Formality of the little $N$-disks operad
About this Title
Pascal Lambrechts and Ismar Volić
Publication: Memoirs of the American Mathematical Society
Publication Year:
2014; Volume 230, Number 1079
ISBNs: 978-0-8218-9212-1 (print); 978-1-4704-1669-0 (online)
DOI: http://dx.doi.org/10.1090/memo/1079
Published electronically: November 14, 2013
Keywords:Operad formality, little cubes operad, Fulton-MacPherson operad, trees
Table of Contents
Chapters
- Acknowledgments
- Chapter 1. Introduction
- Chapter 2. Notation, linear orders, weak partitions, and operads
- Chapter 3. CDGA models for operads
- Chapter 4. Real homotopy theory of semi-algebraic sets
- Chapter 5. The Fulton-MacPherson operad
- Chapter 6. The CDGAs of admissible diagrams
- Chapter 7. Cooperad structure on the spaces of (admissible) diagrams
- Chapter 8. Equivalence of the cooperads $\mathcal {D}$ and $\mathrm {H}^*(\mathrm {C}[\bullet ])$
- Chapter 9. The Kontsevich configuration space integrals
- Chapter 10. Proofs of the formality theorems
- Index of notation
Abstract
The little -disks operad, , along with its variants, is an important tool in homotopy theory. It is defined in terms of configurations of disjoint -dimensional disks inside the standard unit disk in and it was initially conceived for detecting and understanding -fold loop spaces. Its many uses now stretch across a variety of disciplines including topology, algebra, and mathematical physics. In this paper, we develop the details of Kontsevich's proof of the formality of little -disks operad over the field of real numbers. More precisely, one can consider the singular chains on as well as the singular homology of . These two objects are operads in the category of chain complexes. The formality then states that there is a zig-zag of quasi-isomorphisms connecting these two operads. The formality also in some sense holds in the category of commutative differential graded algebras. We additionally prove a relative version of the formality for the inclusion of the little -disks operad in the little -disks operad when . The formality of the little -disks operad has already had many important applications. For example, it was used in a solution of the Deligne Conjecture, in Tamarkin's proof of Kontsevich's deformation quantization conjecture, and in the work of Arone, Lambrechts, Turchin, and Volić on determining the rational homotopy type of spaces of smooth embeddings of a manifold in a large euclidean space, such as the space of knots in , .
- [1] V. I. Arnol′d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227–231 (Russian). MR 0242196
- [2] Greg Arone, Pascal Lambrechts, Victor Turchin, and Ismar Volić, Coformality and rational homotopy groups of spaces of long knots, Math. Res. Lett. 15 (2008), no. 1, 1–14. MR 2367169, 10.4310/MRL.2008.v15.n1.a1
- [3] Gregory Arone, Pascal Lambrechts, and Ismar Volić, Calculus of functors, operad formality, and rational homology of embedding spaces, Acta Math. 199 (2007), no. 2, 153–198. MR 2358051, 10.1007/s11511-007-0019-7
- [4] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609
- [5] J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- [6] Raoul Bott and Clifford Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994), no. 10, 5247–5287. Topology and physics. MR 1295465, 10.1063/1.530750
- [7] A. K. Bousfield and V. K. A. M. Gugenheim, On ${\rm PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 0425956
- [8] Alberto S. Cattaneo, Paolo Cotta-Ramusino, and Riccardo Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol. 2 (2002), 949–1000 (electronic). MR 1936977, 10.2140/agt.2002.2.949
- [9] Fred Cohen, Cohomology of braid spaces, Bull. Amer. Math. Soc. 79 (1973), 763–766. MR 0321074, 10.1090/S0002-9904-1973-13306-3
- [10] Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 0141126
- [11] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847
- [12] William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, 10.2307/2946631
- [13] Giovanni Gaiffi, Models for real subspace arrangements and stratified manifolds, Int. Math. Res. Not. 12 (2003), 627–656. MR 1951400, 10.1155/S1073792803209077
- [14] E. Getzler and J. D. S Jones. Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint arXiv:hep-th/9403055v1.
- [15] Victor Ginzburg and Mikhail Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272. MR 1301191, 10.1215/S0012-7094-94-07608-4
- [16] Thomas G. Goodwillie and Michael Weiss, Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999), 103–118 (electronic). MR 1694808, 10.2140/gt.1999.3.103
- [17] F. Guillén Santos, V. Navarro, P. Pascual, and A. Roig, Moduli spaces and formal operads, Duke Math. J. 129 (2005), no. 2, 291–335. MR 2165544, 10.1215/S0012-7094-05-12924-6
- [18] Robert Hardt, Pascal Lambrechts, Victor Turchin, and Ismar Volić, Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol. 11 (2011), no. 5, 2477–2545. MR 2836293, 10.2140/agt.2011.11.2477
- [19] Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 97–121. MR 1341841
- [20] Maxim Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35–72. Moshé Flato (1937–1998). MR 1718044, 10.1023/A:1007555725247
- [21] Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR 2062626, 10.1023/B:MATH.0000027508.00421.bf
- [22] Maxim Kontsevich and Yan Soibelman, Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307. MR 1805894
- [23] Pascal Lambrechts, Victor Turchin, and Ismar Volić, The rational homology of spaces of long knots in codimension $>2$, Geom. Topol. 14 (2010), no. 4, 2151–2187. MR 2740644, 10.2140/gt.2010.14.2151
- [24] Joseph Neisendorfer and Timothy Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978), no. 4, 565–580. MR 0500938
- [25] Paolo Salvatore, Configuration spaces with summable labels, Cohomological methods in homotopy theory (Bellaterra, 1998) Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 375–395. MR 1851264
- [26] Pavol Ševera and Thomas Willwacher, Equivalence of formalities of the little discs operad, Duke Math. J. 160 (2011), no. 1, 175–206. MR 2838354, 10.1215/00127094-1443502
- [27] Dev P. Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. (N.S.) 10 (2004), no. 3, 391–428. MR 2099074, 10.1007/s00029-004-0381-7
- [28] Dev P. Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006), no. 2, 461–486 (electronic). MR 2188133, 10.1090/S0894-0347-05-00510-2
- [29] Jim Stasheff, What is $\dots $ an operad?, Notices Amer. Math. Soc. 51 (2004), no. 6, 630–631. MR 2064150
- [30] Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 0646078
- [31] Dmitry E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), no. 1-2, 65–72. MR 2064592, 10.1023/B:MATH.0000017651.12703.a1
- [32] Michael Weiss, Embeddings from the point of view of immersion theory. I, Geom. Topol. 3 (1999), 67–101 (electronic). MR 1694812, 10.2140/gt.1999.3.67

