
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Formality of the little $N$-disks operad
About this Title
Pascal Lambrechts, Université catholique de Louvain, IRMP 2 Chemin du Cyclotron B-1348 Louvain-la-Neuve, Belgium and Ismar Volić, Department of Mathematics, Wellesley College, Wellesley, Massachusetts 02482
Publication: Memoirs of the American Mathematical Society
Publication Year:
2014; Volume 230, Number 1079
ISBNs: 978-0-8218-9212-1 (print); 978-1-4704-1669-0 (online)
DOI: https://doi.org/10.1090/memo/1079
Published electronically: November 14, 2013
Keywords: Operad formality,
little cubes operad,
Fulton-MacPherson operad,
trees,
configuration space integrals
MSC: Primary 55P62; Secondary 18D50
Table of Contents
Chapters
- Acknowledgments
- 1. Introduction
- 2. Notation, linear orders, weak partitions, and operads
- 3. CDGA models for operads
- 4. Real homotopy theory of semi-algebraic sets
- 5. The Fulton-MacPherson operad
- 6. The CDGAs of admissible diagrams
- 7. Cooperad structure on the spaces of (admissible) diagrams
- 8. Equivalence of the cooperads $\mathcal {D}$ and $\mathrm {H}^*(\mathrm {C}[\bullet ])$
- 9. The Kontsevich configuration space integrals
- 10. Proofs of the formality theorems
- Index of notation
Abstract
The little $N$-disks operad, $\mathcal B$, along with its variants, is an important tool in homotopy theory. It is defined in terms of configurations of disjoint $N$-dimensional disks inside the standard unit disk in $\mathbb {R}^N$ and it was initially conceived for detecting and understanding $N$-fold loop spaces. Its many uses now stretch across a variety of disciplines including topology, algebra, and mathematical physics.
In this paper, we develop the details of Kontsevich’s proof of the formality of little $N$-disks operad over the field of real numbers. More precisely, one can consider the singular chains $\operatorname C_*(\mathcal B; \mathbb {R})$ on $\mathcal B$ as well as the singular homology $\operatorname H_*(\mathcal B; \mathbb {R})$ of $\mathcal B$. These two objects are operads in the category of chain complexes. The formality then states that there is a zig-zag of quasi-isomorphisms connecting these two operads. The formality also in some sense holds in the category of commutative differential graded algebras. We additionally prove a relative version of the formality for the inclusion of the little $m$-disks operad in the little $N$-disks operad when $N\geq 2m+1$.
The formality of the little $N$-disks operad has already had many important applications. For example, it was used in a solution of the Deligne Conjecture, in Tamarkin’s proof of Kontsevich’s deformation quantization conjecture, and in the work of Arone, Lambrechts, Turchin, and Volić on determining the rational homotopy type of spaces of smooth embeddings of a manifold in a large euclidean space, such as the space of knots in $\mathbb {R}^N$, $N\geq 4$.
- V. I. Arnol′d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227–231 (Russian). MR 242196
- Greg Arone, Pascal Lambrechts, Victor Turchin, and Ismar Volić, Coformality and rational homotopy groups of spaces of long knots, Math. Res. Lett. 15 (2008), no. 1, 1–14. MR 2367169, DOI 10.4310/MRL.2008.v15.n1.a1
- Gregory Arone, Pascal Lambrechts, and Ismar Volić, Calculus of functors, operad formality, and rational homology of embedding spaces, Acta Math. 199 (2007), no. 2, 153–198. MR 2358051, DOI 10.1007/s11511-007-0019-7
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609
- J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- Raoul Bott and Clifford Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994), no. 10, 5247–5287. Topology and physics. MR 1295465, DOI 10.1063/1.530750
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- Alberto S. Cattaneo, Paolo Cotta-Ramusino, and Riccardo Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol. 2 (2002), 949–1000. MR 1936977, DOI 10.2140/agt.2002.2.949
- Fred Cohen, Cohomology of braid spaces, Bull. Amer. Math. Soc. 79 (1973), 763–766. MR 321074, DOI 10.1090/S0002-9904-1973-13306-3
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 141126, DOI 10.7146/math.scand.a-10517
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI 10.2307/2946631
- Giovanni Gaiffi, Models for real subspace arrangements and stratified manifolds, Int. Math. Res. Not. 12 (2003), 627–656. MR 1951400, DOI 10.1155/S1073792803209077
- E. Getzler and J. D. S Jones. Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint arXiv:hep-th/9403055v1.
- Victor Ginzburg and Mikhail Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272. MR 1301191, DOI 10.1215/S0012-7094-94-07608-4
- Thomas G. Goodwillie and Michael Weiss, Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999), 103–118. MR 1694808, DOI 10.2140/gt.1999.3.103
- F. Guillén Santos, V. Navarro, P. Pascual, and A. Roig, Moduli spaces and formal operads, Duke Math. J. 129 (2005), no. 2, 291–335. MR 2165544, DOI 10.1215/S0012-7094-05-12924-6
- Robert Hardt, Pascal Lambrechts, Victor Turchin, and Ismar Volić, Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol. 11 (2011), no. 5, 2477–2545. MR 2836293, DOI 10.2140/agt.2011.11.2477
- Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 97–121. MR 1341841
- Maxim Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35–72. Moshé Flato (1937–1998). MR 1718044, DOI 10.1023/A:1007555725247
- Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR 2062626, DOI 10.1023/B:MATH.0000027508.00421.bf
- Maxim Kontsevich and Yan Soibelman, Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307. MR 1805894
- Pascal Lambrechts, Victor Turchin, and Ismar Volić, The rational homology of spaces of long knots in codimension $>2$, Geom. Topol. 14 (2010), no. 4, 2151–2187. MR 2740644, DOI 10.2140/gt.2010.14.2151
- Joseph Neisendorfer and Timothy Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978), no. 4, 565–580. MR 500938
- Paolo Salvatore, Configuration spaces with summable labels, Cohomological methods in homotopy theory (Bellaterra, 1998) Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 375–395. MR 1851264
- Pavol Ševera and Thomas Willwacher, Equivalence of formalities of the little discs operad, Duke Math. J. 160 (2011), no. 1, 175–206. MR 2838354, DOI 10.1215/00127094-1443502
- Dev P. Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. (N.S.) 10 (2004), no. 3, 391–428. MR 2099074, DOI 10.1007/s00029-004-0381-7
- Dev P. Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006), no. 2, 461–486. MR 2188133, DOI 10.1090/S0894-0347-05-00510-2
- Jim Stasheff, What is $\dots$ an operad?, Notices Amer. Math. Soc. 51 (2004), no. 6, 630–631. MR 2064150
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Dmitry E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), no. 1-2, 65–72. MR 2064592, DOI 10.1023/B:MATH.0000017651.12703.a1
- Michael Weiss, Embeddings from the point of view of immersion theory. I, Geom. Topol. 3 (1999), 67–101. MR 1694812, DOI 10.2140/gt.1999.3.67