Remote access

How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

   1a. To purchase any ebook backfile or to subscibe to the current year of Contemporary Mathematics, please download this required license agreement,

   1b. To subscribe to the current year of Memoirs of the AMS, please download this required license agreement.

   2. Complete and sign the license agreement.

   3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2294  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046
Email: cust-serv@ams.org

Visit the AMS Bookstore for individual volume purchases.
 

Powered by MathJax

The shape of congruence lattices


About this Title

Keith A. Kearnes, Department of Mathematics, University of Colorado, Boulder, Colorado 80309-0395 and Emil W. Kiss, Loránd Eötvös University, Department of Algebra and Number Theory, 1117 Budapest, Pázmány Péter sétány 1/c, Hungary

Publication: Memoirs of the American Mathematical Society
Publication Year 2013: Volume 222, Number 1046
ISBNs: 978-0-8218-8323-5 (print); 978-0-8218-9515-3 (online)
DOI: http://dx.doi.org/10.1090/S0065-9266-2012-00667-8
Published electronically: September 18, 2012
Keywords:Abelian, almost congruence distributivity, commutator theory, compatible semilattice operation, congruence identity, congruence modularity, 8congruence semidistributivity, Maltsev condition, meet continuous lattice, rectangulation, residual smallness, solvable, tame congruence theory, term condition, variety, weak difference term
MSC (2010): Primary 08B05; Secondary 08B10

View full volume PDF

View other years and numbers:

Table of Contents


Chapters

  • Chapter 1. Introduction
  • Chapter 2. Preliminary notions
  • Chapter 3. Strong term conditions
  • Chapter 4. Meet continuous congruence identities
  • Chapter 5. Rectangulation
  • Chapter 6. A theory of solvability
  • Chapter 7. Ordinary congruence identities
  • Chapter 8. Congruence meet and join semidistributivity
  • Chapter 9. Residually small varieties
  • Problems
  • Appendix A. Varieties with special terms

Abstract


We develop the theories of the strong commutator, the rectangular commutator, the strong rectangular commutator, as well as a solvability theory for the nonmodular TC commutator. These theories are used to show that each of the following sets of statements are equivalent for a variety $\mathcal {V}$ of algebras.(I) \begin{enumerate} \item$\mathcal {V}$ satisfies a nontrivial congruence identity. \item$\mathcal {V}$ satisfies an idempotent Maltsev condition that fails in the variety of semilattices. \item The rectangular commutator is trivial throughout $\mathcal {V}$. \end{enumerate}(II) \begin{enumerate} \item$\mathcal {V}$ satisfies a nontrivial meet continuous congruence identity. \item$\mathcal {V}$ satisfies an idempotent Maltsev condition that fails in the variety of sets. \item The strong commutator is trivial throughout $\mathcal {V}$. \item The strong rectangular commutator is trivial throughout $\mathcal {V}$. \end{enumerate}(III) \begin{enumerate} \item$\mathcal {V}$ is congruence semidistributive. \item$\mathcal {V}$ satisfies an idempotent Maltsev condition that fails in the variety of semilattices and in any nontrivial variety of modules. \item The rectangular and TC commutators are both trivial throughout $\mathcal {V}$. \end{enumerate} We prove that a residually small variety that satisfies a congruence identity is congruence modular.

References [Enhancements On Off] (What's this?)