
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Relative equilibria in the 3-dimensional curved $n$-body problem
About this Title
Florin Diacu, Pacific Institute for the Mathematical Sciences. — and — Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria, BC, Canada, V8W 3R4
Publication: Memoirs of the American Mathematical Society
Publication Year:
2014; Volume 228, Number 1071
ISBNs: 978-0-8218-9136-0 (print); 978-1-4704-1483-2 (online)
DOI: https://doi.org/10.1090/memo/1071
Published electronically: July 22, 2013
Keywords: Celestial mechanics,
$n$-body problems,
spaces of constant curvature,
fixed points,
periodic orbits,
quasiperiodic orbits,
relative equilibria,
qualitative behaviour of solutions.
MSC: Primary 70F10; Secondary 34C25, 37J45
Table of Contents
Chapters
- 1. Introduction
- 2. BACKGROUND AND EQUATIONS OF MOTION
- 3. ISOMETRIES AND RELATIVE EQUILIBRIA
- 4. CRITERIA AND QUALITATIVE BEHAVIOUR
- 5. EXAMPLES
- 6. CONCLUSIONS
Abstract
We consider the $3$-dimensional gravitational $n$-body problem, $n\ge 2$, in spaces of constant Gaussian curvature $\kappa \ne 0$, i.e. on spheres ${\mathbb S}_\kappa ^3$, for $\kappa >0$, and on hyperbolic manifolds ${\mathbb H}_\kappa ^3$, for $\kappa <0$. Our goal is to define and study relative equilibria, which are orbits whose mutual distances remain constant in time. We also briefly discuss the issue of singularities in order to avoid impossible configurations. We derive the equations of motion and define six classes of relative equilibria, which follow naturally from the geometric properties of ${\mathbb S}_\kappa ^3$ and ${\mathbb H}_\kappa ^3$. Then we prove several criteria, each expressing the conditions for the existence of a certain class of relative equilibria, some of which have a simple rotation, whereas others perform a double rotation, and we describe their qualitative behaviour. In particular, we show that in ${\mathbb S}_\kappa ^3$ the bodies move either on circles or on Clifford tori, whereas in ${\mathbb H}_\kappa ^3$ they move either on circles or on hyperbolic cylinders. Then we construct concrete examples for each class of relative equilibria previously described, thus proving that these classes are not empty. We put into the evidence some surprising orbits, such as those for which a group of bodies stays fixed on a great circle of a great sphere of ${\mathbb S}_\kappa ^3$, while the other bodies rotate uniformly on a complementary great circle of another great sphere, as well as a large class of quasiperiodic relative equilibria, the first such non-periodic orbits ever found in a 3-dimensional $n$-body problem. Finally, we briefly discuss other research directions and the future perspectives in the light of the results we present here.- Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
- Alain Albouy and Alain Chenciner, Le problème des $n$ corps et les distances mutuelles, Invent. Math. 131 (1998), no. 1, 151–184 (French). MR 1489897, DOI 10.1007/s002220050200
- Alain Albouy and Vadim Kaloshin, Finiteness of central configurations of five bodies in the plane, Ann. of Math. (2) 176 (2012), no. 1, 535–588. MR 2925390, DOI 10.4007/annals.2012.176.1.10
- Andrew Baker, Matrix groups, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2002. An introduction to Lie group theory. MR 1869885
- J. Bertrand, Théorème relatif au mouvement d’un point attiré vers un centre fixe, C. R. Acad. Sci. 77 (1873), 849-853.
- W. Bolyai and J. Bolyai, Geometrische Untersuchungen, Hrsg. P. Stäckel, Teubner, Leipzig-Berlin, 1913.
- H. Bruns, Über die Integrale des Vielkörper-Problems, Acta Math. 11 (1887), no. 1-4, 25–96 (German). MR 1554748, DOI 10.1007/BF02418042
- Hildeberto Cabral and Florin Diacu (eds.), Classical and celestial mechanics, Princeton University Press, Princeton, NJ, 2002. The Recife lectures; Lectures at the Federal University of Pernambuco (UFPE), Recife, 1993–1999. MR 1974777
- José F. Cariñena, Manuel F. Rañada, and Mariano Santander, Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$, J. Math. Phys. 46 (2005), no. 5, 052702, 25. MR 2143000, DOI 10.1063/1.1893214
- José F. Cariñena, Manuel F. Rañada, and Mariano Santander, The Kepler problem and the Laplace-Runge-Lenz vector on spaces of constant curvature and arbitrary signature, Qual. Theory Dyn. Syst. 7 (2008), no. 1, 87–99. MR 2438796, DOI 10.1007/s12346-008-0004-3
- J. Chazy, La théorie de la relativité et la mécanique céleste, Gauthier-Villars, Paris, 1930.
- Alain Chenciner and Richard Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2) 152 (2000), no. 3, 881–901. MR 1815704, DOI 10.2307/2661357
- A. Chenciner and H.J. Perez, Angular momentum and Horn’s problem, arXiv:1110.5030v2.
- H.S.M. Coxeter, Regular polytopes, Methuen & Co., London, 1948.
- H. S. M. Coxeter, Introduction to geometry, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0346644
- Thibault Damour, Michael Soffel, and Chong Ming Xu, General-relativistic celestial mechanics. I. Method and definition of reference systems, Phys. Rev. D (3) 43 (1991), no. 10, 3273–3307. MR 1116084, DOI 10.1103/PhysRevD.43.3273
- Thibault Damour, Michael Soffel, and Chong Ming Xu, General-relativistic celestial mechanics. II. Translational equations of motion, Phys. Rev. D (3) 45 (1992), no. 4, 1017–1044. MR 1149525, DOI 10.1103/PhysRevD.45.1017
- Thibault Damour, Michael Soffel, and Chong Ming Xu, General-relativistic celestial mechanics. III. Rotational equations of motion, Phys. Rev. D (3) 47 (1993), no. 8, 3124–3135. MR 1218808, DOI 10.1103/PhysRevD.47.3124
- Thibault Damour, Michael Soffel, and Chong Ming Xu, General-relativistic celestial mechanics. IV. Theory of satellite motion, Phys. Rev. D (3) 49 (1994), no. 2, 618–635. MR 1256647, DOI 10.1103/PhysRevD.49.618
- Florin N. Diacu, Near-collision dynamics for particle systems with quasihomogeneous potentials, J. Differential Equations 128 (1996), no. 1, 58–77. MR 1392396, DOI 10.1006/jdeq.1996.0089
- Florin Diacu, On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc. 363 (2011), no. 4, 2249–2264. MR 2746682, DOI 10.1090/S0002-9947-2010-05251-1
- Florin Diacu, Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2783–2802. MR 2888228, DOI 10.1090/S0002-9947-2011-05558-3
- F. Diacu, R. Martínez, E. Pérez-Chavela, and C. Simó, On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, arXiv:1204.5729, 32 pages.
- Florin Diacu and Ernesto Pérez-Chavela, Homographic solutions of the curved 3-body problem, J. Differential Equations 250 (2011), no. 1, 340–366. MR 2737846, DOI 10.1016/j.jde.2010.08.011
- Florin Diacu, Ernesto Pérez-Chavela, and J. Guadalupe Reyes Victoria, An intrinsic approach in the curved $n$-body problem: the negative curvature case, J. Differential Equations 252 (2012), no. 8, 4529–4562. MR 2881047, DOI 10.1016/j.jde.2012.01.002
- F. Diacu, E. Pérez-Chavela, and M. Santoprete, The $n$-body problem in spaces of constant curvature, arXiv:0807.1747, 54 p.
- Florin Diacu, Ernesto Pérez-Chavela, and Manuele Santoprete, The $n$-body problem in spaces of constant curvature. Part I: Relative equilibria, J. Nonlinear Sci. 22 (2012), no. 2, 247–266. MR 2912328, DOI 10.1007/s00332-011-9116-z
- Florin Diacu, Ernesto Pérez-Chavela, and Manuele Santoprete, The $n$-body problem in spaces of constant curvature. Part II: Singularities, J. Nonlinear Sci. 22 (2012), no. 2, 267–275. MR 2912329, DOI 10.1007/s00332-011-9117-y
- Florin Diacu, Ernesto Pérez-Chavela, and Manuele Santoprete, Saari’s conjecture for the collinear $n$-body problem, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4215–4223. MR 2159707, DOI 10.1090/S0002-9947-04-03606-2
- Florin Diacu, Toshiaki Fujiwara, Ernesto Pérez-Chavela, and Manuele Santoprete, Saari’s homographic conjecture of the three-body problem, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6447–6473. MR 2434294, DOI 10.1090/S0002-9947-08-04517-0
- Franki Dillen and Wolfgang Kühnel, Ruled Weingarten surfaces in Minkowski $3$-space, Manuscripta Math. 98 (1999), no. 3, 307–320. MR 1717535, DOI 10.1007/s002290050142
- Chris Doran and Anthony Lasenby, Geometric algebra for physicists, Cambridge University Press, Cambridge, 2003. MR 1998960
- A. Eddington and G.L. Clark, The problem of $n$ bodies in general relativity theory, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 166 (1938), 465-475.
- A. Einstein, L. Infeld, and B. Hoffmann, The gravitational equations and the problem of motion, Ann. of Math. (2) 39 (1938), no. 1, 65–100. MR 1503389, DOI 10.2307/1968714
- B. Elmabsout, Sur l’existence de certaines configurations d’équilibre relatif dans le problème des $n$ corps, Celestial Mech. 41 (1987/88), no. 1-4, 131–151 (French, with English summary). MR 954880, DOI 10.1007/BF01238758
- L. Euler, Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, published as a book in 1755, Opera Omnia, Ser. 1, vol. 10, (ed. G. Kowalewski), Birkhäuser, 1980.
- Richard L. Faber, Foundations of Euclidean and non-Euclidean geometry, Monographs and Textbooks in Pure and Applied Mathematics, vol. 73, Marcel Dekker, Inc., New York, 1983. MR 690242
- V. A. Fock, Sur le mouvement des masses finies d’après la théorie de gravitation einsteinienne, Acad. Sci. U.S.S.R. J. Phys. 1 (1939), 81–116 (French). MR 0001124
- I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. Revised English edition translated and edited by Richard A. Silverman. MR 0160139
- George Goe and B. L. van der Waerden, Comments on Miller’s “The myth of Gauss’s experiment on the Euclidean nature of physical space” (Isis 63 (1972), 345–348), Isis 65 (1974), 83–87. With a reply by Arthur I. Miller. MR 532065, DOI 10.1086/351220
- L. García Gutiérrez and M. Santander, Levi-Civita regularization and geodesic flows for the ‘curved’ Kepler problem, arXiv:0707.3810v2, 2007.
- Heinz Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104 (1931), no. 1, 637–665 (German). MR 1512691, DOI 10.1007/BF01457962
- L. Infeld, On a new treatment of some eigenvalue problems, Phys. Rev. (2) 59 (1941), 737–747. MR 4347
- L. Infeld, Quest—The evolution of a scientist, Readers Union Ltd., London, 1942.
- L. Infeld and A. Schild, A note on the Kepler problem in a space of constant negative curvature, Phys. Rev. (2) 67 (1945), 121–122. MR 11962
- W. Killing, Die Rechnung in den nichteuklidischen Raumformen, J. Reine Angew. Math. 89 (1880), 265-287.
- W. Killing, Die Mechanik in den nichteuklidischen Raumformen, J. Reine Angew. Math. 98 (1885), 1-48.
- W. Killing, Die Nicht-Eukildischen Raumformen in Analytischer Behandlung, Teubner, Leipzig, 1885.
- Valeriĭ V. Kozlov and Alexander O. Harin, Kepler’s problem in constant curvature spaces, Celestial Mech. Dynam. Astronom. 54 (1992), no. 4, 393–399. MR 1188291, DOI 10.1007/BF00049149
- Tullio Levi-Civita, The Relativistic Problem of Several Bodies, Amer. J. Math. 59 (1937), no. 1, 9–22. MR 1507213, DOI 10.2307/2371555
- Tullio Levi-Civita, Le problème des $n$ corps en relativité générale, Mémor. Sci. Math., no. 116, Gauthier-Villars, Paris, 1950 (French). MR 0044932
- D. Lewis and T. Ratiu, Rotating $n$-gon/$kn$-gon vortex configurations, J. Nonlinear Sci. 6 (1996), no. 5, 385–414. MR 1411341, DOI 10.1007/s003329900016
- H. Liebmann, Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum, Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse 54 (1902), 393-423.
- H. Liebmann, Über die Zentralbewegung in der nichteuklidische Geometrie, Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse 55 (1903), 146-153.
- H. Liebmann, Nichteuklidische Geometrie, G. J. Göschen, Leipzig, 1905; 2nd ed. 1912; 3rd ed. Walter de Gruyter, Berlin, Leipzig, 1923.
- R. Lipschitz, Untersuchung eines Problems der Variationrechnung, in welchem das Problem der Mechanik enthalten ist, J. Reine Angew. Math. 74 (1872), 116-149.
- R. Lipschitz, Extension of the planet-problem to a space of $n$ dimensions and constant integral curvature, Quart. J. Pure Appl. Math. 12 (1873), 349-370.
- N. I. Lobachevsky, The new foundations of geometry with full theory of parallels [in Russian], 1835-1838, In Collected Works, V. 2, GITTL, Moscow, 1949, p. 159.
- David W. Lyons, An elementary introduction to the Hopf fibration, Math. Mag. 76 (2003), no. 2, 87–98. MR 2084104, DOI 10.2307/3219300
- Jerrold E. Marsden and Tudor S. Ratiu, Introduction to mechanics and symmetry, 2nd ed., Texts in Applied Mathematics, vol. 17, Springer-Verlag, New York, 1999. A basic exposition of classical mechanical systems. MR 1723696
- Regina Martínez and Carles Simó, On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\Bbb S^2$, Discrete Contin. Dyn. Syst. 33 (2013), no. 3, 1157–1175. MR 2988940, DOI 10.3934/dcds.2013.33.1157
- Richard McGehee, Triple collision in the collinear three-body problem, Invent. Math. 27 (1974), 191–227. MR 359459, DOI 10.1007/BF01390175
- Arthur I. Miller, The myth of Gauss’ experiment on the Euclidean nature of physical space, Isis 63 (1972), no. 218, 345–348. MR 532182, DOI 10.1086/350941
- Rémy Mosseri and Rossen Dandoloff, Geometry of entangled states, Bloch spheres and Hopf fibrations, J. Phys. A 34 (2001), no. 47, 10243–10252. MR 1872413, DOI 10.1088/0305-4470/34/47/324
- Mikio Nakahara, Geometry, topology and physics, 2nd ed., Graduate Student Series in Physics, Institute of Physics, Bristol, 2003. MR 2001829
- Jun-ichi Hano and Katsumi Nomizu, On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampère equation of a certain type, Math. Ann. 262 (1983), no. 2, 245–253. MR 690199, DOI 10.1007/BF01455315
- Ernesto Pérez-Chavela and J. Guadalupe Reyes-Victoria, An intrinsic approach in the curved $n$-body problem. The positive curvature case, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3805–3827. MR 2901235, DOI 10.1090/S0002-9947-2012-05563-2
- L. M. Perko and E. L. Walter, Regular polygon solutions of the $N$-body problem, Proc. Amer. Math. Soc. 94 (1985), no. 2, 301–309. MR 784183, DOI 10.1090/S0002-9939-1985-0784183-1
- William F. Reynolds, Hyperbolic geometry on a hyperboloid, Amer. Math. Monthly 100 (1993), no. 5, 442–455. MR 1215530, DOI 10.2307/2324297
- Donald G. Saari, Collisions, rings, and other Newtonian $N$-body problems, CBMS Regional Conference Series in Mathematics, vol. 104, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005. MR 2139425
- E. Schering, Die Schwerkraft im Gaussischen Räume, Nachr. Königl. Gesell. Wiss. Göttingen 13 July, 15 (1870), 311-321.
- E. Schering, Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemmanschen Räumen, Nachr. Königl. Gesell. Wiss. Göttingen 26 Febr., 6 (1873), 149-159.
- E. Schrödinger, A method of determining quantum-mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish Acad. Sect. A 46 (1940), 9–16. MR 0001666
- P.J. Serret, Théorie nouvelle géométrique et mécanique des lignes a double courbure, Librave de Mallet-Bachelier, Paris, 1860.
- S. Sgries, Erinnerung and “dunkle Seiten,” Gedenkkolloquium für den jüdischen Mathematiker Heinrich Liebmann, Heidelberger Nachrichten, June 19, 2008.
- A. V. Shchepetilov, Comment on: “Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$” [J. Math. Phys. 46 (2005), no. 5, 052702, 25 pp.; MR2143000] by J. F. Cariñena, M. F. Rañada and M. Santander, J. Math. Phys. 46 (2005), no. 11, 114101, 2. MR 2186790, DOI 10.1063/1.2107267
- A. V. Shchepetilov, Reduction of the two-body problem with central interaction on simply connected spaces of constant sectional curvature, J. Phys. A 31 (1998), no. 29, 6279–6291. MR 1637747, DOI 10.1088/0305-4470/31/29/017
- Alexey V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A 39 (2006), no. 20, 5787–5806. MR 2238116, DOI 10.1088/0305-4470/39/20/011
- Alexey V. Shchepetilov, Calculus and mechanics on two-point homogeneous Riemannian spaces, Lecture Notes in Physics, vol. 707, Springer, Berlin, 2006. MR 2311167
- Steve Smale, Mathematical problems for the next century, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 271–294. MR 1754783
- A. F. Stevenson, Note on the Kepler problem in a spherical space, and the factorization method for solving eigenvalue problems, Phys. Rev. 59 (1941), 842-843.
- Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, vol. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824