Cohomology for quantum groups via the geometry of the nullcone
About this Title
Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall and Cornelius Pillen
Publication: Memoirs of the American Mathematical Society
Publication Year:
2014; Volume 229, Number 1077
ISBNs: 978-0-8218-9175-9 (print); 978-1-4704-1531-0 (online)
DOI: http://dx.doi.org/10.1090/memo/1077
Published electronically: October 16, 2013
Keywords:Quantum groups, cohomology
Table of Contents
Chapters
- Introduction
- Chapter 1. Preliminaries and Statement of Results
- Chapter 2. Quantum Groups, Actions, and Cohomology
- Chapter 3. Computation of $\Phi _{0}$ and ${\mathcal N}(\Phi _{0})$
- Chapter 4. Combinatorics and the Steinberg Module
- Chapter 5. The Cohomology Algebra $\operatorname {H}^{\bullet }(u_{\zeta }(\mathfrak {g}),\mathbb {C})$
- Chapter 6. Finite Generation
- Chapter 7. Comparison with Positive Characteristic
- Chapter 8. Support Varieties over $u_{\zeta }$ for the Modules $\nabla _{\zeta }(\lambda )$ and $\Delta _{\zeta }(\lambda )$
- Appendix A.
Abstract
Let be a complex th root of unity for an odd integer . For any complex simple Lie algebra , let be the associated “small” quantum enveloping algebra. This algebra is a finite dimensional Hopf algebra which can be realized as a subalgebra of the Lusztig (divided power) quantum enveloping algebra and as a quotient algebra of the De Concini–Kac quantum enveloping algebra . It plays an important role in the representation theories of both and in a way analogous to that played by the restricted enveloping algebra of a reductive group in positive characteristic with respect to its distribution and enveloping algebras. In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when (resp., ) is smaller than the Coxeter number of the underlying root system. For example, Lusztig's conjecture concerning the characters of the rational irreducible -modules stipulates that . The main result in this paper provides a surprisingly uniform answer for the cohomology algebra of the small quantum group. When , this cohomology algebra has been calculated by Ginzburg and Kumar GK. Our result requires powerful tools from complex geometry and a detailed knowledge of the geometry of the nullcone of . In this way, the methods point out difficulties present in obtaining similar results for the restricted enveloping algebra in small characteristics, though they do provide some clarification of known results there also. Finally, we establish that if is a finite dimensional -module, then is a finitely generated -module, and we obtain new results on the theory of support varieties for .
- [\protect \sf A] Henning Haahr Andersen, The strong linkage principle for quantum groups at roots of 1, J. Algebra 260 (2003), no. 1, 2–15. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973573, 10.1016/S0021-8693(02)00618-X
- [\protect \sf AJ] Henning Haahr Andersen and Jens Carsten Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), no. 4, 487–525. MR 766011, 10.1007/BF01450762
- [\sf AJS] H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of quantum groups at a th root of unity and of semisimple groups in characteristic , Astérique, [[sf]]220, (1994).
- [\protect \sf APW] Henning Haahr Andersen, Patrick Polo, and Ke Xin Wen, Representations of quantum algebras, Invent. Math. 104 (1991), no. 1, 1–59. MR 1094046, 10.1007/BF01245066
- [\protect \sf AG] Sergey Arkhipov and Dennis Gaitsgory, Another realization of the category of modules over the small quantum group, Adv. Math. 173 (2003), no. 1, 114–143. MR 1954457, 10.1016/S0001-8708(02)00016-6
- [\protect \sf ABBGM] S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirković, Modules over the small quantum group and semi-infinite flag manifold, Transform. Groups 10 (2005), no. 3-4, 279–362. MR 2183116, 10.1007/s00031-005-0401-5
- [\protect \sf ABG] Sergey Arkhipov, Roman Bezrukavnikov, and Victor Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), no. 3, 595–678. MR 2053952, 10.1090/S0894-0347-04-00454-0
- [\sf BMMR] C. P. Bendel, B. Mandler, J. Mankovecky, H. Rosenthal, Program for verifying vanishing of line bundle cohomology, http://www3.uwstout.edu/faculty/bendelc/studentresearch.cfm.
- [\protect \sf Be] Roman Bezrukavnikov, Cohomology of tilting modules over quantum groups and $t$-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), no. 2, 327–357. MR 2249802, 10.1007/s00222-006-0514-z
- [\sf BC] W. Bosma, J. Cannon, Handbook on Magma Functions, Sydney University, 1996.
- [\protect \sf BCP] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, 10.1006/jsco.1996.0125
- [\protect \sf Bo] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629
- [\protect \sf Br1] Abraham Broer, Normal nilpotent varieties in $F_4$, J. Algebra 207 (1998), no. 2, 427–448. MR 1644246, 10.1006/jabr.1998.7458
- [\protect \sf Br2] Bram Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 1–19. MR 1327529, 10.1007/s10107-009-0325-2
- [\protect \sf CLNP] Jon F. Carlson, Zongzhu Lin, Daniel K. Nakano, and Brian J. Parshall, The restricted nullcone, Combinatorial and geometric representation theory (Seoul, 2001) Contemp. Math., vol. 325, Amer. Math. Soc., Providence, RI, 2003, pp. 51–75. MR 1988985, 10.1090/conm/325/05664
- [\protect \sf Car] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- [\protect \sf Ch] Sophie Chemla, Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators, J. Algebra 276 (2004), no. 1, 80–102. MR 2054387, 10.1016/j.jalgebra.2003.12.001
- [\sf C] A. L. Christophersen, A Classification of the Normal Nilpotent Varieties for Groups of Type , Ph.D. Thesis, University of Aarhus, 2006.
- [\protect \sf CPS] Ed Cline, Brian Parshall, and Leonard Scott, A Mackey imprimitivity theory for algebraic groups, Math. Z. 182 (1983), no. 4, 447–471. MR 701363, 10.1007/BF01215476
- [\protect \sf CM] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- [\protect \sf DK] Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
- [\protect \sf DKP] C. De Concini, V. G. Kac, and C. Procesi, Some quantum analogues of solvable Lie groups, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 41–65. MR 1351503
- [\protect \sf DP] C. De Concini and C. Procesi, Quantum groups, $D$-modules, representation theory, and quantum groups (Venice, 1992), Lecture Notes in Math., vol. 1565, Springer, Berlin, 1993, pp. 31–140. MR 1288995, 10.1007/BFb0073466
- [\protect \sf D] Stephen Donkin, The normality of closures of conjugacy classes of matrices, Invent. Math. 101 (1990), no. 3, 717–736. MR 1062803, 10.1007/BF01231523
- [\protect \sf Dr1] Christopher M. Drupieski, Representations and cohomology for Frobenius-Lusztig kernels, J. Pure Appl. Algebra 215 (2011), no. 6, 1473–1491. MR 2769244, 10.1016/j.jpaa.2010.09.006
- [\protect \sf Dr2] Christopher M. Drupieski, On injective modules and support varieties for the small quantum group, Int. Math. Res. Not. IMRN 10 (2011), 2263–2294. MR 2806565, 10.1093/imrn/rnq156
- [\protect \sf Ev] Leonard Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144017
- [\protect \sf FeW] Jörg Feldvoss and Sarah Witherspoon, Support varieties and representation type of small quantum groups, Int. Math. Res. Not. IMRN 7 (2010), 1346–1362. MR 2609022, 10.1093/imrn/rnp189
- [\sf Fie] P. Fiebig, An upper bound on the exceptional characteristics for Lusztig's character formula, J. Reine Angew. Math., doi: 10.1515/crelle.2011.170.
- [\protect \sf FP1] Eric M. Friedlander and Brian J. Parshall, Cohomology of infinitesimal and discrete groups, Math. Ann. 273 (1986), no. 3, 353–374. MR 824427, 10.1007/BF01450727
- [\protect \sf FP2] Eric M. Friedlander and Brian J. Parshall, Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108 (1986), no. 1, 235–253 (1986). MR 821318, 10.2307/2374473
- [\protect \sf GK] Victor Ginzburg and Shrawan Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), no. 1, 179–198. MR 1201697, 10.1215/S0012-7094-93-06909-8
- [\protect \sf GW] Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. MR 1606831
- [\protect \sf Har] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- [\protect \sf H] Wim H. Hesselink, Polarizations in the classical groups, Math. Z. 160 (1978), no. 3, 217–234. MR 0480765
- [\protect \sf HS] Peter John Hilton and Urs Stammbach, A course in homological algebra, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 4. MR 0346025
- [\protect \sf HK] Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971
- [\protect \sf Hum] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
- [\protect \sf Hum1] James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976
- [\protect \sf Jan1] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- [\protect \sf Jan2] Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1359532
- [\protect \sf Jan3] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- [\protect \sf Jan4] J. C. Jantzen, Support varieties of Weyl modules, Bull. London Math. Soc. 19 (1987), no. 3, 238–244. MR 879510, 10.1112/blms/19.3.238
- [\protect \sf JR] D. S. Johnston and R. W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups. II, Bull. London Math. Soc. 9 (1977), no. 3, 245–250. MR 0480766
- [\protect \sf Ka] Richard Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001. MR 1838580
- [\protect \sf KP1] Hanspeter Kraft and Claudio Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), no. 3, 227–247. MR 549399, 10.1007/BF01389764
- [\protect \sf KP2] Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, 10.1007/BF02565876
- [\protect \sf KLT] Shrawan Kumar, Niels Lauritzen, and Jesper Funch Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), no. 3, 603–621. MR 1695207, 10.1007/s002220050320
- [\protect \sf Kun] Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. MR 789602
- [\protect \sf Lac1] Anna Lachowska, On the center of the small quantum group, J. Algebra 262 (2003), no. 2, 313–331. MR 1971041, 10.1016/S0021-8693(03)00033-4
- [\protect \sf Lac2] Anna Lachowska, A counterpart of the Verlinde algebra for the small quantum group, Duke Math. J. 118 (2003), no. 1, 37–60. MR 1978882, 10.1215/S0012-7094-03-11813-X
- [\protect \sf LS] Serge Levendorskiĭ and Yan Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), no. 1, 141–170. MR 1116413
- [\protect \sf L1] G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 59–77. MR 982278, 10.1090/conm/082/982278
- [\protect \sf L2] George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257–296. MR 1013053, 10.1090/S0894-0347-1990-1013053-9
- [\protect \sf Mac] Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- [\protect \sf MPSW] M. Mastnak, J. Pevtsova, P. Schauenburg, and S. Witherspoon, Cohomology of finite-dimensional pointed Hopf algebras, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 377–404. MR 2595743, 10.1112/plms/pdp030
- [\protect \sf Mat] Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- [\protect \sf Mon] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637
- [\protect \sf NPV] Daniel K. Nakano, Brian J. Parshall, and David C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math. 547 (2002), 15–49. MR 1900135, 10.1515/crll.2002.049
- [\protect \sf Ost] V. V. Ostrik, Cohomological supports for quantum groups, Funktsional. Anal. i Prilozhen. 32 (1998), no. 4, 22–34, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 32 (1998), no. 4, 237–246 (1999). MR 1678854, 10.1007/BF02463206
- [\protect \sf PW] Brian Parshall and Jian Pan Wang, Cohomology of quantum groups: the quantum dimension, Canad. J. Math. 45 (1993), no. 6, 1276–1298. MR 1247547, 10.4153/CJM-1993-072-4
- [\protect \sf RH] Steen Ryom-Hansen, A $q$-analogue of Kempf’s vanishing theorem, Mosc. Math. J. 3 (2003), no. 1, 173–187, 260 (English, with English and Russian summaries). MR 1996807
- [\protect \sf So1] Eric Sommers, Normality of nilpotent varieties in $E_6$, J. Algebra 270 (2003), no. 1, 288–306. MR 2016663, 10.1016/S0021-8693(03)00416-2
- [\protect \sf So2] Eric Sommers, Normality of very even nilpotent varieties in $D_{2l}$, Bull. London Math. Soc. 37 (2005), no. 3, 351–360. MR 2131388, 10.1112/S0024609304003935
- [\sf So3] E. Sommers, private communication.
- [\protect \sf SS] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- [\protect \sf St] Robert Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. MR 0352279
- [\protect \sf SFB1] Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Infinitesimal $1$-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), no. 3, 693–728. MR 1443546, 10.1090/S0894-0347-97-00240-3
- [\protect \sf SFB2] Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Support varieties for infinitesimal group schemes, J. Amer. Math. Soc. 10 (1997), no. 3, 729–759. MR 1443547, 10.1090/S0894-0347-97-00239-7
- [\protect \sf Th] Jesper Funch Thomsen, Normality of certain nilpotent varieties in positive characteristic, J. Algebra 227 (2000), no. 2, 595–613. MR 1759837, 10.1006/jabr.1999.8240
- [\protect \sf UGA1] University of Georgia VIGRE Algebra Group, Varieties of nilpotent elements for simple Lie algebras. I. Good primes, J. Algebra 280 (2004), no. 2, 719–737. The University of Georgia VIGRE Algebra Group: David J. Benson, Phil Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, G. Michael Guy, Jo Jang Hyun, Jerome Jungster, Graham Matthews, Nadia Mazza, Daniel K. Nakano and Kenyon J. Platt. MR 2090060, 10.1016/j.jalgebra.2004.05.023
- [\protect \sf UGA2] University of Georgia VIGRE Algebra Group, Varieties of nilpotent elements for simple Lie algebras. II. Bad primes, J. Algebra 292 (2005), no. 1, 65–99. The University of Georgia VIGRE Algebra Group: David J. Benson, Philip Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, G. Michael Guy, Jeremiah Hower, Markus Hunziker, Jo Jang Hyun, Jonathan Kujawa, Graham Matthews, Nadia Mazza, Daniel K. Nakano, Kenyon J. Platt and Caroline Wright. MR 2166796, 10.1016/j.jalgebra.2004.12.023
- [\protect \sf UGA3] University of Georgia VIGRE Algebra Group, Support varieties for Weyl modules over bad primes, J. Algebra 312 (2007), no. 2, 602–633. University of Georgia VIGRE Algebra Group: David J. Benson, Philip Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, Jeremiah Hower, Jo Jang Hyun, Jonathan Kujawa, Nadia Mazza, Daniel K. Nakano, Kenyon J. Platt and Caroline Wright. MR 2333175, 10.1016/j.jalgebra.2007.03.008
- [\protect \sf W] Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. MR 0498999
- [\sf ZS] O. Zariski and P. Samuel, Commutative Algebra, I, Springer, 1960.