Remote access

How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

   1a. To purchase any ebook backfile or to subscibe to the current year of Contemporary Mathematics, please download this required license agreement,

   1b. To subscribe to the current year of Memoirs of the AMS, please download this required license agreement.

   2. Complete and sign the license agreement.

   3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2294  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046
Email: cust-serv@ams.org

Visit the AMS Bookstore for individual volume purchases.

Browse the current eBook Collections price list

Powered by MathJax

Non–cooperative equilibria of Fermi systems with long range interactions


About this Title

J.-B. Bru, Departamento de Matemáticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain, and IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain and W. de Siqueira Pedra, Institut für Mathematik, Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany

Publication: Memoirs of the American Mathematical Society
Publication Year 2013: Volume 224, Number 1052
ISBNs: 978-0-8218-8976-3 (print); 978-1-4704-1003-2 (online)
DOI: http://dx.doi.org/10.1090/S0065-9266-2012-00666-6
Published electronically: October 18, 2013
Previous version: Posted November 14, 2012
Corrected version: Corrects some unlinked Definitions in the original version
Keywords:Long range interaction, Choquet theorem, equilibrium state, non–cooperative equilibrium, two–person zero–sum game, Bogoliubov approximation, approximating Hamiltonian method, fermion system, quantum spin system
MSC: Primary 82B10, 91A40; Secondary 46A55, 58E30

View full volume PDF

View other years and numbers:

Table of Contents


Chapters

  • Preface
  • Part 1. Main results and discussions
  • Part 2. Complementary results

Abstract


We define a Banach space $\mathcal {M}_{1}$ of models for fermions or quantum spins in the lattice with long range interactions and make explicit the structure of (generalized) equilibrium states for any $\mathfrak{m}\in \mathcal {M}_{1}$. In particular, we give a first answer to an old open problem in mathematical physics - first addressed by Ginibre in 1968 within a different context - about the validity of the so-called Bogoliubov approximation on the level of states. Depending on the model $\mathfrak{m}\in \mathcal {M}_{1}$, our method provides a systematic way to study all its correlation functions at equilibrium and can thus be used to analyze the physics of long range interactions. Furthermore, we show that the thermodynamics of long range models $\mathfrak{m}\in \mathcal {M}_{1}$ is governed by the non-cooperative equilibria of a zero-sum game, called here thermodynamic game.

References [Enhancements On Off] (What's this?)

  • 1. .
  • 2. .
  • 3. .
  • 4. .
  • 5. O. BRATTELLI AND D.W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, Vol. II, 2nd ed. New York: Springer-Verlag, 1996
  • 6. and .
  • 7. and .
  • 8. and . 10.1142/S0129055X03001606
  • 9. and . 10.1142/S0129055X10003953
  • 10. , , and . 10.1063/1.3600202
  • 11. D. LEBOEUF ET AL., Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533-536 (2007)
  • 12. C. PFLEIDERER AND R. HACKL, Schizophrenic electrons. Nature 450,492-493 (2007)
  • 13. .
  • 14. J.-B. BRU AND W. DE SIQUEIRA PEDRA, Microscopic Foundations of the Meissner Effect - Thermodynamic Aspects, mp_arc 12-42 (2012)
  • 15. .
  • 16. .
  • 17. N.N. BOGOLIUBOV JR., J.G. BRANKOV, V.A. ZAGREBNOV, A.M. KURBATOV AND N.S. TONCHEV, Metod approksimiruyushchego gamil'toniana v statisticheskoi fizike (The Approximating Hamiltonian Method in Statistical Physics). Sofia: Izdat. Bulgar. Akad. Nauk (Publ. House Bulg. Acad. Sci.), 1981
  • 18. , , , , and .
  • 19. J.G. BRANKOV, D.M. DANCHEV AND N.S. TONCHEV, Theory of Critical Phenomena in Finite-size Systems: Scaling and Quantum Effects. Singapore-New Jersey-London-Hong Kong: World Scientific, 2000
  • 20. and .
  • 21. .
  • 22. .
  • 23. .
  • 24. , , , and . 10.1142/S0129055X08003298
  • 25. , , , and . 10.1142/S0129055X10004089
  • 26. , , and .
  • 27. , , and . 10.1063/1.1985025
  • 28. and . 10.1023/A:1018692823463
  • 29. .
  • 30. W. METZNER, C. CASTELLANI AND C. DI CASTRO, Fermi systems with strong forward scattering. Advances in Physics 47(3), 317-445 (1998)
  • 31. H. YAMASE AND W. METZNER, Competition of Fermi surface symmetry breaking and superconductivity. Phys. Rev. B 75 155117-1-6 (2007)
  • 32. F.D.M. HALDANE. Helv. Phys. Acta 65, 152 (1992); Proceedings of the International School of Physics `Enrico Fermi', Course CXXI, edited by R. A. Broglia and J. R. Schrieffer (Amsterdam: North-Holland, 1994).
  • 33. , , and .
  • 34. and .
  • 35. L. N. COOPER, Bound Electron Pairs in a Degenerate Fermi Gas. Phys. Rev 104, 1189-1190 (1956)
  • 36. , , and .
  • 37. , , and .
  • 38. J.-B. BRU AND W. DE SIQUEIRA PEDRA, Inhomogeneous Fermi or Quantum Spin Systems on Lattices - I. J. Math. Phys. 53 123301 (2012); http://dx.doi.org/10.1063/1.4763465, (25 pages).
  • 39. J.-B. BRU AND W. DE SIQUEIRA PEDRA, Inhomogeneous Fermi or Quantum Spin Systems on Lattices - II. In preparation.
  • 40. .
  • 41. and .
  • 42. J.-B. BRU AND W. DE SIQUEIRA PEDRA, Remarks on the $\Gamma $-regularization of Non-convex and Non-Semi-Continuous Functionals on Topological Vector Spaces. J. Convex Analysis 19(2), 467-483 (2012)
  • 43. .
  • 44. and .
  • 45. G. EMCH, Algebraic Methods in Statistical Mechanics and Quantum Field Theory. New York: Wiley-Interscience, 1972
  • 46. S. MAZUR, Über konvexe Menge in linearen normierten Raumen. Studia. Math. 4, 70-84 (1933)
  • 47. .
  • 48. and . 10.1016/S0370-1573(00)00132-0
  • 49. .
  • 50. .
  • 51. E.H. LIEB, R. SEIRINGER AND J. YNGVASON, Justification of $c$-Number Substitutions in Bosonic Hamiltonians. Phys. Rev. Lett. 94, 080401-1-4 (2005)
  • 52. A. SüTŐ, Equivalence of Bose-Einstein Condensation and Symmetry Breaking. Phys. Rev. Lett. 94, 080402-1-4 (2005)
  • 53. . 10.1088/0305-4470/35/43/301
  • 54. . 10.1088/0305-4470/35/43/302
  • 55. N.N. BOGOLIUBOV, On some problems of the theory of superconductivity, Physica 26, S1-S16 (1960)
  • 56. N.N. BOGOLIUBOV JR., A method for studying model Hamiltonians. Oxford: Pergamon, 1977
  • 57. , , and . 10.1063/1.524422
  • 58. , , and .
  • 59. .
  • 60. .
  • 61. .
  • 62. .
  • 63. .
  • 64. , , , and .
  • 65. .

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia