Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


On the theory of Weak Turbulence for the Nonlinear Schrödinger Equation

About this Title

M. Escobedo, Departamento de Matemáticas, Universidad del País Vasco, UPV/ EHU, 48080 Bilbao & Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain. and J. J. L. Velázquez, Institute of Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany.

Publication: Memoirs of the American Mathematical Society
Publication Year: 2015; Volume 238, Number 1124
ISBNs: 978-1-4704-1434-4 (print); 978-1-4704-2611-8 (online)
DOI: https://doi.org/10.1090/memo/1124
Published electronically: April 15, 2015
Keywords: amsbook, AMS-\LaTeX, Weak turbulence, finite time blow up, condensation, pulsating solution, energy transfer.
MSC: Primary 45G05, 35Q20; Secondary 35B40, 35D05

View full volume PDF

View other years and numbers:

Table of Contents

Chapters

  • 1. Introduction
  • 2. Well-Posedness Results
  • 3. Qualitative behaviors of the solutions
  • 4. Solutions without condensation: Pulsating behavior
  • 5. Heuristic arguments and open problems
  • 6. Auxiliary results

Abstract

We study the Cauchy problem for a kinetic equation arising in the weak turbulence theory for the cubic nonlinear Schrödinger equation. We define suitable concepts of weak and mild solutions and prove local and global well posedness results. Several qualitative properties of the solutions, including long time asymptotics, blow up results and condensation in finite time are obtained. We also prove the existence of a family of solutions that exhibit pulsating behavior.

References [Enhancements On Off] (What's this?)

References
  • M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York (1972).
  • V. I. Arnol′d, Mathematical methods of classical mechanics, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR 0690288
  • A. M. Balk and S. V. Nazarenko, Physical realizability of anisotropic weak-turbulence Kolmogorov spectra, Zh. Èksper. Teoret. Fiz. 97 (1990), no. 6, 1827–1846 (Russian); English transl., Soviet Phys. JETP 70 (1990), no. 6, 1031–1041. MR 1079519
  • A. M. Balk and V. E. Zakharov, Stability of weak-turbulence Kolmogorov spectra, Nonlinear waves and weak turbulence, Amer. Math. Soc. Transl. Ser. 2, vol. 182, Amer. Math. Soc., Providence, RI, 1998, pp. 31–81. MR 1618499, DOI 10.1090/trans2/182/02
  • D. J. Benney and P. Saffman, Nonlinear interaction of random waves in a dispersive medium. Proc. R. Soc. A. v. 289, 301-320, (1966).
  • Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829
  • P. Caillol and V. Zeitlin, Kinetic equations and stationary spectra of weakly nonlinear internal gravity waves. Dyn. Atmospheres Oceans 32, 81-112, (2000).
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Weakly turbulent solutions for the cubic defocusing nonlinear Schrödinger equation. arXiv: 0808.1742v2 [math.AP], (2008).
  • Michael Christ, James Colliander, and Terrence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293. MR 2018661
  • Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
  • G. Düring, C. Josserand and S. Rica. Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum?. Phys. Rev. Lett. 97, 025503, (2006).
  • S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Phys. D 57 (1992), no. 1-2, 96–160. MR 1169619, DOI 10.1016/0167-2789(92)90090-A
  • M. Escobedo, S. Mischler, and J. J. L. Vélazquez, On the fundamental solution of a linearized Uehling-Uhlenbeck equation, Arch. Ration. Mech. Anal. 186 (2007), no. 2, 309–349. MR 2342205, DOI 10.1007/s00205-007-0084-2
  • M. Escobedo, S. Mischler, and J. J. L. Velázquez, Singular solutions for the Uehling-Uhlenbeck equation, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), no. 1, 67–107. MR 2388938, DOI 10.1017/S0308210506000655
  • M. Escobedo and J. J. L. Velázquez. Finite time blow-up for the bosonic Nordheim equation. Inventiones Mathematicae (2014). DOI: 10.1007/s00222-014-0539-7
  • M. Escobedo and J. J. L. Velázquez, On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons, Comm. Math. Phys. 330 (2014), no. 1, 331–365. MR 3215584, DOI 10.1007/s00220-014-2034-9
  • A. A. Galeev, V. I. Karpman and R. Z. Sagdeev, On a soluble problem in turbulence theory. DAN SSSR, v. 157, 5, 1088, (1964)
  • K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum. I. General theory, J. Fluid Mech. 12 (1962), 481–500. MR 136205, DOI 10.1017/S0022112062000373
  • K. Hasselmann, On the non-linear energy transfer in a gravity wave spectrum. II. Conservation theorems; wave-particle analogy; irreversibility, J. Fluid Mech. 15 (1963), 273–281. MR 151308, DOI 10.1017/S0022112063000239
  • P. Janssen. Ocean-atmosphere interaction. Cambridge University Press., 2004.
  • C. Josserand, Y. Pomeau and S. Rica, Self-similar Singularities in the Kinetics of Condensation, J. Low Temp. Phys. 145, 231–265, (2006).
  • A. V. Kats and V. M. Kontorovich, Theory of weak turbulence of waves on a fluid surface. J. App. Mech. and Tech. Phys. v.15, 6, 810-817, (1974).
  • Yu. M. Kagan, B. V, Svistunov and G. V. Shlyapnikov, Erratum: Kinetics of Bose condensation in an interacting Bose gas, J. Exptl. Theoret. Phys. (USSR) 102, n. 2, 719–, (1992). [Sov. Phys. JETP 75, 387-393, (1992)].
  • Sergei B. Kuksin, Growth and oscillations of solutions of nonlinear Schrödinger equation, Comm. Math. Phys. 178 (1996), no. 2, 265–280. MR 1389904
  • S. B. Kuksin, Oscillations in space-periodic nonlinear Schrödinger equations, Geom. Funct. Anal. 7 (1997), no. 2, 338–363. MR 1445390, DOI 10.1007/PL00001622
  • Robert Lacaze, Pierre Lallemand, Yves Pomeau, and Sergio Rica, Dynamical formation of a Bose-Einstein condensate, Phys. D 152/153 (2001), 779–786. Advances in nonlinear mathematics and science. MR 1837939, DOI 10.1016/S0167-2789(01)00211-1
  • E. Levich and V. Yakhot, Time evolution of a Bose system passing through the critical point, Phys. Rev. B, 15, 243–251, (1977).
  • E. Levich and V. Yakhot, Kinetics of Phase Transition in Ideal and Weakly Interacting Bose Gas, J. Low Temp. Phys. 27, 107–124, (1977).
  • E. Levich and V. Yakhot, Time development of coherent and superfluid properties in the course of a $\lambda$- transition, J. Phys. A: Math. Gen. 11, n. 11, 2237–2254, (1978).
  • Y. V. Lvov and E. G. Tabak, Hamiltonian formalism and the Garrett and Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87, 169501, (2001).
  • M. S. Longuet-Higgins and A. E. Gill. Resonant interactions between planetary waves. Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci. 299(1456), 120-144, (1967).
  • Xuguang Lu, On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles, J. Statist. Phys. 116 (2004), no. 5-6, 1597–1649. MR 2096049, DOI 10.1023/B:JOSS.0000041750.11320.9c
  • Xuguang Lu, The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium, J. Stat. Phys. 119 (2005), no. 5-6, 1027–1067. MR 2157856, DOI 10.1007/s10955-005-3767-9
  • Xuguang Lu, The Boltzmann equation for Bose-Einstein particles: condensation in finite time, J. Stat. Phys. 150 (2013), no. 6, 1138–1176. MR 3038680, DOI 10.1007/s10955-013-0725-9
  • A. J. Majda, D. W. McLaughlin, and E. G. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci. 7 (1997), no. 1, 9–44. MR 1431687, DOI 10.1007/BF02679124
  • Sergey Nazarenko, Wave turbulence, Lecture Notes in Physics, vol. 825, Springer, Heidelberg, 2011. MR 3014432
  • A. C. Newell, The closure problem in a system of random gravity waves. Reviews of Geophysics. 6, n.1, 1-31, (1968).
  • A. C. Newell, Rossby wave packet interactions. J. Fluid Mech. 35, 255-271, (1969).
  • Alan C. Newell and Benno Rumpf, Wave turbulence, Annual review of fluid mechanics. Volume 43, 2011, Annu. Rev. Fluid Mech., vol. 43, Annual Reviews, Palo Alto, CA, 2011, pp. 59–78. MR 2768011, DOI 10.1146/annurev-fluid-122109-160807
  • R. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen, Annalen der Physik, v. 395, 8, 1055–1101, (1929).
  • Yves Pomeau, Asymptotic time behaviour of nonlinear classical field equations, Nonlinearity 5 (1992), no. 3, 707–720. MR 1166542
  • Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • R. Z. Sagdeev and A. A. Galeev, Lectures of the nonlinear Theory of Plasma. International Centre for Theoretical Physics, 1966. (http://publications.ictp.it/preprints.html).
  • D. V. Semikoz and I. I. Tkachev, Kinetics of Bose condensation, Phys. Rev. Lett. 74, 3093–3097, (1995).
  • D. V. Semikoz and I. I. Tkachev, Condensation of bosons in the kinetic regime, Phys. Rev. D 55, 489–502, (1997).
  • Herbert Spohn, Kinetics of the Bose-Einstein condensation, Phys. D 239 (2010), no. 10, 627–634. MR 2601928, DOI 10.1016/j.physd.2010.01.018
  • B. V. Svistunov, Highly nonequilibrium Bose condensation in a weakly interacting gas, J. Moscow. Phys. Soc. 1 373–390, (1991).
  • V. E. Zakharov, Weak turbulence in media with decay spectrum. Zh. Priklad. Tech. Fiz. 4, 35-39, (1965). [J. Appl. Mech. Tech. Phys. 4, 22-24, (1965)].
  • V. E. Zakharov, Weak Turbulence spectrum in a plasma without a magnetic field. J. Exptl. Theoret. Phys. (USSR) 51, 688-696, (1967). [Soviet Physics JETP, v. 4, n. 2, 455-459, (1967)].
  • V. E. Zakharov, Collapse of Langmuir waves, J. Exptl. Theoret. Phys. (USSR) 62, 1745-1759, (1972). [Soviet Physics JETP, v. 35, n. 5, 908-914, (1972)].
  • V. E. Zakharov, N. N. Filonenko, Energy spectrum for stochastic oscillations of a fluid surface. Dokl. Acad. Nauka SSSR, 170, 1292-1295, (1966). [Sov. Phys. Dokl. 11, 881-884, (1967)].
  • V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves. Zh. Prikl. Mekh. Tekh. Phys. 4(5), 62, (1967).
  • V. E. Zakharov, V. S. L’vov and G. Falkovich, Kolmogorov spectra of turbulence I: Wave turbulence. Springer, Berlin, 1992.
  • Vladimir Zakharov, Frédéric Dias, and Andrei Pushkarev, One-dimensional wave turbulence, Phys. Rep. 398 (2004), no. 1, 1–65. MR 2073490, DOI 10.1016/j.physrep.2004.04.002