GLOBAL CARLEMAN ESTIMATES FOR DEGENERATE PARABOLIC OPERATORS WITH APPLICATIONS
About this Title
P. Cannarsa, P. Martinez and J. Vancostenoble
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 239, Number 1133
ISBNs: 978-1-4704-1496-2 (print); 978-1-4704-2749-8 (online)
DOI: http://dx.doi.org/10.1090/memo/1133
Published electronically: June 30, 2015
Keywords:Degenerate parabolic equations, controllability, inverse problems, Carleman
estimates
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Controllability and inverse source problems: Notation and main results
- Chapter 3. Global Carleman estimates for weakly degenerate operators
- Chapter 4. Some Hardy-type inequalities (proof of Lemma 3.18)
- Chapter 5. Asymptotic properties of elements of $H^2 (\Omega ) \cap H^1 _{A,0}(\Omega )$
- Chapter 6. Proof of the topological lemma 3.21
- Chapter 7. Outlines of the proof of Theorems 3.23 and 3.26
- Chapter 8. Step 1: computation of the scalar product on subdomains (proof of Lemmas 7.1 and 7.16)
- Chapter 9. Step 2: a first estimate of the scalar product: proof of Lemmas 7.2, 7.4, 7.18 and 7.19
- Chapter 10. Step 3: the limits as $\Omega ^\delta \to \Omega $ (proof of Lemmas 7.5 and 7.20)
- Chapter 11. Step 4: partial Carleman estimate (proof of Lemmas 7.6 and 7.21)
- Chapter 12. Step 5: from the partial to the global Carleman estimate (proof of Lemmas 7.9–7.11)
- Chapter 13. Step 6: global Carleman estimate (proof of Lemmas 7.12, 7.14 and 7.15)
- Chapter 14. Proof of observability and controllability results
- Chapter 15. Application to some inverse source problems: proof of Theorems 2.9 and 2.11
- Chapter 16. Controllability and inverse source problems: notation and main results
- Chapter 17. Global Carleman estimates for strongly degenerate operators
- Chapter 18. Hardy-type inequalities: proof of Lemma 17.10 and applications
- Chapter 19. Global Carleman estimates in the strongly degenerate case: proof of Theorem 17.7
- Chapter 20. Proof of Theorem 17.6 (observability inequality)
- Chapter 21. Lack of null controllability when $\alpha \geq 2$: proof of Proposition 16.5
- Chapter 22. Explosion of the controllability cost as $\alpha \to 2^-$ in space dimension $1$: proof of Proposition 16.7
- Chapter 23. Some open problems
Abstract
Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics. This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic diffusion flow, and appears naturally in climatology models. Global Carleman estimates are a priori estimates in weighted Sobolev norms for solutions of linear partial differential equations subject to boundary conditions. Such estimates proved to be extremely useful for several kinds of uniformly parabolic equations and systems. This is the first work where such estimates are derived for degenerate parabolic operators in dimension higher than one. Applications to null controllability with locally distributed controls and inverse source problems are also developed in full detail. Compared to nondegenerate parabolic problems, the current context requires major technical adaptations and a frequent use of Hardy type inequalities. On the other hand, the treatment is essentially self-contained, and only calls upon standard results in Lebesgue measure theory, functional analysis and ordinary differential equations.
- [1] Bedr’Eddine Ainseba and Sebastian Aniţa, Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations (2004), No. 112, 11 pp. (electronic). MR 2108883
- [2] Bedr’Eddine Ainseba and Michel Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl. 248 (2000), no. 2, 455–474. MR 1776023, 10.1006/jmaa.2000.6921
- [3] F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ. 6 (2006), no. 2, 161–204. MR 2227693, 10.1007/s00028-006-0222-6
- [4] F. Ammar Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl. 1 (2009), no. 3, 427–457. MR 2554977, 10.7153/dea-01-24
- [5] Sebastian Aniţa and Viorel Barbu, Null controllability of nonlinear convective heat equations, ESAIM Control Optim. Calc. Var. 5 (2000), 157–173 (electronic). MR 1744610, 10.1051/cocv:2000105
- [6] Sebastian Aniţa and Daniel Tataru, Null controllability for the dissipative semilinear heat equation, Appl. Math. Optim. 46 (2002), no. 2-3, 97–105. Special issue dedicated to the memory of Jacques-Louis Lions. MR 1944754, 10.1007/s00245-002-0746-2
- [7] Jean-Pierre Aubin and Giuseppe Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 4, 595–613. MR 1093711
- [8] Jean-Pierre Aubin and Giuseppe Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1998), no. 1, 1–15. MR 1603852, 10.1080/07362999808809512
- [9] Viorel Barbu, On local controllability of Navier-Stokes equations, Adv. Differential Equations 8 (2003), no. 12, 1481–1498. MR 2029293
- [10] Martino Bardi and Paola Goatin, Invariant sets for controlled degenerate diffusions: a viscosity solutions approach, Stochastic analysis, control, optimization and applications, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 1999, pp. 191–208. MR 1702960
- [11] Lucie Baudouin and Jean-Pierre Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems 18 (2002), no. 6, 1537–1554. MR 1955903, 10.1088/0266-5611/18/6/307
- [12] K. Beauchard, Null controllability of Kolmogorov-type equations, Math. Control Signals Systems 26 (2014), no. 1, 145–176. MR 3163490, 10.1007/s00498-013-0110-x
- [13] K. Beauchard, P. Cannarsa, and R. Guglielmi, Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 67–101. MR 3141729, 10.4171/JEMS/428
- [14] K. Beauchard and E. Zuazua, Some controllability results for the 2D Kolmogorov equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 5, 1793–1815. MR 2566710, 10.1016/j.anihpc.2008.12.005
- [15] Assia Benabdallah, Yves Dermenjian, and Jérôme Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl. 336 (2007), no. 2, 865–887. MR 2352986, 10.1016/j.jmaa.2007.03.024
- [16] Assia Benabdallah, Patricia Gaitan, and Jérôme Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim. 46 (2007), no. 5, 1849–1881 (electronic). MR 2361996, 10.1137/050640047
- [17] Alain Bensoussan, Giuseppe Da Prato, Michel C. Delfour, and Sanjoy K. Mitter, Representation and control of infinite-dimensional systems. Vol. 1, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1182557
- [18] Jean-Marie Buchot and Jean-Pierre Raymond, A linearized model for boundary layer equations, Optimal control of complex structures (Oberwolfach, 2000) Internat. Ser. Numer. Math., vol. 139, Birkhäuser, Basel, 2002, pp. 31–42. MR 1901628
- [19] J.-M. Buchot and J.-P. Raymond, The linearized Crocco equation, J. Math. Fluid Mech. 8 (2006), no. 4, 510–541. MR 2286732, 10.1007/s00021-005-0186-2
- [20] Rainer Buckdahn, Shige Peng, Marc Quincampoix, and Catherine Rainer, Existence of stochastic control under state constraints, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 1, 17–22 (English, with English and French summaries). MR 1650243, 10.1016/S0764-4442(98)80096-7
- [21] M. I. Budyko, On the origin of glacial epochs, Meteor. Gidrol. 2 (1968), 3–8.
- [22] M. I. Budyko, The effect of solar radiation variations on the climate of the earth, Tellus 21 (1969), 611–619.
- [23] A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR 260 (1981), no. 2, 269–272 (Russian). MR 630135
- [24] V. R. Cabanillas, S. B. De Menezes, and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl. 110 (2001), no. 2, 245–264. MR 1846267, 10.1023/A:1017515027783
- [25] M. Campiti and G. Metafune, Ventcel’s boundary conditions and analytic semigroups, Arch. Math. (Basel) 70 (1998), no. 5, 377–390. MR 1612598, 10.1007/s000130050210
- [26] M. Campiti, G. Metafune, and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum 57 (1998), no. 1, 1–36. MR 1621852, 10.1007/PL00005959
- [27] M. Campiti and I. Rasa, Qualitative properties of a class of Fleming-Viot operators, Acta Math. Hungar. 103 (2004), no. 1-2, 55–69. MR 2047873, 10.1023/B:AMHU.0000028236.59446.da
- [28] P. Cannarsa, G. Floridia, Approximate controllability for linear degenerate parabolic problems with bilinear control, Evolution Equations and Materials with Memory, Casa Editrice Università La Sapienza, Roma 2011.
- [29] Piermarco Cannarsa, Genni Fragnelli, and Dario Rocchetti, Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media 2 (2007), no. 4, 695–715. MR 2357764, 10.3934/nhm.2007.2.695
- [30] Piermarco Cannarsa, Genni Fragnelli, and Dario Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ. 8 (2008), no. 4, 583–616. MR 2460930, 10.1007/s00028-008-0353-34
- [31] P. Cannarsa, G. Fragnelli, and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl. 320 (2006), no. 2, 804–818. MR 2225996, 10.1016/j.jmaa.2005.07.006
- [32] Piermarco Cannarsa, Fausto Gozzi, and Halil Mete Soner, A dynamic programming approach to nonlinear boundary control problems of parabolic type, J. Funct. Anal. 117 (1993), no. 1, 25–61. MR 1240261, 10.1006/jfan.1993.1122
- [33] Piermarco Cannarsa, Patrick Martinez, and Judith Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var. 10 (2004), no. 3, 381–408 (electronic). MR 2084329, 10.1051/cocv:2004010
- [34] Piermarco Cannarsa, Patrick Martinez, and Judith Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal. 3 (2004), no. 4, 607–635. MR 2106292, 10.3934/cpaa.2004.3.607
- [35] P. Cannarsa, P. Martinez, and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations 10 (2005), no. 2, 153–190. MR 2106129
- [36] P. Cannarsa, P. Martinez, and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim. 47 (2008), no. 1, 1–19. MR 2373460, 10.1137/04062062X
- [37] Piermarco Cannarsa, Partick Martinez, and Judith Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Math. Acad. Sci. Paris 347 (2009), no. 3-4, 147–152 (English, with English and French summaries). MR 2538102, 10.1016/j.crma.2008.12.011
- [38] P. Cannarsa, P. Martinez, J. Vancostenoble, Reachability and controllability cost of degenerate parabolic equations, in preparation.
- [39] Piermarco Cannarsa, Dario Rocchetti, and Judith Vancostenoble, Generation of analytic semi-groups in $L^2$ for a class of second order degenerate elliptic operators, Control Cybernet. 37 (2008), no. 4, 831–878. MR 2536479
- [40] Piermarco Cannarsa and Luz de Teresa, Controllability of 1-D coupled degenerate parabolic equations, Electron. J. Differential Equations (2009), No. 73, 21. MR 2519898
- [41] Piermarco Cannarsa and Maria Elisabetta Tessitore, Infinite-dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type, SIAM J. Control Optim. 34 (1996), no. 6, 1831–1847. MR 1416490, 10.1137/S0363012994263354
- [42] P. Cannarsa, J. Tort, and M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems 26 (2010), no. 10, 105003, 20. MR 2679467, 10.1088/0266-5611/26/10/105003
- [43] Piermarco Cannarsa, Jacques Tort, and Masahiro Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal. 91 (2012), no. 8, 1409–1425. MR 2959541, 10.1080/00036811.2011.639766
- [44] T. Carleman, Sur une problème d'unicité pour les systèmes d'équations aux derivées partielles à deux variables indépendents, Ark. Mat. Astr. Fys. 26B (1939), 1-9.
- [45] Sandra Cerrai and Philippe Clément, On a class of degenerate elliptic operators arising from Fleming-Viot processes, J. Evol. Equ. 1 (2001), no. 3, 243–276. Dedicated to Ralph S. Phillips. MR 1861222, 10.1007/PL00001370
- [46] Jean-Michel Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 35–75 (electronic). MR 1393067
- [47] Jean-Michel Coron and Andrei V. Fursikov, Global exact controllability of the $2$D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys. 4 (1996), no. 4, 429–448. MR 1470445
- [48] J.-M. Coron and S. Guerrero, Singular optimal control: a linear 1-D parabolic-hyperbolic example, Asymptot. Anal. 44 (2005), no. 3-4, 237–257. MR 2176274
- [49] Jean-Michel Coron and Emmanuel Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim. 43 (2004), no. 2, 549–569 (electronic). MR 2086173, 10.1137/S036301290342471X
- [50] R. Courant, D. Hilbert, Methods of mathematical physics, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore.
- [51] Michael G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms, J. Funct. Anal. 90 (1990), no. 2, 237–283. MR 1052335, 10.1016/0022-1236(90)90084-X
- [52] Michael G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and $B$-continuous solutions, J. Funct. Anal. 97 (1991), no. 2, 417–465. MR 1111190, 10.1016/0022-1236(91)90010-3
- [53] Michel Cristofol, Patricia Gaitan, and Hichem Ramoul, Inverse problems for a $2\times 2$ reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems 22 (2006), no. 5, 1561–1573. MR 2261254, 10.1088/0266-5611/22/5/003
- [54] Giuseppe Da Prato and Hélène Frankowska, Stochastic viability for compact sets in terms of the distance function, Dynam. Systems Appl. 10 (2001), no. 2, 177–184. MR 1843735
- [55] Giuseppe Da Prato and Hélène Frankowska, Existence, uniqueness, and regularity of the invariant measure for a class of elliptic degenerate operators, Differential Integral Equations 17 (2004), no. 7-8, 737–750. MR 2074684
- [56] Giuseppe Da Prato and Hélène Frankowska, Stochastic viability of convex sets, J. Math. Anal. Appl. 333 (2007), no. 1, 151–163. MR 2323483, 10.1016/j.jmaa.2006.08.057
- [57] E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. MR 1349825
- [58] Luz de Teresa, Approximate controllability of a semilinear heat equation in $\mathbf R^N$, SIAM J. Control Optim. 36 (1998), no. 6, 2128–2147 (electronic). MR 1638956, 10.1137/S036012997322042
- [59] Luz de Teresa and Enrique Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal. 37 (1999), no. 8, Ser. A: Theory Methods, 1059–1090. MR 1689285, 10.1016/S0362-546X(98)00085-6
- [60] Jesús Ildefonso Díaz, On the mathematical treatment of energy balance climate models, The mathematics of models for climatology and environment (Puerto de la Cruz, 1995) NATO ASI Ser. Ser. I Glob. Environ. Change, vol. 48, Springer, Berlin, 1997, pp. 217–251. MR 1635284, 10.1007/978-3-642-60603-8_6
- [61] J. I. Díaz, G. Hetzer, and L. Tello, An energy balance climate model with hysteresis, Nonlinear Anal. 64 (2006), no. 9, 2053–2074. MR 2211199, 10.1016/j.na.2005.07.038
- [62] Szymon Dolecki and David L. Russell, A general theory of observation and control, SIAM J. Control Optimization 15 (1977), no. 2, 185–220. MR 0451141
- [63] A. Doubova, E. Fernández-Cara, M. González-Burgos, and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim. 41 (2002), no. 3, 798–819. MR 1939871, 10.1137/S0363012901386465
- [64] Anna Doubova, A. Osses, and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var. 8 (2002), 621–661 (electronic). A tribute to J. L. Lions. MR 1932966, 10.1051/cocv:2002047
- [65] Sylvain Ervedoza and Enrique Zuazua, Observability of heat processes by transmutation without geometric restrictions, Math. Control Relat. Fields 1 (2011), no. 2, 177–187. MR 2833258, 10.3934/mcrf.2011.1.177
- [66] L. Escauriaza, G. Seregin, and V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal. 169 (2003), no. 2, 147–157. MR 2005639, 10.1007/s00205-003-0263-8
- [67] L. Escauriaza, G. Seregin, and V. Šverák, Backward uniqueness for the heat operator in half-space, Algebra i Analiz 15 (2003), no. 1, 201–214; English transl., St. Petersburg Math. J. 15 (2004), no. 1, 139–148. MR 1979722, 10.1090/S1061-0022-03-00806-9
- [68] S. N. Ethier, A class of degenerate diffusion processes occurring in population genetics, Comm. Pure Appl. Math. 29 (1976), no. 5, 483–493. MR 0428488
- [69] S. N. Ethier and Thomas G. Kurtz, Fleming-Viot processes in population genetics, SIAM J. Control Optim. 31 (1993), no. 2, 345–386. MR 1205982, 10.1137/0331019
- [70] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- [71] Caroline Fabre, Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 267–302 (electronic). MR 1418484
- [72] Caroline Fabre and Gilles Lebeau, Prolongement unique des solutions de l’equation de Stokes, Comm. Partial Differential Equations 21 (1996), no. 3-4, 573–596 (French, with English and French summaries). MR 1387461, 10.1080/03605309608821198
- [73] Caroline Fabre, Jean-Pierre Puel, and Enrike Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 1, 31–61. MR 1318622, 10.1017/S0308210500030742
- [74] H. O. Fattorini, Infinite-dimensional optimization and control theory, Encyclopedia of Mathematics and its Applications, vol. 62, Cambridge University Press, Cambridge, 1999. MR 1669395
- [75] H. O. Fattorini, Infinite dimensional linear control systems, North-Holland Mathematics Studies, vol. 201, Elsevier Science B.V., Amsterdam, 2005. The time optimal and norm optimal problems. MR 2158806
- [76] H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal. 43 (1971), 272–292. MR 0335014
- [77] H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math. 32 (1974/75), 45–69. MR 0510972
- [78] Angelo Favini and Atsushi Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 215, Marcel Dekker, Inc., New York, 1999. MR 1654663
- [79] William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468–519. MR 0047886
- [80] William Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1–31. MR 0063607, 10.1090/S0002-9947-1954-0063607-6
- [81] E. Fernández-Cara, Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var. 2 (1997), 87–103 (electronic). MR 1445385, 10.1051/cocv:1997104
- [82] Enrique Fernández-Cara, Manuel González-Burgos, and Luz de Teresa, On the boundary controllability of non-scalar parabolic systems, C. R. Math. Acad. Sci. Paris 347 (2009), no. 13-14, 763–766 (English, with English and French summaries). MR 2543979, 10.1016/j.crma.2009.04.020
- [83] E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9) 83 (2004), no. 12, 1501–1542 (English, with English and French summaries). MR 2103189, 10.1016/j.matpur.2004.02.010
- [84] Enrique Fernández-Cara, Sergio Guerrero, Oleg Yurievich Imanuvilov, and Jean-Pierre Puel, Remarks on exact controllability for Stokes and Navier-Stokes systems, C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 375–380 (English, with English and French summaries). MR 2057167, 10.1016/j.crma.2003.12.016
- [85] Enrique Fernández-Cara, Sergio Guerrero, Oleg Yurievich Imanuvilov, and Jean-Pierre Puel, On the controllability of the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, C. R. Math. Acad. Sci. Paris 340 (2005), no. 4, 275–280 (English, with English and French summaries). MR 2121890, 10.1016/j.crma.2004.12.013
- [86] Enrique Fernández-Cara and Enrique Zuazua, The cost of approximate controllability for heat equations: the linear case, Adv. Differential Equations 5 (2000), no. 4-6, 465–514. MR 1750109
- [87] Enrique Fernández-Cara and Enrique Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 5, 583–616 (English, with English and French summaries). MR 1791879, 10.1016/S0294-1449(00)00117-7
- [88] Simona Fornaro, Giorgio Metafune, Diego Pallara, and Jan Prüss, $L^p$-theory for some elliptic and parabolic problems with first order degeneracy at the boundary, J. Math. Pures Appl. (9) 87 (2007), no. 4, 367–393 (English, with English and French summaries). MR 2317339, 10.1016/j.matpur.2007.02.001
- [89] Avner Friedman, Stochastic differential equations and applications. Vol. 2, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Probability and Mathematical Statistics, Vol. 28. MR 0494491
- [90] A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. MR 1406566
- [91] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- [92] O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation, SIAM J. Control Optim. 46 (2007), no. 4, 1211–1238. MR 2346380, 10.1137/060664677
- [93] Manuel González-Burgos and Luz de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math. 67 (2010), no. 1, 91–113. MR 2598471, 10.4171/PM/1859
- [94] S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations 32 (2007), no. 10-12, 1813–1836. MR 2372489, 10.1080/03605300701743756
- [95] S. Guerrero, A. Mercado, and A. Osses, An inverse inequality for some transport-diffusion equation. Application to the regional approximate controllability, Asymptot. Anal. 52 (2007), no. 3-4, 243–257. MR 2339956
- [96] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, to appear.
- [97] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- [98] G. Hetzer, The number of stationary solutions for a one-dimensional Budyko-type climate model, Nonlinear Anal. Real World Appl. 2 (2001), no. 2, 259–272. MR 1822422, 10.1016/S0362-546X(00)00103-6
- [99] Lars Hörmander, Linear partial differential operators, Springer Verlag, Berlin-New York, 1976. MR 0404822
- [100] L. Hörmander, The analysis of linear partial differential operators, vol. IV, Springer-Verlag, Berlin, 1985.
- [101] O. Yu. Èmanuilov, Controllability of parabolic equations, Mat. Sb. 186 (1995), no. 6, 109–132 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 6, 879–900. MR 1349016, 10.1070/SM1995v186n06ABEH000047
- [102] O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 3 (1998), 97–131. MR 1617825, 10.1051/cocv:1998104
- [103] Oleg Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001), 39–72 (electronic). MR 1804497, 10.1051/cocv:2001103
- [104] Oleg Yu. Imanuvilov and Masahiro Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems 14 (1998), no. 5, 1229–1245. MR 1654631, 10.1088/0266-5611/14/5/009
- [105] Victor Isakov, Inverse source problems, Mathematical Surveys and Monographs, vol. 34, American Mathematical Society, Providence, RI, 1990. MR 1071181
- [106] Victor Isakov, Uniqueness and stability in multi-dimensional inverse problems, Inverse Problems 9 (1993), no. 6, 579–621. MR 1251194
- [107] Victor Isakov, Inverse problems for partial differential equations, Applied Mathematical Sciences, vol. 127, Springer-Verlag, New York, 1998. MR 1482521
- [108] E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, rd edition, Chelsea Publishing Company, New York, 1948.
- [109] Michael V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems 8 (1992), no. 4, 575–596. MR 1178231
- [110] M. V. Klibanov and A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2004. MR 2126149
- [111] I. Lasiecka and R. Triggiani, Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory, Lecture Notes in Control and Information Sciences, vol. 164, Springer-Verlag, Berlin, 1991. MR 1132440
- [112] Irena Lasiecka and Roberto Triggiani, Carleman estimates and exact boundary controllability for a system of coupled, nonconservative second-order hyperbolic equations, Partial differential equation methods in control and shape analysis (Pisa), Lecture Notes in Pure and Appl. Math., vol. 188, Dekker, New York, 1997, pp. 215–243. MR 1452894
- [113] Jérôme Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, J. Differential Equations 233 (2007), no. 2, 417–447. MR 2292514, 10.1016/j.jde.2006.10.005
- [114] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations 20 (1995), no. 1-2, 335–356 (French). MR 1312710, 10.1080/03605309508821097
- [115] N. N. Lebedev, Special functions and their applications, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR 0350075
- [116] Jingzhi Li, Masahiro Yamamoto, and Jun Zou, Conditional stability and numerical reconstruction of initial temperature, Commun. Pure Appl. Anal. 8 (2009), no. 1, 361–382. MR 2449114, 10.3934/cpaa.2009.8.361
- [117] Xun Jing Li and Jiong Min Yong, Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. MR 1312364
- [118] Xu Liu, Null controllability of a class of Newtonian filtration equations, J. Math. Anal. Appl. 342 (2008), no. 2, 1096–1106. MR 2445262, 10.1016/j.jmaa.2007.12.068
- [119] Xu Liu and Hang Gao, Controllability of a class of Newtonian filtration equations with control and state constraints, SIAM J. Control Optim. 46 (2007), no. 6, 2256–2279. MR 2369317, 10.1137/060649951
- [120] Antonio López, Xu Zhang, and Enrique Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations, J. Math. Pures Appl. (9) 79 (2000), no. 8, 741–808 (English, with English and French summaries). MR 1782102, 10.1016/S0021-7824(99)00144-0
- [121] P. Martinez, J.-P. Raymond, and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim. 42 (2003), no. 2, 709–728. MR 1982289, 10.1137/S0363012902403547
- [122] P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ. 6 (2006), no. 2, 325–362. MR 2227700, 10.1007/s00028-006-0214-6
- [123] V. G. Maz'ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, New York, 1985.
- [124] Sorin Micu and Enrique Zuazua, On the lack of null-controllability of the heat equation on the half-line, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1635–1659 (electronic). MR 1806726, 10.1090/S0002-9947-00-02665-9
- [125] S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half space, Port. Math. (N.S.) 58 (2001), no. 1, 1–24. MR 1820835
- [126] Luc Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differential Equations 204 (2004), no. 1, 202–226. MR 2076164, 10.1016/j.jde.2004.05.007
- [127] Luc Miller, On the null-controllability of the heat equation in unbounded domains, Bull. Sci. Math. 129 (2005), no. 2, 175–185. MR 2123266, 10.1016/j.bulsci.2004.04.003
- [128] Luc Miller, Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett. 12 (2005), no. 1, 37–47. MR 2122728, 10.4310/MRL.2005.v12.n1.a4
- [129] O. A. Oleĭnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Plenum Press, New York-London, 1973. Translated from the Russian by Paul C. Fife. MR 0457908
- [130] O. A. Oleinik and V. N. Samokhin, Mathematical models in boundary layer theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1697762
- [131] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756
- [132] Kim-Dang Phung, Remarques sur l’observabilité pour l’équation de Laplace, ESAIM Control Optim. Calc. Var. 9 (2003), 621–635 (electronic) (French, with English and French summaries). MR 1998718, 10.1051/cocv:2003030
- [133] Jean-Pierre Puel and Masahiro Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems 12 (1996), no. 6, 995–1002. MR 1421661, 10.1088/0266-5611/12/6/013
- [134] J.-P. Raymond and M. Vanninathan, Null controllability in a heat-solid structure model, Appl. Math. Optim. 59 (2009), no. 2, 247–273. MR 2480782, 10.1007/s00245-008-9053-x
- [135] J.-P. Raymond and M. Vanninathan, Null controllability in a fluid-solid structure model, J. Differential Equations 248 (2010), no. 7, 1826–1865. MR 2593609, 10.1016/j.jde.2009.09.015
- [136] Lionel Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line, SIAM J. Control Optim. 39 (2000), no. 2, 331–351 (electronic). MR 1788062, 10.1137/S0363012999353229
- [137] David L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Appl. Math. 52 (1973), 189–211. MR 0341256
- [138] Saburou Saitoh and Masahiro Yamamoto, Stability of Lipschitz type in determination of initial heat distribution, J. Inequal. Appl. 1 (1997), no. 1, 73–83. MR 1731742, 10.1155/S1025583497000052
- [139] Thomas I. Seidman, Exact boundary control for some evolution equations, SIAM J. Control Optim. 16 (1978), no. 6, 979–999. MR 509463, 10.1137/0316066
- [140] Thomas I. Seidman, Two results on exact boundary control of parabolic equations, Appl. Math. Optim. 11 (1984), no. 2, 145–152. MR 743923, 10.1007/BF01442174
- [141] W. D. Sellers, A climate model based on the energy balance of the earth-atmosphere system, J. Appl. Meteor. 8 (1969), 392–400.
- [142] Norio Shimakura, Partial differential operators of elliptic type, Translations of Mathematical Monographs, vol. 99, American Mathematical Society, Providence, RI, 1992. Translated and revised from the 1978 Japanese original by the author. MR 1168472
- [143] Kazuaki Taira, Angelo Favini, and Silvia Romanelli, Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions, Studia Math. 145 (2001), no. 1, 17–53. MR 1828991, 10.4064/sm145-1-2
- [144] D. Tataru, A priori estimates of Carleman’s type in domains with boundary, J. Math. Pures Appl. (9) 73 (1994), no. 4, 355–387. MR 1290492
- [145] D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl. (9) 75 (1996), no. 4, 367–408. MR 1411157
- [146] J. Tort, Determination of source terms in a degenerate parabolic equation from a locally distributed observation, C. R. Acad. Sci. Paris, submitted.
- [147] F. Tricomi, Sulle equazioni lineari alle derivate parziali di ordine di tipo misto. (Italian) Acc. Linc. Rend. 14 (1923), n. 5, 133–247.
- [148] Hans Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645
- [149] Judith Vancostenoble, Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), no. 3, 761–790. MR 2746432, 10.3934/dcdss.2011.4.761
- [150] Judith Vancostenoble, Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems, C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 801–805 (English, with English and French summaries). MR 2671164, 10.1016/j.crma.2010.06.001
- [151] J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, submitted.
- [152] J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal. 254 (2008), no. 7, 1864–1902. MR 2397877, 10.1016/j.jfa.2007.12.015
- [153] J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal. 41 (2009), no. 4, 1508–1532. MR 2556573, 10.1137/080731396
- [154] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- [155] Masahiro Yamamoto and Jun Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems 17 (2001), no. 4, 1181–1202. Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000). MR 1861508, 10.1088/0266-5611/17/4/340
- [156] Jerzy Zabczyk, Mathematical control theory: an introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1193920
- [157] Xu Zhang, A remark on null exact controllability of the heat equation, SIAM J. Control Optim. 40 (2001), no. 1, 39–53 (electronic). MR 1855304, 10.1137/S0363012900371691
- [158] Enrique Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities, Control Cybernet. 28 (1999), no. 3, 665–683. Recent advances in control of PDEs. MR 1782020
- [159] Enrique Zuazua, Controllability and observability of partial differential equations: some results and open problems, Handbook of differential equations: evolutionary equations. Vol. III, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007, pp. 527–621. MR 2549374, 10.1016/S1874-5717(07)80010-7
- [160] Claude Zuily, Uniqueness and nonuniqueness in the Cauchy problem, Progress in Mathematics, vol. 33, Birkhäuser Boston, Inc., Boston, MA, 1983. MR 701544