Self-affine scaling sets in $\mathbb {R}^2$
About this Title
Xiaoye Fu and Jean-Pierre Gabardo
Publication: Memoirs of the American Mathematical Society
Publication Year:
2015; Volume 233, Number 1097
ISBNs: 978-1-4704-1091-9 (print); 978-1-4704-1965-3 (online)
DOI: http://dx.doi.org/10.1090/memo/1097
Published electronically: May 19, 2014
Keywords:(MRA) scaling set, self-affine tile
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Preliminary Results
- Chapter 3. A sufficient condition for a self-affine tile to be an MRA scaling set
- Chapter 4. Characterization of the inclusion $K\subset BK$
- Chapter 5. Self-affine scaling sets in $\mathbb {R}^2$: the case $0\in \mathcal {D}$
- Chapter 6. Self-affine scaling sets in $\mathbb {R}^2$: the case $\mathcal {D}=\{d_1,d_2\}\subset \mathbb {R}^2$
- Chapter 7. Conclusion
Abstract
There exist results on the connection between the theory of wavelets and the theory of integral self-affine tiles and in particular, on the construction of wavelet bases using integral self-affine tiles. However, there are many non-integral self-affine tiles which can also yield wavelet basis. In this work, we give a complete characterization of all one and two dimensional -dilation scaling sets such that is a self-affine tile satisfying for some , where is a integral expansive matrix with and .
- [1] Larry Baggett, Alan Carey, William Moran, and Peter Ohring, General existence theorems for orthonormal wavelets, an abstract approach, Publ. Res. Inst. Math. Sci. 31 (1995), no. 1, 95–111. MR 1317525, 10.2977/prims/1195164793
- [2] Lawrence W. Baggett, Herbert A. Medina, and Kathy D. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in $\bold R^n$, J. Fourier Anal. Appl. 5 (1999), no. 6, 563–573. MR 1752590, 10.1007/BF01257191
- [3] J. J. Benedetto and M. Leon, The construction of single wavelets in $D$-dimensions, J. Geom. Anal. 11 (2001), no. 1, 1–15. MR 1829345, 10.1007/BF02921951
- [4] John J. Benedetto and Songkiat Sumetkijakan, A fractal set constructed from a class of wavelet sets, Inverse problems, image analysis, and medical imaging (New Orleans, LA, 2001), Contemp. Math., vol. 313, Amer. Math. Soc., Providence, RI, 2002, pp. 19–35. MR 1940987, 10.1090/conm/313/05366
- [5] John J. Benedetto and Manuel T. Leon, The construction of multiple dyadic minimally supported frequency wavelets on $\bold R^d$, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 43–74. MR 1738085, 10.1090/conm/247/03797
- [6] Marcin Bownik, Ziemowit Rzeszotnik, and Darrin Speegle, A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal. 10 (2001), no. 1, 71–92. MR 1808201, 10.1006/acha.2000.0327
- [7] Xingde Dai, David R. Larson, and Darrin M. Speegle, Wavelet sets in $\bold R^n$, J. Fourier Anal. Appl. 3 (1997), no. 4, 451–456. MR 1468374, 10.1007/BF02649106
- [8] Xingde Dai, David R. Larson, and Darrin M. Speegle, Wavelet sets in $\bold R^n$. II, Wavelets, multiwavelets, and their applications (San Diego, CA, 1997), Contemp. Math., vol. 216, Amer. Math. Soc., Providence, RI, 1998, pp. 15–40. MR 1614712, 10.1090/conm/216/02962
- [9] Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107
- [10] Xiang Fang and Xihua Wang, Construction of minimally supported frequency wavelets, J. Fourier Anal. Appl. 2 (1996), no. 4, 315–327. MR 1395767
- [11] Xiaoye Fu and Jean-Pierre Gabardo, Dimension functions of self-affine scaling sets, Canad. Math. Bull. 56 (2013), no. 4, 745–758. MR 3121684, 10.4153/CMB-2012-040-4
- [12] X. Fu and J. P. Gabardo, Construction of wavelet sets using integral self-affine multi-tiles, J. Fourier Anal. Appl., DOI 10.1007/s00041-013-9310-5.
- [13] Jean-Pierre Gabardo and Xiaojiang Yu, Construction of wavelet sets with certain self-similarity properties, J. Geom. Anal. 14 (2004), no. 4, 629–651. MR 2111421, 10.1007/BF02922173
- [14] Jean-Pierre Gabardo and Xiaojiang Yu, Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles, J. London Math. Soc. (2) 74 (2006), no. 1, 184–204. MR 2254560, 10.1112/S0024610706022915
- [15] K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of ${\bf R}^n$, IEEE Trans. Inform. Theory 38 (1992), no. 2, 556–568. MR 1162214, 10.1109/18.119723
- [16] Karlheinz Gröchenig and Andrew Haas, Self-similar lattice tilings, J. Fourier Anal. Appl. 1 (1994), no. 2, 131–170. MR 1348740, 10.1007/s00041-001-4007-6
- [17] Qing Gu and Deguang Han, On multiresolution analysis (MRA) wavelets in $\bold R^n$, J. Fourier Anal. Appl. 6 (2000), no. 4, 437–447. MR 1776974, 10.1007/BF02510148
- [18] E. Hernández, X. Wang, and G. Weiss, Smoothing minimally supported frequency (msf) wavelets : Part [[mbox]]I, Journal of Fourier Analysis and Applications 3 (1997), 329–340.
- [19] John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, 10.1512/iumj.1981.30.30055
- [20] Eugen J. Ionascu, A new construction of wavelet sets, Real Anal. Exchange 28 (2002/03), no. 2, 593–609. MR 2010340
- [21] Jeffrey C. Lagarias and Yang Wang, Haar type orthonormal wavelet bases in ${\bf R}^2$, J. Fourier Anal. Appl. 2 (1995), no. 1, 1–14. MR 1361539, 10.1007/s00041-001-4019-2
- [22] Jeffrey C. Lagarias and Yang Wang, Integral self-affine tiles in $\bold R^n$. I. Standard and nonstandard digit sets, J. London Math. Soc. (2) 54 (1996), no. 1, 161–179. MR 1395075, 10.1112/jlms/54.1.161
- [23] Jeffrey C. Lagarias and Yang Wang, Self-affine tiles in ${\bf R}^n$, Adv. Math. 121 (1996), no. 1, 21–49. MR 1399601, 10.1006/aima.1996.0045
- [24] Jeffrey C. Lagarias and Yang Wang, Integral self-affine tiles in ${\bf R}^n$. II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), no. 1, 83–102. MR 1428817, 10.1007/s00041-001-4051-2
- [25] Jeffrey C. Lagarias and Yang Wang, Corrigendum/addendum: “Haar bases for $L^2({\bf R}^n)$ and algebraic number theory” [J. Number Theory 57 (1996), no. 1, 181–197; MR1378581 (97a:42027)], J. Number Theory 76 (1999), no. 2, 330–336. MR 1684691, 10.1006/jnth.1998.2353
- [26] Zhongyan Li, Xingde Dai, Yuanan Diao, and Wei Huang, The path-connectivity of MRA wavelets in $L^2(\Bbb R^d)$, Illinois J. Math. 54 (2010), no. 2, 601–620. MR 2846475
- [27] Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2({\bf R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, 10.1090/S0002-9947-1989-1008470-5
- [28] Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- [29] Kenneth H. Rosen, Elementary number theory and its applications, 4th ed., Addison-Wesley, Reading, MA, 2000. MR 1739433
- [30] Paolo M. Soardi and David Weiland, Single wavelets in $n$-dimensions, J. Fourier Anal. Appl. 4 (1998), no. 3, 299–315. MR 1650988, 10.1007/BF02476029
- [31] Andrew Vince, Replicating tessellations, SIAM J. Discrete Math. 6 (1993), no. 3, 501–521. MR 1229702, 10.1137/0406040