How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

   1a. To purchase any ebook backfile or to subscibe to the current year of Contemporary Mathematics, please download this required license agreement,

   1b. To subscribe to the current year of Memoirs of the AMS, please download this required license agreement.

   2. Complete and sign the license agreement.

   3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2213  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046
Email: cust-serv@ams.org

Visit the AMS Bookstore for individual volume purchases.

Browse the current eBook Collections price list

Powered by MathJax
  Remote Access

Effective Hamiltonians for Constrained Quantum Systems


About this Title

Jakob Wachsmuth and Stefan Teufel

Publication: Memoirs of the American Mathematical Society
Publication Year: 2014; Volume 230, Number 1083
ISBNs: 978-0-8218-9489-7 (print); 978-1-4704-1673-7 (online)
DOI: http://dx.doi.org/10.1090/memo/1083
Published electronically: December 24, 2013
Keywords:Schrödinger equation on manifolds, constraints, effective dynamics

View full volume PDF

View other years and numbers:

Table of Contents


Chapters

  • Chapter 1. Introduction
  • Chapter 2. Main results
  • Chapter 3. Proof of the main results
  • Chapter 4. The whole story
  • Appendix A. Geometric definitions and conventions

Abstract


We consider the time-dependent Schrödinger equation on a Riemannian manifold with a potential that localizes a certain subspace of states close to a fixed submanifold . When we scale the potential in the directions normal to by a parameter , the solutions concentrate in an -neighborhood of . This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. We derive an effective Schrödinger equation on the submanifold and show that its solutions, suitably lifted to , approximate the solutions of the original equation on up to errors of order at time . Furthermore, we prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order with those of the full Hamiltonian under reasonable conditions. Our results hold in the situation where tangential and normal energies are of the same order, and where exchange between these energies occurs. In earlier results tangential energies were assumed to be small compared to normal energies, and rather restrictive assumptions were needed, to ensure that the separation of energies is maintained during the time evolution. Most importantly, we can allow for constraining potentials that change their shape along the submanifold, which is the typical situation in the applications mentioned above. Since we consider a very general situation, our effective Hamiltonian contains many non-trivial terms of different origin. In particular, the geometry of the normal bundle of and a generalized Berry connection on an eigenspace bundle over play a crucial role. In order to explain the meaning and the relevance of some of the terms in the effective Hamiltonian, we analyze in some detail the application to quantum wave guides, where is a curve in . This allows us to generalize two recent results on spectra of such wave guides.

References [Enhancements On Off] (What's this?)