AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Kuznetsov’s trace formula and the Hecke eigenvalues of Maass forms
About this Title
A. Knightly and C. Li
Publication: Memoirs of the American Mathematical Society
Publication Year:
2013; Volume 224, Number 1055
ISBNs: 978-0-8218-8744-8 (print); 978-1-4704-1006-3 (online)
DOI: https://doi.org/10.1090/S0065-9266-2012-00673-3
Published electronically: December 6, 2012
Keywords: Sum formula,
Maass forms,
Kloosterman sums,
Hecke eigenvalues,
equidistribution,
trace formula
MSC: Primary 11F72, 11F70, 11F41, 11F37, 11F30, 11L05, 11F25, 22E55
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. Bi-$K_\infty$-invariant functions on $\operatorname {GL}_2(\mathbf {R})$
- 4. Maass cusp forms
- 5. Eisenstein series
- 6. The kernel of $R(f)$
- 7. A Fourier trace formula for $\operatorname {GL}(2)$
- 8. Validity of the KTF for a broader class of $h$
- 9. Kloosterman sums
- 10. Equidistribution of Hecke eigenvalues
Abstract
We give an adelic treatment of the Kuznetsov trace formula as a relative trace formula on $\operatorname {GL}(2)$ over $\mathbf {Q}$. The result is a variant which incorporates a Hecke eigenvalue in addition to two Fourier coefficients on the spectral side. We include a proof of a Weil bound for the generalized twisted Kloosterman sums which arise on the geometric side. As an application, we show that the Hecke eigenvalues of Maass forms at a fixed prime, when weighted as in the Kuznetsov formula, become equidistributed relative to the Sato-Tate measure in the limit as the level goes to infinity.- J. Andersson, Summation formulae and zeta functions, Doctoral dissertation, Stockholm University, 2006.
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958
- James Arthur, The Selberg trace formula for groups of $F$-rank one, Ann. of Math. (2) 100 (1974), 326–385. MR 360470, DOI 10.2307/1971076
- James G. Arthur, A trace formula for reductive groups. I. Terms associated to classes in $G(\textbf {Q})$, Duke Math. J. 45 (1978), no. 4, 911–952. MR 518111
- Roger C. Baker, Kloosterman sums and Maass forms. Vol. I, Kendrick Press, Heber City, UT, 2003. MR 1970058
- Valentin Blomer and Gergely Harcos, Twisted $L$-functions over number fields and Hilbert’s eleventh problem, Geom. Funct. Anal. 20 (2010), no. 1, 1–52. MR 2647133, DOI 10.1007/s00039-010-0063-x
- V. Bykovsky, N. Kuznetsov, and A. Vinogradov, Generalized summation formula for inhomogeneous convolution, Automorphic functions and their applications (Khabarovsk, 1988) Acad. Sci. USSR, Inst. Appl. Math., Khabarovsk, 1990, pp. 18–63. MR 1096967
- Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29–98. MR 2827723, DOI 10.2977/PRIMS/31
- Roelof W. Bruggeman and Roberto J. Miatello, Sum formula for $\rm SL_2$ over a totally real number field, Mem. Amer. Math. Soc. 197 (2009), no. 919, vi+81. MR 2489364, DOI 10.1090/memo/0919
- R. W. Bruggeman, Fourier coefficients of cusp forms, Invent. Math. 45 (1978), no. 1, 1–18. MR 472701, DOI 10.1007/BF01406220
- Farrell Brumley, Effective multiplicity one on $\textrm {GL}_N$ and narrow zero-free regions for Rankin-Selberg $L$-functions, Amer. J. Math. 128 (2006), no. 6, 1455–1474. MR 2275908
- Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508
- P. Cartier, Some numerical computations relating to automorphic functions, in “Computers in Number Theory” (A. Atkin and B. Birch, eds.), 37–48, Academic Press, London, 1971.
- William Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314. MR 337789, DOI 10.1007/BF01428197
- S. Chowla, On Kloosterman’s sum, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 70–72. MR 228452
- Keith Conrad, On Weil’s proof of the bound for Kloosterman sums, J. Number Theory 97 (2002), no. 2, 439–446. MR 1942969, DOI 10.1016/S0022-314X(02)00011-2
- J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. Reine Angew. Math. 399 (1989), 1–26. MR 1004130, DOI 10.1515/crll.1989.399.1
- J. B. Conrey, W. Duke, and D. W. Farmer, The distribution of the eigenvalues of Hecke operators, Acta Arith. 78 (1997), no. 4, 405–409. MR 1438595, DOI 10.4064/aa-78-4-405-409
- B. Conrey, H. Iwaniec, and K. Soundararajan, Critical zeros of Dirichlet $L$-functions, preprint, 2011.
- James W. Cogdell and Ilya Piatetski-Shapiro, The arithmetic and spectral analysis of Poincaré series, Perspectives in Mathematics, vol. 13, Academic Press, Inc., Boston, MA, 1990. MR 1063847
- W. Duke, J. B. Friedlander, and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. (2) 141 (1995), no. 2, 423–441. MR 1324141, DOI 10.2307/2118527
- J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982/83), no. 2, 219–288. MR 684172, DOI 10.1007/BF01390728
- Michel Duflo and Jean-Pierre Labesse, Sur la formule des traces de Selberg, Ann. Sci. École Norm. Sup. (4) 4 (1971), 193–284. MR 437462
- W. Duke, The critical order of vanishing of automorphic $L$-functions with large level, Invent. Math. 119 (1995), no. 1, 165–174. MR 1309975, DOI 10.1007/BF01245178
- T. Estermann, On Kloosterman’s sum, Mathematika 8 (1961), 83–86. MR 126420, DOI 10.1112/S0025579300002187
- Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
- Gerald B. Folland, Introduction to partial differential equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995. MR 1357411
- Tobias Finis and Erez Lapid, On the Arthur-Selberg trace formula for $\textrm {GL}(2)$, Groups Geom. Dyn. 5 (2011), no. 2, 367–391. MR 2782178, DOI 10.4171/GGD/132
- Tobias Finis, Erez Lapid, and Werner Müller, On the spectral side of Arthur’s trace formula—absolute convergence, Ann. of Math. (2) 174 (2011), no. 1, 173–195. MR 2811597, DOI 10.4007/annals.2011.174.1.5
- Stephen Gelbart and Hervé Jacquet, Forms of $\textrm {GL}(2)$ from the analytic point of view, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 213–251. MR 546600
- Israel Gohberg, Seymour Goldberg, and Marinus A. Kaashoek, Basic classes of linear operators, Birkhäuser Verlag, Basel, 2003. MR 2015498
- Dorian Goldfeld, Automorphic forms and $L$-functions for the group $\textrm {GL}(n,\mathbf R)$, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR 2254662
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- Loo Keng Hua, Introduction to number theory, Springer-Verlag, Berlin-New York, 1982. Translated from the Chinese by Peter Shiu. MR 665428
- A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573
- Henryk Iwaniec, Promenade along modular forms and analytic number theory, Topics in analytic number theory (Austin, Tex., 1982) Univ. Texas Press, Austin, TX, 1985, pp. 221–303. MR 804249
- Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214
- Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of $L$-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55–131 (2001). MR 1828743
- H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $L$-functions, Geom. Funct. Anal. Special Volume (2000), 705–741. GAFA 2000 (Tel Aviv, 1999). MR 1826269, DOI 10.1007/978-3-0346-0425-3_{6}
- Henryk Iwaniec and Peter Sarnak, The non-vanishing of central values of automorphic $L$-functions and Landau-Siegel zeros. part A, Israel J. Math. 120 (2000), no. part A, 155–177. MR 1815374, DOI 10.1007/s11856-000-1275-9
- Hervé Jacquet, Automorphic spectrum of symmetric spaces, Representation theory and automorphic forms (Edinburgh, 1996) Proc. Sympos. Pure Math., vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 443–455. MR 1476509, DOI 10.1090/pspum/061/1476509
- David Joyner, On the Kuznetsov-Bruggeman formula for a Hilbert modular surface having one cusp, Math. Z. 203 (1990), no. 1, 59–104. MR 1030708, DOI 10.1007/BF02570723
- A. W. Knapp, Theoretical aspects of the trace formula for $\textrm {GL}(2)$, Representation theory and automorphic forms (Edinburgh, 1996) Proc. Sympos. Pure Math., vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 355–405. MR 1476505, DOI 10.1090/pspum/061/1476505
- Andrew Knightly and Charles Li, A relative trace formula proof of the Petersson trace formula, Acta Arith. 122 (2006), no. 3, 297–313. MR 2239919, DOI 10.4064/aa122-3-5
- Andrew Knightly and Charles Li, Traces of Hecke operators, Mathematical Surveys and Monographs, vol. 133, American Mathematical Society, Providence, RI, 2006. MR 2273356
- Andrew Knightly and Charles Li, Petersson’s trace formula and the Hecke eigenvalues of Hilbert modular forms, Modular forms on Schiermonnikoog, Cambridge Univ. Press, Cambridge, 2008, pp. 145–187. MR 2512361, DOI 10.1017/CBO9780511543371.011
- E. Kowalski, P. Michel, and J. VanderKam, Non-vanishing of high derivatives of automorphic $L$-functions at the center of the critical strip, J. Reine Angew. Math. 526 (2000), 1–34. MR 1778299, DOI 10.1515/crll.2000.074
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- N. V. Kuznecov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 334–383, 479 (Russian). MR 568983
- Robert P. Langlands, Beyond endoscopy, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 611–697. MR 2058622
- Edmund Landau, Elementary number theory, Chelsea Publishing Co., New York, N.Y., 1958. Translated by J. E. Goodman. MR 0092794
- Serge Lang, $\textrm {SL}_2(\textbf {R})$, Graduate Texts in Mathematics, vol. 105, Springer-Verlag, New York, 1985. Reprint of the 1975 edition. MR 803508
- Erez M. Lapid, On the fine spectral expansion of Jacquet’s relative trace formula, J. Inst. Math. Jussieu 5 (2006), no. 2, 263–308. MR 2225043, DOI 10.1017/S1474748005000289
- Charles C. C. Li, Kuznietsov trace formula and weighted distribution of Hecke eigenvalues, J. Number Theory 104 (2004), no. 1, 177–192. MR 2021634, DOI 10.1016/S0022-314X(03)00149-5
- Xiaoqing Li, Arithmetic trace formulas and Kloostermania, Automorphic forms and the Langlands program, Adv. Lect. Math. (ALM), vol. 9, Int. Press, Somerville, MA, 2010, pp. 199–235. MR 2581951
- Yuk-Kam Lau and Yingnan Wang, Quantitative version of the joint distribution of eigenvalues of the Hecke operators, J. Number Theory 131 (2011), no. 12, 2262–2281. MR 2832823, DOI 10.1016/j.jnt.2011.05.014
- Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, DOI 10.1007/BF01329622
- Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004
- Yoichi Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, vol. 127, Cambridge University Press, Cambridge, 1997. MR 1489236
- Y. Motohashi, Sums of Kloosterman sums revisited, The Conference on $L$-Functions, World Sci. Publ., Hackensack, NJ, 2007, pp. 141–163. MR 2310293
- ——, Chapter 6: Appendix, post-publication appendix to [Mo1], arXiv:0810.2847, 2008.
- M. Ram Murty and Kaneenika Sinha, Effective equidistribution of eigenvalues of Hecke operators, J. Number Theory 129 (2009), no. 3, 681–714. MR 2488597, DOI 10.1016/j.jnt.2008.10.010
- M. Ram Murty, On the estimation of eigenvalues of Hecke operators, Rocky Mountain J. Math. 15 (1985), no. 2, 521–533. Number theory (Winnipeg, Man., 1983). MR 823263, DOI 10.1216/RMJ-1985-15-2-521
- Philippe Michel and Akshay Venkatesh, The subconvexity problem for $\textrm {GL}_2$, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271. MR 2653249, DOI 10.1007/s10240-010-0025-8
- Hans Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), no. 1, 169–215 (German). MR 1555346, DOI 10.1007/BF02547776
- ——, Uber eine Metrisierung der ganzen Modulformen, Jahresber. Dtsch. Math.-Ver. 49 (1939), 49–75.
- K. Ramachandra, Theory of numbers: a textbook, Alpha Science, Oxford, 2007.
- J. Rogawski, Modular forms, the Ramanujan conjecture and the Jacquet-Langlands correspondence, appendix in “Discrete Groups, Expanding Graphs and Invariant Measures,” by A. Lubotzky, Birkhäuser, Basel, 1994, pp. 135–176.
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Hans Salié, Über die Kloostermanschen Summen $S(u,v;q)$, Math. Z. 34 (1932), no. 1, 91–109 (German). MR 1545243, DOI 10.1007/BF01180579
- Peter Sarnak, Selberg’s eigenvalue conjecture, Notices Amer. Math. Soc. 42 (1995), no. 11, 1272–1277. MR 1355461
- Peter Sarnak, Statistical properties of eigenvalues of the Hecke operators, Analytic number theory and Diophantine problems (Stillwater, OK, 1984) Progr. Math., vol. 70, Birkhäuser Boston, Boston, MA, 1987, pp. 321–331. MR 1018385
- A. Selberg, Über die Fourierkoeffizienten elliptischer Modulformen negativer Dimension, C. R. Neuvième Congrès Math. Scandinaves, Helsingfors (1938), 320–322.
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR 0182610
- ——, Göttingen lecture notes, Collected Papers Vol. 1, Springer-Verlag, Berlin, (1989), 626–674.
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
- F. Strömberg, Newforms and spectral multiplicites for $\Gamma _0(9)$, Proc. Lond. Math. Soc., to appear.
- Akshay Venkatesh, Limiting forms of the trace formula, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–Princeton University. MR 2703729
- Akshay Venkatesh, “Beyond endoscopy” and special forms on GL(2), J. Reine Angew. Math. 577 (2004), 23–80. MR 2108212, DOI 10.1515/crll.2004.2004.577.23
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- André Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207. MR 27006, DOI 10.1073/pnas.34.5.204
- Eiji Yoshida, Remark on the Kuznetsov trace formula, Analytic number theory (Kyoto, 1996) London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 377–382. MR 1695004, DOI 10.1017/CBO9780511666179.026
- Don Zagier, Eisenstein series and the Selberg trace formula. I, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 303–355. MR 633667