
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The shape of congruence lattices
About this Title
Keith A. Kearnes, Department of Mathematics, University of Colorado, Boulder, Colorado 80309-0395 and Emil W. Kiss, Loránd Eötvös University, Department of Algebra and Number Theory, 1117 Budapest, Pázmány Péter sétány 1/c, Hungary
Publication: Memoirs of the American Mathematical Society
Publication Year:
2013; Volume 222, Number 1046
ISBNs: 978-0-8218-8323-5 (print); 978-0-8218-9515-3 (online)
DOI: https://doi.org/10.1090/S0065-9266-2012-00667-8
Published electronically: September 18, 2012
Keywords: Abelian,
almost congruence distributivity,
commutator theory,
compatible semilattice operation,
congruence identity,
congruence modularity,
8congruence semidistributivity,
Maltsev condition,
meet continuous lattice,
rectangulation,
residual smallness,
solvable,
tame congruence theory,
term condition,
variety,
weak difference term
MSC: Primary 08B05; Secondary 08B10
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminary Notions
- 3. Strong Term Conditions
- 4. Meet Continuous Congruence Identities
- 5. Rectangulation
- 6. A Theory of Solvability
- 7. Ordinary Congruence Identities
- 8. Congruence Meet and Join Semidistributivity
- 9. Residually Small Varieties
- Problems
- A. Varieties with Special Terms
Abstract
We develop the theories of the strong commutator, the rectangular commutator, the strong rectangular commutator, as well as a solvability theory for the nonmodular TC commutator. These theories are used to show that each of the following sets of statements are equivalent for a variety $\mathcal {V}$ of algebras.
-
-
$\mathcal {V}$ satisfies a nontrivial congruence identity.
-
$\mathcal {V}$ satisfies an idempotent Maltsev condition that fails in the variety of semilattices.
-
The rectangular commutator is trivial throughout $\mathcal {V}$.
-
-
-
$\mathcal {V}$ satisfies a nontrivial meet continuous congruence identity.
-
$\mathcal {V}$ satisfies an idempotent Maltsev condition that fails in the variety of sets.
-
The strong commutator is trivial throughout $\mathcal {V}$.
-
The strong rectangular commutator is trivial throughout $\mathcal {V}$.
-
-
-
$\mathcal {V}$ is congruence semidistributive.
-
$\mathcal {V}$ satisfies an idempotent Maltsev condition that fails in the variety of semilattices and in any nontrivial variety of modules.
-
The rectangular and TC commutators are both trivial throughout $\mathcal {V}$.
-
We prove that a residually small variety that satisfies a congruence identity is congruence modular.
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR 648287
- Gábor Czédli, A Mal′cev-type condition for the semidistributivity of congruence lattices, Acta Sci. Math. (Szeged) 43 (1981), no. 3-4, 267–272. MR 640303
- Gábor Czédli, A characterization for congruence semidistributivity, Universal algebra and lattice theory (Puebla, 1982) Lecture Notes in Math., vol. 1004, Springer, Berlin, 1983, pp. 104–110. MR 716177, DOI 10.1007/BFb0063432
- G. Czédli, Mal′cev conditions for Horn sentences with congruence permutability, Acta Math. Hungar. 44 (1984), no. 1-2, 115–124. MR 759039, DOI 10.1007/BF01974108
- Gábor Czédli and Alan Day, Horn sentences with $(\textrm {W})$ and weak Mal′cev conditions, Algebra Universalis 19 (1984), no. 2, 217–230. MR 758319, DOI 10.1007/BF01190431
- B. A. Davey, W. Poguntke, and I. Rival, A characterization of semi-distributivity, Algebra Universalis 5 (1975), 72–75. MR 382103, DOI 10.1007/BF02485233
- Alan Day, A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull. 12 (1969), 167–173. MR 248063, DOI 10.4153/CMB-1969-016-6
- A. Day, $p$-modularity implies modularity in equational classes, Algebra Universalis 3 (1973), 398–399. MR 354497, DOI 10.1007/BF02945142
- Alan Day, Splitting lattices and congruence modularity, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) North-Holland, Amsterdam, 1977, pp. 57–71. Colloq. Math. Soc. János Bolyai, Vol. 17. MR 0552770
- Alan Day and Ralph Freese, A characterization of identities implying congruence modularity. I, Canadian J. Math. 32 (1980), no. 5, 1140–1167. MR 596102, DOI 10.4153/CJM-1980-087-6
- Alan Day and Emil W. Kiss, Frames and rings in congruence modular varieties, J. Algebra 109 (1987), no. 2, 479–507. MR 902965, DOI 10.1016/0021-8693(87)90152-9
- R. Dedekind, Ueber die von drei Moduln erzeugte Dualgruppe, Math. Ann. 53 (1900), no. 3, 371–403 (German). MR 1511094, DOI 10.1007/BF01448979
- S. Fajtlowicz and J. Schmidt, Bézout families, join-congruences, and meet-irreducible ideals, Lattice theory (Proc. Colloq., Szeged, 1974) North-Holland, Amsterdam, 1976, pp. 51–76. Colloq. Math. Soc. János Bolyai, Vol. 14. MR 0444533
- Ralph Freese, Ideal lattices of lattices, Pacific J. Math. 57 (1975), no. 1, 125–133. MR 371751
- Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, Mathematical Surveys and Monographs, vol. 42, American Mathematical Society, Providence, RI, 1995. MR 1319815
- Ralph Freese and Bjarni Jónsson, Congruence modularity implies the Arguesian identity, Algebra Universalis 6 (1976), no. 2, 225–228. MR 472644, DOI 10.1007/BF02485830
- Ralph Freese, Keith Kearnes, and J. B. Nation, Congruence lattices of congruence semidistributive algebras, Lattice theory and its applications (Darmstadt, 1991) Res. Exp. Math., vol. 23, Heldermann, Lemgo, 1995, pp. 63–78. MR 1366865
- Ralph Freese and Ralph McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, vol. 125, Cambridge University Press, Cambridge, 1987. MR 909290
- Ralph Freese and J. B. Nation, Congruence lattices of semilattices, Pacific J. Math. 49 (1973), 51–58. MR 332590
- Ralph Freese and J. B. Nation, $3-3$ lattice inclusions imply congruence modularity, Algebra Universalis 7 (1977), no. 2, 191–194. MR 434906, DOI 10.1007/BF02485428
- Nenosuke Funayama and Tadasi Nakayama, On the distributivity of a lattice of lattice-congruences, Proc. Imp. Acad. Tokyo 18 (1942), 553–554. MR 14065
- C. F. Gauss, Disquisitiones Arithmeticae, Lipsiae, in commissis apud Gerh. Fleischer, Jun., 1801.
- O. C. García and W. Taylor, The lattice of interpretability types of varieties, Mem. Amer. Math. Soc. 50 (1984), no. 305, v+125. MR 749524, DOI 10.1090/memo/0305
- Viktor A. Gorbunov, Algebraic theory of quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1998. Translated from the Russian. MR 1654844
- G. Grätzer and E. T. Schmidt, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. (Szeged) 24 (1963), 34–59. MR 151406
- H. Peter Gumm, Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 45 (1983), no. 286, viii+79. MR 714648, DOI 10.1090/memo/0286
- Joachim Hagemann and Christian Herrmann, A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity, Arch. Math. (Basel) 32 (1979), no. 3, 234–245. MR 541622, DOI 10.1007/BF01238496
- Joachim Hagemann and A. Mitschke, On $n$-permutable congruences, Algebra Universalis 3 (1973), 8–12. MR 330010, DOI 10.1007/BF02945100
- Mark D. Haiman, Arguesian lattices which are not linear, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 1, 121–123. MR 866029, DOI 10.1090/S0273-0979-1987-15483-8
- Christian Herrmann, Affine algebras in congruence modular varieties, Acta Sci. Math. (Szeged) 41 (1979), no. 1-2, 119–125. MR 534504
- C. Herrmann and W. Poguntke, Axiomatic classes of modules, Darmstadt Preprint 12, 1972.
- Christian Herrmann and Werner Poguntke, The class of sublattices of normal subgroup lattices is not elementary, Algebra Universalis 4 (1974), 280–286. MR 354458, DOI 10.1007/BF02485739
- David Hobby and Ralph McKenzie, The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR 958685
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741
- George Hutchinson and Gábor Czédli, A test for identities satisfied in lattices of submodules, Algebra Universalis 8 (1978), no. 3, 269–309. MR 469840, DOI 10.1007/BF02485400
- Bjarni Jónsson, Modular lattices and Desargues’ theorem, Math. Scand. 2 (1954), 295–314. MR 67859, DOI 10.7146/math.scand.a-10416
- Bjarni Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121 (1968). MR 237402, DOI 10.7146/math.scand.a-10850
- B. Jónsson, Identities in congruence varieties, Lattice theory (Proc. Colloq., Szeged, 1974) North-Holland, Amsterdam, 1976, pp. 195–205. Colloq. Math. Soc. János Bolyai, Vol. 14. MR 0439713
- Bjarni Jónsson, Congruence varieties, Algebra Universalis 10 (1980), no. 3, 355–394. MR 564122, DOI 10.1007/BF02482916
- Bjarni Jónsson and Ivan Rival, Lattice varieties covering the smallest nonmodular variety, Pacific J. Math. 82 (1979), no. 2, 463–478. MR 551703
- K. Kaarli and R. McKenzie, Affine complete varieties are congruence distributive, Algebra Universalis 38 (1997), no. 3, 329–354. MR 1620035, DOI 10.1007/s000120050058
- Kalle Kaarli and Alden Pixley, Affine complete varieties, Algebra Universalis 24 (1987), no. 1-2, 74–90. MR 921532, DOI 10.1007/BF01188385
- Keith A. Kearnes, An order-theoretic property of the commutator, Internat. J. Algebra Comput. 3 (1993), no. 4, 491–533. MR 1250248, DOI 10.1142/S0218196793000299
- Keith A. Kearnes, Varieties with a difference term, J. Algebra 177 (1995), no. 3, 926–960. MR 1358491, DOI 10.1006/jabr.1995.1334
- Keith A. Kearnes, A characterization of locally finite varieties that satisfy a nontrivial congruence identity, Algebra Universalis 42 (1999), no. 3, 195–204. MR 1736714, DOI 10.1007/s000120050134
- Keith A. Kearnes, Almost all minimal idempotent varieties are congruence modular, Algebra Universalis 44 (2000), no. 1-2, 39–45. MR 1801632, DOI 10.1007/s000120050169
- Keith A. Kearnes, Congruence join semidistributivity is equivalent to a congruence identity, Algebra Universalis 46 (2001), no. 3, 373–387. MR 1857204, DOI 10.1007/PL00000351
- Keith A. Kearnes and Emil W. Kiss, Finite algebras of finite complexity, Discrete Math. 207 (1999), no. 1-3, 89–135. MR 1710485, DOI 10.1016/S0012-365X(99)00042-4
- Keith A. Kearnes and Emil W. Kiss, Residual smallness and weak centrality, Internat. J. Algebra Comput. 13 (2003), no. 1, 35–59. MR 1970866, DOI 10.1142/S0218196703001237
- Keith A. Kearnes and Emil W. Kiss, The triangular principle is equivalent to the triangular scheme, Algebra Universalis 54 (2005), no. 3, 373–383. MR 2219417, DOI 10.1007/s00012-005-1954-9
- Keith A. Kearnes and J. B. Nation, Axiomatizable and nonaxiomatizable congruence prevarieties, Algebra Universalis 59 (2008), no. 3-4, 323–335. MR 2470584, DOI 10.1007/s00012-008-2068-y
- Keith A. Kearnes and Ágnes Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8 (1998), no. 4, 497–531. MR 1663558, DOI 10.1142/S0218196798000247
- K. A. Kearnes and M. Valeriote, A modification of Polin’s variety, Algebra Universalis 41 (1999), no. 3, 229–231. MR 1699342, DOI 10.1007/s000120050112
- Emil W. Kiss and Péter Pröhle, Problems and results in tame congruence theory. A survey of the ’88 Budapest Workshop, Algebra Universalis 29 (1992), no. 2, 151–171. MR 1157431, DOI 10.1007/BF01190604
- Paolo Lipparini, Congruence identities satisfied in $n$-permutable varieties, Boll. Un. Mat. Ital. B (7) 8 (1994), no. 4, 851–868 (English, with Italian summary). MR 1315822
- Paolo Lipparini, Commutator theory without join-distributivity, Trans. Amer. Math. Soc. 346 (1994), no. 1, 177–202. MR 1257643, DOI 10.1090/S0002-9947-1994-1257643-7
- P. Lipparini, $n$-permutable varieties satisfy nontrivial congruence identities, Algebra Universalis 33 (1995), no. 2, 159–168. MR 1318980, DOI 10.1007/BF01190927
- Paolo Lipparini, A characterization of varieties with a difference term, Canad. Math. Bull. 39 (1996), no. 3, 308–315. MR 1411074, DOI 10.4153/CMB-1996-038-0
- Paolo Lipparini, A characterization of varieties with a difference term. II. Neutral $=$ meet semi-distributive, Canad. Math. Bull. 41 (1998), no. 3, 318–327. MR 1637665, DOI 10.4153/CMB-1998-044-9
- P. Lipparini, An elementary proof that $n$-permutable varieties satisfy lattice identities, manuscript available at http://www.mat.uniroma2.it/˜lipparin/nperm2.dvi
- Paolo Lipparini, Every $m$-permutable variety satisfies the congruence identity $\alpha \beta _h=\alpha \gamma _h$, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1137–1144. MR 2367087, DOI 10.1090/S0002-9939-07-09337-9
- A. I. Mal′cev, On the general theory of algebraic systems, Mat. Sb. N.S. 35(77) (1954), 3–20 (Russian). MR 0065533
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Ralph McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1–43. MR 313141, DOI 10.1090/S0002-9947-1972-0313141-1
- Ralph McKenzie, Some unsolved problems between lattice theory and equational logic, Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973) Dept. Math., Univ. Houston, Houston, Tex., 1973, pp. 564–573. MR 0398920
- Ralph McKenzie, Finite forbidden lattices, Universal algebra and lattice theory (Puebla, 1982) Lecture Notes in Math., vol. 1004, Springer, Berlin, 1983, pp. 176–205. MR 716183, DOI 10.1007/BFb0063438
- Ralph N. McKenzie, George F. McNulty, and Walter F. Taylor, Algebras, lattices, varieties. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987. MR 883644
- Peter Mederly, Three Mal′cev type theorems and their application, Mat. Časopis Sloven. Akad. Vied 25 (1975), no. 1, 83–95. MR 384650
- J. B. Nation, Varieties whose congruences satisfy certain lattice identities, Algebra Universalis 4 (1974), 78–88. MR 354501, DOI 10.1007/BF02485709
- N. Newrly and M. A. Valeriote, Some generalizations of Polin’s variety, manuscript, 1999.
- Péter Pál Pálfy and Csaba Szabó, Congruence varieties of groups and abelian groups, Lattice theory and its applications (Darmstadt, 1991) Res. Exp. Math., vol. 23, Heldermann, Lemgo, 1995, pp. 163–183. MR 1366871
- A. F. Pixley, Distributivity and permutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963), 105–109. MR 146104, DOI 10.1090/S0002-9939-1963-0146104-X
- Alden F. Pixley, Local Malcev conditions, Canad. Math. Bull. 15 (1972), 559–568. MR 309837, DOI 10.4153/CMB-1972-098-8
- S. V. Polin, Identities in congruence lattices of universal algebras, Mat. Zametki 22 (1977), no. 3, 443–451 (Russian). MR 491407
- Jonathan D. H. Smith, Mal′cev varieties, Lecture Notes in Mathematics, Vol. 554, Springer-Verlag, Berlin-New York, 1976. MR 0432511
- Walter Taylor, Characterizing Mal′cev conditions, Algebra Universalis 3 (1973), 351–397. MR 349537, DOI 10.1007/BF02945141
- Walter Taylor, Varieties obeying homotopy laws, Canadian J. Math. 29 (1977), no. 3, 498–527. MR 434928, DOI 10.4153/CJM-1977-054-9
- Rudolf Wille, Kongruenzklassengeometrien, Lecture Notes in Mathematics, Vol. 113, Springer-Verlag, Berlin-New York, 1970 (German). MR 0262149