145 (1997), no. 2, 374–454 (French, with English summary). MR 1444087, DOI 10.1006/jfan.1996.2976
- David Renard, Twisted endoscopy for real groups, J. Inst. Math. Jussieu 2 (2003), no. 4, 529–566. MR 2006798, DOI 10.1017/S147474800300015X
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- D. Shelstad. On geometric transfer in real twisted endoscopy. Unpublished. See http://andromeda.rutgers.edu/$\sim$shelstad.
- D. Shelstad. On spectral transfer factors in real twisted endoscopy. See http://andromeda.rutgers.edu/$\sim$shelstad.
- D. Shelstad, $L$-indistinguishability for real groups, Math. Ann. 259 (1982), no. 3, 385–430. MR 661206, DOI 10.1007/BF01456950
- D. Shelstad, Endoscopic groups and base change $\textbf {C}/\textbf {R}$, Pacific J. Math. 110 (1984), no. 2, 397–416. MR 726498
- D. Shelstad, Tempered endoscopy for real groups. I. Geometric transfer with canonical factors, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 215–246. MR 2454336, DOI 10.1090/conm/472/09241
- D. Shelstad, Tempered endoscopy for real groups. II. Spectral transfer factors, Automorphic forms and the Langlands program, Adv. Lect. Math. (ALM), vol. 9, Int. Press, Somerville, MA, 2010, pp. 236–276. MR 2581952
- T. A. Springer, Reductive groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–27. MR 546587
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- Birgit Speh and David A. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227–299. MR 590291, DOI 10.1007/BF02414191
- J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR 546607
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, 1966, pp. 33–62. MR 0224710
- V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin-New York, 1977. MR 0473111
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. MR 0498999
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
- Gregg Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. (2) 106 (1977), no. 2, 295–308. MR 457636, DOI 10.2307/1971097