Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem
About this Title
Stefan Ivanov, Ivan Minchev and Dimiter Vassilev
Publication: Memoirs of the American Mathematical Society
Publication Year:
2014; Volume 231, Number 1086
ISBNs: 978-0-8218-9843-7 (print); 978-1-4704-1722-2 (online)
DOI: http://dx.doi.org/10.1090/memo/1086
Published electronically: January 31, 2014
Keywords:Yamabe equation, quaternionic contact structures
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Quaternionic contact structures and the Biquard connection
- Chapter 3. The torsion and curvature of the Biquard connection
- Chapter 4. QC-Einstein quaternionic contact structures
- Chapter 5. Conformal transformations of a qc-structure
- Chapter 6. Special functions and pseudo-Einstein quaternionic contact structures
- Chapter 7. Infinitesimal Automorphisms
- Chapter 8. Quaternionic contact Yamabe problem
Abstract
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A `3-Hamiltonian form' of infinitesimal conformal automorphisms of quaternionic contact structures is presented.
- [AK] Dmitri Alekseevsky and Yoshinobu Kamishima, Pseudo-conformal quaternionic CR structure on $(4n+3)$-dimensional manifolds, Ann. Mat. Pura Appl. (4) 187 (2008), no. 3, 487–529. MR 2393145, 10.1007/s10231-007-0053-2
- [AM] D. V. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. (4) 171 (1996), 205–273. MR 1441871, 10.1007/BF01759388
- [A1] Semyon Alesker, Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables, Bull. Sci. Math. 127 (2003), no. 1, 1–35. MR 1957796, 10.1016/S0007-4497(02)00004-0
- [A2] Semyon Alesker, Quaternionic Monge-Ampère equations, J. Geom. Anal. 13 (2003), no. 2, 205–238. MR 1967025, 10.1007/BF02930695
- [A3] S. Alesker, Quaternionic plurisubharmonic functions and their applications to convexity, Algebra i Analiz 19 (2007), no. 1, 5–22; English transl., St. Petersburg Math. J. 19 (2008), no. 1, 1–13. MR 2319507, 10.1090/S1061-0022-07-00982-X
- [AV] Semyon Alesker and Misha Verbitsky, Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, J. Geom. Anal. 16 (2006), no. 3, 375–399. MR 2250051, 10.1007/BF02922058
- [ACD] F. Astengo, M. Cowling, and B. Di Blasio, The Cayley transform and uniformly bounded representations, J. Funct. Anal. 213 (2004), no. 2, 241–269. MR 2078626, 10.1016/j.jfa.2003.12.009
- [BS] Bertrand Banos and Andrew Swann, Potentials for hyper-Kähler metrics with torsion, Classical Quantum Gravity 21 (2004), no. 13, 3127–3135. MR 2072130, 10.1088/0264-9381/21/13/004
- [Bes] Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
- [Biq1] Biquard, O., Métriques d'Einstein asymptotiquement symétriques, Astérisque 265 (2000).
- [Biq2] Olivier Biquard, Quaternionic contact structures, Quaternionic structures in mathematics and physics (Rome, 1999) Univ. Studi Roma “La Sapienza”, Rome, 1999, pp. 23–30 (electronic). MR 1848655
- [BG] Charles Boyer and Krzysztof Galicki, 3-Sasakian manifolds, Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., VI, Int. Press, Boston, MA, 1999, pp. 123–184. MR 1798609, 10.4310/SDG.2001.v6.n1.a6
- [BGN] Charles P. Boyer, Krzysztof Galicki, and Benjamin M. Mann, The geometry and topology of $3$-Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183–220. MR 1293878
- [CSal] M. Mamone Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), no. 4, 517–530. MR 967469
- [CL1] Jingyi Chen and Jiayu Li, Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), no. 2, 355–384. MR 1847314
- [CL2] Jingyi Chen and Jiayu Li, Quaternionic maps and minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 3, 375–388. MR 2185957
- [CDKR2] Michael Cowling, Anthony Dooley, Adam Korányi, and Fulvio Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal. 8 (1998), no. 2, 199–237. MR 1705176, 10.1007/BF02921641
- [CDKR1] [[leavevmode]]height 2pt depth -1.6pt width 23pt, -type groups and Iwasawa decompositions, Adv. Math., 87 (1991), 1–41.
- [D1] Duchemin, D., Quaternionic contact hypersurfaces, math.DG/0604147.
- [D] David Duchemin, Quaternionic contact structures in dimension 7, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 851–885 (English, with English and French summaries). MR 2266881
- [F] Rud Fueter, Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, Comment. Math. Helv. 8 (1935), no. 1, 371–378 (German). MR 1509533, 10.1007/BF01199562
- [FG] Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numero Hors Serie (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- [Fo] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 0494315
- [FSt] G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 0367477
- [GV1] Nicola Garofalo and Dimiter Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), no. 3, 411–448. MR 1813232, 10.1215/S0012-7094-01-10631-5
- [GV2] [[leavevmode]]height 2pt depth -1.6pt width 23pt, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math Ann., 318 (2000), no. 3, 453–516.
- [GL] C. Robin Graham and John M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), no. 2, 186–225. MR 1112625, 10.1016/0001-8708(91)90071-E
- [GP] Gueo Grantcharov and Yat Sun Poon, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), no. 1, 19–37. MR 1782143, 10.1007/s002200000231
- [HP] P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B 379 (1996), no. 1-4, 80–86. MR 1396267, 10.1016/0370-2693(96)00393-0
- [Iv] Stefan Ivanov, Geometry of quaternionic Kähler connections with torsion, J. Geom. Phys. 41 (2002), no. 3, 235–257. MR 1877929, 10.1016/S0393-0440(01)00058-4
- [IMV] Stefan Ivanov, Ivan Minchev, and Dimiter Vassilev, Extremals for the Sobolev inequality on the seven-dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 1041–1067. MR 2654087, 10.4171/JEMS/222
- [JL1] David Jerison and John M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Microlocal analysis (Boulder, Colo., 1983) Contemp. Math., vol. 27, Amer. Math. Soc., Providence, RI, 1984, pp. 57–63. MR 741039, 10.1090/conm/027/741039
- [JL3] David Jerison and John M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), no. 1, 1–13. MR 924699, 10.1090/S0894-0347-1988-0924699-9
- [JL4] David Jerison and John M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), no. 2, 303–343. MR 982177
- [JL2] David Jerison and John M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), no. 2, 167–197. MR 880182
- [Joy] Dominic Joyce, Hypercomplex algebraic geometry, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 194, 129–162. MR 1634730, 10.1093/qjmath/49.194.129
- [KN] Hiroyuki Kamada and Shin Nayatani, Quaternionic analogue of CR geometry, Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Année 2000–2001, Sémin. Théor. Spectr. Géom., vol. 19, Univ. Grenoble I, Saint-Martin-d’Hères, 2001, pp. 41–52. MR 1909075
- [Kam] Yoshinobu Kamishima, Geometric rigidity of spherical hypersurfaces in quaternionic manifolds, Asian J. Math. 3 (1999), no. 3, 519–555. MR 1793671, 10.4310/AJM.1999.v3.n3.a1
- [Kas] Toyoko Kashiwada, A note on a Riemannian space with Sasakian $3$-structure, Natur. Sci. Rep. Ochanomizu Univ. 22 (1971), 1–2. MR 0303449
- [KoNo] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- [K] Korányi, A., Kelvin transform and harmonic polynomials on the Heisenberg group, Adv.Math. 56 (1985), 28–38.
- [L1] John M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), no. 1, 157–178. MR 926742, 10.2307/2374543
- [LP] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, 10.1090/S0273-0979-1987-15514-5
- [LZ] Jiayu Li and Xi Zhang, Quaternionic maps between quaternionic Kähler manifolds, Math. Z. 250 (2005), no. 3, 523–537. MR 2179610, 10.1007/s00209-005-0763-3
- [MO] Paola Matzeu and Liviu Ornea, Local almost contact metric 3-structures, Publ. Math. Debrecen 57 (2000), no. 3-4, 499–508. MR 1798730
- [MS] Jeremy Michelson and Andrew Strominger, The geometry of (super) conformal quantum mechanics, Comm. Math. Phys. 213 (2000), no. 1, 1–17. MR 1782142, 10.1007/PL00005528
- [On] O'Neill, B., Semi-Riemannian geometry, Academic Press, New York, 1883.
- [P] Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, 10.2307/1971484
- [Per1] Pertici, D., Funzioni regolari di piú variabili quaternioniche, Ann. Mat. Pura Appl., Serie IV, CLI (1988), 39–65.
- [Per2] Donato Pertici, Trace theorems for regular functions of several quaternion variables, Forum Math. 3 (1991), no. 5, 461–478. MR 1123820, 10.1515/form.1991.3.461
- [Q] Daniel Quillen, Quaternionic algebra and sheaves on the Riemann sphere, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 194, 163–198. MR 1634734, 10.1093/qjmath/49.194.163
- [Sal2] S. M. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 31–55. MR 860810
- [Sal1] Simon Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), no. 1, 143–171. MR 664330, 10.1007/BF01393378
- [Sti] E. Stiefel, On Cauchy-Riemann equations in higher dimensions, J. Research Nat. Bur. Standards 48 (1952), 395–398. MR 0048596
- [S] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199–224. MR 516081, 10.1017/S0305004100055638
- [T] Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. MR 0399517
- [Va1] Dimiter Vassilev, Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups, Pacific J. Math. 227 (2006), no. 2, 361–397. MR 2263021, 10.2140/pjm.2006.227.361
- [Va2] [[leavevmode]]height 2pt depth -1.6pt width 23pt, Yamabe type equations on Carnot groups, Ph. D. thesis Purdue University, 2000.
- [V] Misha Verbitsky, HyperKähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), no. 4, 679–712. MR 1958088, 10.4310/AJM.2002.v6.n4.a5
- [W] Wei Wang, The Yamabe problem on quaternionic contact manifolds, Ann. Mat. Pura Appl. (4) 186 (2007), no. 2, 359–380. MR 2295125, 10.1007/s10231-006-0010-5
- [We] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25–41. MR 520599
- [Wu] Hung Hsi Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, i–xii and 289–538. MR 1079031