Local entropy theory of a random dynamical system
About this Title
Anthony H. Dooley and Guohua Zhang
Publication: Memoirs of the American Mathematical Society
Publication Year:
2015; Volume 233, Number 1099
ISBNs: 978-1-4704-1055-1 (print); 978-1-4704-1967-7 (online)
DOI: http://dx.doi.org/10.1090/memo/1099
Published electronically: May 19, 2014
Keywords:Discrete amenable groups, (tiling) Følner sequences, continuous bundle
random dynamical systems, random open covers, random continuous functions,
local fiber topological pressure, factor excellent and good covers, local
variational principles
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Infinite countable discrete amenable groups
- Chapter 3. Measurable dynamical systems
- Chapter 4. Continuous bundle random dynamical systems
- Chapter 5. Local fiber topological pressure
- Chapter 6. Factor excellent and good covers
- Chapter 7. A variational principle for local fiber topological pressure
- Chapter 8. Proof of main result Theorem 7.1
- Chapter 9. Assumption $(\spadesuit )$ on the family $\mathbf {D}$
- Chapter 10. The local variational principle for amenable groups admitting a tiling Følner sequence
- Chapter 11. Another version of the local variational principle
- Chapter 12. Entropy tuples for a continuous bundle random dynamical system
- Chapter 13. Applications to topological dynamical systems
Abstract
In this paper we extend the notion of a continuous bundle random dynamical system to the setting where the action of or is replaced by the action of an infinite countable discrete amenable group. Given such a system, and a monotone sub-additive invariant family of random continuous functions, we introduce the concept of local fiber topological pressure and establish an associated variational principle, relating it to measure-theoretic entropy. We also discuss some variants of this variational principle. We introduce both topological and measure-theoretic entropy tuples for continuous bundle random dynamical systems, and apply our variational principles to obtain a relationship between these of entropy tuples. Finally, we give applications of these results to general topological dynamical systems, recovering and extending many recent results in local entropy theory.
- [1] L. M. Abramov and V. A. Rohlin, Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ. 17 (1962), no. 7, 5–13 (Russian, with English summary). MR 0140660
- [2] Ludwig Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1723992
- [3] F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 95–105. MR 1185082, 10.1090/conm/135/1185082
- [4] François Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France 121 (1993), no. 4, 465–478 (English, with English and French summaries). MR 1254749
- [5] F. Blanchard, E. Glasner, and B. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory Dynam. Systems 17 (1997), no. 1, 29–43. MR 1440766, 10.1017/S0143385797069794
- [6] F. Blanchard, B. Host, A. Maass, S. Martinez, and D. J. Rudolph, Entropy pairs for a measure, Ergodic Theory Dynam. Systems 15 (1995), no. 4, 621–632. MR 1346392, 10.1017/S0143385700008579
- [7] F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), no. 3, 985–992. MR 1155593, 10.1090/S0002-9939-1993-1155593-2
- [8] Thomas Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems, Random Comput. Dynam. 1 (1992/93), no. 1, 99–116. MR 1181382
- [9] Thomas Bogenschütz, Equilibrium states for random dynamical systems, Ph.D. Thesis, Universitat Bremen, 1993.
- [10] Thomas Bogenschütz and Volker Mathias Gundlach, Ruelle’s transfer operator for random subshifts of finite type, Ergodic Theory Dynam. Systems 15 (1995), no. 3, 413–447. MR 1336700, 10.1017/S0143385700008464
- [11] Mike Boyle and Tomasz Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (2004), no. 1, 119–161. MR 2047659, 10.1007/s00222-003-0335-2
- [12] Yong-Luo Cao, De-Jun Feng, and Wen Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst. 20 (2008), no. 3, 639–657. MR 2373208
- [13] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- [14] N. P. Chung and H. F. Li, Homoclinic groups, IE group, and expansive algebraic actions, Invent. Math., to appear.
- [15] Hans Crauel, Random probability measures on Polish spaces, Stochastics Monographs, vol. 11, Taylor & Francis, London, 2002. MR 1993844
- [16] Hans Crauel, Arnaud Debussche, and Franco Flandoli, Random attractors, J. Dynam. Differential Equations 9 (1997), no. 2, 307–341. MR 1451294, 10.1007/BF02219225
- [17] Alexandre I. Danilenko, Entropy theory from the orbital point of view, Monatsh. Math. 134 (2001), no. 2, 121–141. MR 1878075, 10.1007/s006050170003
- [18] Alexandre I. Danilenko and Kyewon K. Park, Generators and Bernoullian factors for amenable actions and cocycles on their orbits, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1715–1745. MR 1944401, 10.1017/S014338570200072X
- [19] A. H. Dooley, V. Ya. Golodets, and G. H. Zhang, Sub-additive ergodic theorems for countable amenable groups, preprint (2011).
- [20] Anthony H. Dooley and Guohua Zhang, Co-induction in dynamical systems, Ergodic Theory Dynam. Systems 32 (2012), no. 3, 919–940. MR 2995650, 10.1017/S0143385711000083
- [21] Dou Dou, Xiangdong Ye, and Guohua Zhang, Entropy sequences and maximal entropy sets, Nonlinearity 19 (2006), no. 1, 53–74. MR 2191619, 10.1088/0951-7715/19/1/004
- [22] Tomasz Downarowicz, Entropy in dynamical systems, New Mathematical Monographs, vol. 18, Cambridge University Press, Cambridge, 2011. MR 2809170
- [23] Tomasz Downarowicz and Jacek Serafin, Fiber entropy and conditional variational principles in compact non-metrizable spaces, Fund. Math. 172 (2002), no. 3, 217–247. MR 1898686, 10.4064/fm172-3-2
- [24] T. Downarowicz and G. H. Zhang, Symbolic extension theory of amenable group actions, in preparation.
- [25] R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original. MR 1932358
- [26] I. V. Evstigneev, Measurable selection theorems and probabilistic models of control in general topological spaces, Mat. Sb. (N.S.) 131(173) (1986), no. 1, 27–39, 126 (Russian); English transl., Math. USSR-Sb. 59 (1988), no. 1, 25–37. MR 868599
- [27] De-Jun Feng and Wen Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Comm. Math. Phys. 297 (2010), no. 1, 1–43. MR 2645746, 10.1007/s00220-010-1031-x
- [28] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- [29] Eli Glasner, A simple characterization of the set of $\mu $-entropy pairs and applications, Israel J. Math. 102 (1997), 13–27. MR 1489099, 10.1007/BF02773793
- [30] Eli Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003. MR 1958753
- [31] E. Glasner, J.-P. Thouvenot, and B. Weiss, Entropy theory without a past, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1355–1370. MR 1786718, 10.1017/S0143385700000730
- [32] E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 597–648. MR 2186250, 10.1016/S1874-575X(06)80035-4
- [33] Eli Glasner and Xiangdong Ye, Local entropy theory, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 321–356. MR 2486773, 10.1017/S0143385708080309
- [34] W. Huang, A. Maass, P. P. Romagnoli, and X. Ye, Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers, Ergodic Theory Dynam. Systems 24 (2004), no. 4, 1127–1153. MR 2085906, 10.1017/S0143385704000161
- [35] Wen Huang and Xiangdong Ye, A local variational relation and applications, Israel J. Math. 151 (2006), 237–279. MR 2214126, 10.1007/BF02777364
- [36] Wen Huang, Xiangdong Ye, and Guohua Zhang, A local variational principle for conditional entropy, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 219–245. MR 2201946, 10.1017/S014338570500043X
- [37] Wen Huang, Xiangdong Ye, and Guohua Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math. 158 (2007), 249–283. MR 2342467, 10.1007/s11856-007-0013-y
- [38] Wen Huang, Xiangdong Ye, and Guohua Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal. 261 (2011), no. 4, 1028–1082. MR 2803841, 10.1016/j.jfa.2011.04.014
- [39] Wen Huang and Yingfei Yi, A local variational principle of pressure and its applications to equilibrium states, Israel J. Math. 161 (2007), 29–74. MR 2350155, 10.1007/s11856-007-0071-1
- [40] Shizuo Kakutani, Random ergodic theorems and Markoff processes with a stable distribution, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 247–261. MR 0044773
- [41] David Kerr and Hanfeng Li, Independence in topological and $C^*$-dynamics, Math. Ann. 338 (2007), no. 4, 869–926. MR 2317754, 10.1007/s00208-007-0097-z
- [42] David Kerr and Hanfeng Li, Combinatorial independence in measurable dynamics, J. Funct. Anal. 256 (2009), no. 5, 1341–1386. MR 2490222, 10.1016/j.jfa.2008.12.014
- [43] David Kerr and Hanfeng Li, Combinatorial independence and sofic entropy, Comm. Math. Stat., 1 (2013), no. 2, 213–257.
- [44] K. Khanin and Y. Kifer, Thermodynamic formalism for random transformations and statistical mechanics, Sinaĭ’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp. 107–140. MR 1359097, 10.1090/trans2/171/10
- [45] Yuri Kifer, Ergodic theory of random transformations, Progress in Probability and Statistics, vol. 10, Birkhäuser Boston, Inc., Boston, MA, 1986. MR 884892
- [46] Yuri Kifer, On the topological pressure for random bundle transformations, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, 2001, pp. 197–214. MR 1819189, 10.1090/trans2/202/14
- [47] Yuri Kifer and Pei-Dong Liu, Random dynamics, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 379–499. MR 2186245, 10.1016/S1874-575X(06)80030-5
- [48] Yuri Kifer and Benjamin Weiss, Generating partitions for random transformations, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1813–1830. MR 1944406, 10.1017/S0143385702000755
- [49] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probability 1 (1973), 883–909. With discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M. Hammersley, and a reply by the author. MR 0356192
- [50] F. Ledrappier, A variational principle for the topological conditional entropy, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 78–88. MR 550412
- [51] François Ledrappier and Peter Walters, A relativised variational principle for continuous transformations, J. London Math. Soc. (2) 16 (1977), no. 3, 568–576. MR 0476995
- [52] Zeng Lian and Kening Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Mem. Amer. Math. Soc. 206 (2010), no. 967, vi+106. MR 2674952, 10.1090/S0065-9266-10-00574-0
- [53] Bingbing Liang and Kesong Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal. 262 (2012), no. 2, 584–601. MR 2854714, 10.1016/j.jfa.2011.09.020
- [54] Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, 10.1007/BF02810577
- [55] Pei-Dong Liu, Dynamics of random transformations: smooth ergodic theory, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1279–1319. MR 1855833, 10.1017/S0143385701001614
- [56] Pei-Dong Liu, A note on the entropy of factors of random dynamical systems, Ergodic Theory Dynam. Systems 25 (2005), no. 2, 593–603. MR 2129111, 10.1017/S0143385704000586
- [57] Pei-Dong Liu and Min Qian, Smooth ergodic theory of random dynamical systems, Lecture Notes in Mathematics, vol. 1606, Springer-Verlag, Berlin, 1995. MR 1369243
- [58] Michał Misiurewicz, A short proof of the variational principle for a ${\bf Z}_{+}^{N}$ action on a compact space, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975) Soc. Math. France, Paris, 1976, pp. 147–157. Astérisque, No. 40. MR 0444904
- [59] Jean Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Mathematics, vol. 1115, Springer-Verlag, Berlin, 1985. MR 781932
- [60] Jean Moulin Ollagnier and Didier Pinchon, Groupes pavables et principe variationnel, Z. Wahrsch. Verw. Gebiete 48 (1979), no. 1, 71–79 (French). MR 533007, 10.1007/BF00534883
- [61] Jean Moulin Ollagnier and Didier Pinchon, The variational principle, Studia Math. 72 (1982), no. 2, 151–159. MR 665415
- [62] Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, 10.1007/BF02790325
- [63] V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik N.S. 25(67) (1949), 107–150 (Russian). MR 0030584
- [64] Pierre-Paul Romagnoli, A local variational principle for the topological entropy, Ergodic Theory Dynam. Systems 23 (2003), no. 5, 1601–1610. MR 2018614, 10.1017/S0143385703000105
- [65] Daniel J. Rudolph and Benjamin Weiss, Entropy and mixing for amenable group actions, Ann. of Math. (2) 151 (2000), no. 3, 1119–1150. MR 1779565, 10.2307/121130
- [66] A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR 254 (1980), no. 3, 545–549 (Russian). MR 590147
- [67] S. M. Ulam and J. von Neumann, Random ergodic theorems, Bull. Amer. Math. Soc. 51 (1945), 660.
- [68] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- [69] Thomas Ward and Qing Zhang, The Abramov-Rokhlin entropy addition formula for amenable group actions, Monatsh. Math. 114 (1992), no. 3-4, 317–329. MR 1203977, 10.1007/BF01299386
- [70] Benjamin Weiss, Monotileable amenable groups, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, 2001, pp. 257–262. MR 1819193, 10.1090/trans2/202/18
- [71] Benjamin Weiss, Actions of amenable groups, Topics in dynamics and ergodic theory, London Math. Soc. Lecture Note Ser., vol. 310, Cambridge Univ. Press, Cambridge, 2003, pp. 226–262. MR 2052281, 10.1017/CBO9780511546716.012
- [72] Xiangdong Ye and Guohua Zhang, Entropy points and applications, Trans. Amer. Math. Soc. 359 (2007), no. 12, 6167–6186 (electronic). MR 2336322, 10.1090/S0002-9947-07-04357-7
- [73] Guohua Zhang, Relative entropy, asymptotic pairs and chaos, J. London Math. Soc. (2) 73 (2006), no. 1, 157–172. MR 2197376, 10.1112/S0024610705022520
- [74] Guohua Zhang, Relativization and localization of dynamical properties, Ph.D. Thesis, University of Science and Technology of China, http://homepage.fudan.edu.cn/zhanggh/files/2012/08/english.pdf, 2007.
- [75] Guohua Zhang, Variational principles of pressure, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1409–1435. MR 2505712, 10.3934/dcds.2009.24.1409
- [76] Guohua Zhang, Local variational principle concerning entropy of sofic group action, J. Funct. Anal. 262 (2012), no. 4, 1954–1985. MR 2873866, 10.1016/j.jfa.2011.11.029
- [77] Yun Zhao and Yongluo Cao, On the topological pressure of random bundle transformations in sub-additive case, J. Math. Anal. Appl. 342 (2008), no. 1, 715–725. MR 2440833, 10.1016/j.jmaa.2007.11.044