
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
GLOBAL CARLEMAN ESTIMATES FOR DEGENERATE PARABOLIC OPERATORS WITH APPLICATIONS
About this Title
P. Cannarsa, Dipartimento di Matematica, Università di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 00133 Roma, Italy, P. Martinez, Institut de Mathématiques de Toulouse, U.M.R. C.N.R.S. 5219, Université Paul Sabatier Toulouse III, 118 route de Narbonne, 31 062 Toulouse Cedex 4, France and J. Vancostenoble, Institut de Mathématiques de Toulouse, U.M.R. C.N.R.S. 5219, Université Paul Sabatier Toulouse III, 118 route de Narbonne, 31 062 Toulouse Cedex 4, France
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 239, Number 1133
ISBNs: 978-1-4704-1496-2 (print); 978-1-4704-2749-8 (online)
DOI: https://doi.org/10.1090/memo/1133
Published electronically: June 30, 2015
Keywords: Degenerate parabolic equations,
controllability,
inverse problems,
Carleman estimates,
Hardy type inequalities
MSC: Primary 35K65, 35R30, 93B05, 93B07, 93C20, 26D10
Table of Contents
Chapters
- 1. Introduction
1. Weakly degenerate operators with Dirichlet boundary conditions
- 2. Controllability and inverse source problems: Notation and main results
- 3. Global Carleman estimates for weakly degenerate operators
- 4. Some Hardy-type inequalities (proof of Lemma )
- 5. Asymptotic properties of elements of $H^2 (\Omega ) \cap H^1 _{A,0}(\Omega )$
- 6. Proof of the topological lemma
- 7. Outlines of the proof of Theorems and
- 8. Step 1: computation of the scalar product on subdomains (proof of Lemmas and )
- 9. Step 2: a first estimate of the scalar product: proof of Lemmas , , and
- 10. Step 3: the limits as $\Omega ^\delta \to \Omega$ (proof of Lemmas and )
- 11. Step 4: partial Carleman estimate (proof of Lemmas and )
- 12. Step 5: from the partial to the global Carleman estimate (proof of Lemmas –)
- 13. Step 6: global Carleman estimate (proof of Lemmas , and )
- 14. Proof of observability and controllability results
- 15. Application to some inverse source problems: proof of Theorems and
2. Strongly degenerate operators with Neumann boundary conditions
- 16. Controllability and inverse source problems: notation and main results
- 17. Global Carleman estimates for strongly degenerate operators
- 18. Hardy-type inequalities: proof of Lemma and applications
- 19. Global Carleman estimates in the strongly degenerate case: proof of Theorem
- 20. Proof of Theorem (observability inequality)
- 21. Lack of null controllability when $\alpha \geq 2$: proof of Proposition
- 22. Explosion of the controllability cost as $\alpha \to 2^-$ in space dimension $1$: proof of Proposition
3. Some open problems
- 23. Some open problems
Abstract
Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics.
This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic diffusion flow, and appears naturally in climatology models.
Global Carleman estimates are a priori estimates in weighted Sobolev norms for solutions of linear partial differential equations subject to boundary conditions. Such estimates proved to be extremely useful for several kinds of uniformly parabolic equations and systems. This is the first work where such estimates are derived for degenerate parabolic operators in dimension higher than one. Applications to null controllability with locally distributed controls and inverse source problems are also developed in full detail.
Compared to nondegenerate parabolic problems, the current context requires major technical adaptations and a frequent use of Hardy type inequalities. On the other hand, the treatment is essentially self-contained, and only calls upon standard results in Lebesgue measure theory, functional analysis and ordinary differential equations.
- Bedr’Eddine Ainseba and Sebastian Aniţa, Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations (2004), No. 112, 11. MR 2108883
- Bedr’Eddine Ainseba and Michel Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl. 248 (2000), no. 2, 455–474. MR 1776023, DOI 10.1006/jmaa.2000.6921
- F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ. 6 (2006), no. 2, 161–204. MR 2227693, DOI 10.1007/s00028-006-0222-6
- F. Ammar Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl. 1 (2009), no. 3, 427–457. MR 2554977, DOI 10.7153/dea-01-24
- Sebastian Aniţa and Viorel Barbu, Null controllability of nonlinear convective heat equations, ESAIM Control Optim. Calc. Var. 5 (2000), 157–173. MR 1744610, DOI 10.1051/cocv:2000105
- Sebastian Aniţa and Daniel Tataru, Null controllability for the dissipative semilinear heat equation, Appl. Math. Optim. 46 (2002), no. 2-3, 97–105. Special issue dedicated to the memory of Jacques-Louis Lions. MR 1944754, DOI 10.1007/s00245-002-0746-2
- Jean-Pierre Aubin and Giuseppe Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 4, 595–613. MR 1093711
- Jean-Pierre Aubin and Giuseppe Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1998), no. 1, 1–15. MR 1603852, DOI 10.1080/07362999808809512
- Viorel Barbu, On local controllability of Navier-Stokes equations, Adv. Differential Equations 8 (2003), no. 12, 1481–1498. MR 2029293
- Martino Bardi and Paola Goatin, Invariant sets for controlled degenerate diffusions: a viscosity solutions approach, Stochastic analysis, control, optimization and applications, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 1999, pp. 191–208. MR 1702960
- Lucie Baudouin and Jean-Pierre Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems 18 (2002), no. 6, 1537–1554. MR 1955903, DOI 10.1088/0266-5611/18/6/307
- K. Beauchard, Null controllability of Kolmogorov-type equations, Math. Control Signals Systems 26 (2014), no. 1, 145–176. MR 3163490, DOI 10.1007/s00498-013-0110-x
- K. Beauchard, P. Cannarsa, and R. Guglielmi, Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 67–101. MR 3141729, DOI 10.4171/JEMS/428
- K. Beauchard and E. Zuazua, Some controllability results for the 2D Kolmogorov equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 5, 1793–1815. MR 2566710, DOI 10.1016/j.anihpc.2008.12.005
- Assia Benabdallah, Yves Dermenjian, and Jérôme Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl. 336 (2007), no. 2, 865–887. MR 2352986, DOI 10.1016/j.jmaa.2007.03.024
- Assia Benabdallah, Patricia Gaitan, and Jérôme Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim. 46 (2007), no. 5, 1849–1881. MR 2361996, DOI 10.1137/050640047
- Alain Bensoussan, Giuseppe Da Prato, Michel C. Delfour, and Sanjoy K. Mitter, Representation and control of infinite-dimensional systems. Vol. 1, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1182557
- Jean-Marie Buchot and Jean-Pierre Raymond, A linearized model for boundary layer equations, Optimal control of complex structures (Oberwolfach, 2000) Internat. Ser. Numer. Math., vol. 139, Birkhäuser, Basel, 2002, pp. 31–42. MR 1901628
- J.-M. Buchot and J.-P. Raymond, The linearized Crocco equation, J. Math. Fluid Mech. 8 (2006), no. 4, 510–541. MR 2286732, DOI 10.1007/s00021-005-0186-2
- Rainer Buckdahn, Shige Peng, Marc Quincampoix, and Catherine Rainer, Existence of stochastic control under state constraints, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 1, 17–22 (English, with English and French summaries). MR 1650243, DOI 10.1016/S0764-4442(98)80096-7
- M. I. Budyko, On the origin of glacial epochs, Meteor. Gidrol. 2 (1968), 3–8.
- M. I. Budyko, The effect of solar radiation variations on the climate of the earth, Tellus 21 (1969), 611–619.
- A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR 260 (1981), no. 2, 269–272 (Russian). MR 630135
- V. R. Cabanillas, S. B. De Menezes, and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl. 110 (2001), no. 2, 245–264. MR 1846267, DOI 10.1023/A:1017515027783
- M. Campiti and G. Metafune, Ventcel’s boundary conditions and analytic semigroups, Arch. Math. (Basel) 70 (1998), no. 5, 377–390. MR 1612598, DOI 10.1007/s000130050210
- M. Campiti, G. Metafune, and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum 57 (1998), no. 1, 1–36. MR 1621852, DOI 10.1007/PL00005959
- M. Campiti and I. Rasa, Qualitative properties of a class of Fleming-Viot operators, Acta Math. Hungar. 103 (2004), no. 1-2, 55–69. MR 2047873, DOI 10.1023/B:AMHU.0000028236.59446.da
- P. Cannarsa, G. Floridia, Approximate controllability for linear degenerate parabolic problems with bilinear control, Evolution Equations and Materials with Memory, Casa Editrice Università La Sapienza, Roma 2011.
- Piermarco Cannarsa, Genni Fragnelli, and Dario Rocchetti, Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media 2 (2007), no. 4, 695–715. MR 2357764, DOI 10.3934/nhm.2007.2.695
- Piermarco Cannarsa, Genni Fragnelli, and Dario Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ. 8 (2008), no. 4, 583–616. MR 2460930, DOI 10.1007/s00028-008-0353-34
- P. Cannarsa, G. Fragnelli, and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl. 320 (2006), no. 2, 804–818. MR 2225996, DOI 10.1016/j.jmaa.2005.07.006
- Piermarco Cannarsa, Fausto Gozzi, and Halil Mete Soner, A dynamic programming approach to nonlinear boundary control problems of parabolic type, J. Funct. Anal. 117 (1993), no. 1, 25–61. MR 1240261, DOI 10.1006/jfan.1993.1122
- Piermarco Cannarsa, Patrick Martinez, and Judith Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region, ESAIM Control Optim. Calc. Var. 10 (2004), no. 3, 381–408. MR 2084329, DOI 10.1051/cocv:2004010
- Piermarco Cannarsa, Patrick Martinez, and Judith Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal. 3 (2004), no. 4, 607–635. MR 2106292, DOI 10.3934/cpaa.2004.3.607
- P. Cannarsa, P. Martinez, and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations 10 (2005), no. 2, 153–190. MR 2106129
- P. Cannarsa, P. Martinez, and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim. 47 (2008), no. 1, 1–19. MR 2373460, DOI 10.1137/04062062X
- Piermarco Cannarsa, Partick Martinez, and Judith Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Math. Acad. Sci. Paris 347 (2009), no. 3-4, 147–152 (English, with English and French summaries). MR 2538102, DOI 10.1016/j.crma.2008.12.011
- P. Cannarsa, P. Martinez, J. Vancostenoble, Reachability and controllability cost of degenerate parabolic equations, in preparation.
- Piermarco Cannarsa, Dario Rocchetti, and Judith Vancostenoble, Generation of analytic semi-groups in $L^2$ for a class of second order degenerate elliptic operators, Control Cybernet. 37 (2008), no. 4, 831–878. MR 2536479
- Piermarco Cannarsa and Luz de Teresa, Controllability of 1-D coupled degenerate parabolic equations, Electron. J. Differential Equations (2009), No. 73, 21. MR 2519898
- Piermarco Cannarsa and Maria Elisabetta Tessitore, Infinite-dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type, SIAM J. Control Optim. 34 (1996), no. 6, 1831–1847. MR 1416490, DOI 10.1137/S0363012994263354
- P. Cannarsa, J. Tort, and M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems 26 (2010), no. 10, 105003, 20. MR 2679467, DOI 10.1088/0266-5611/26/10/105003
- Piermarco Cannarsa, Jacques Tort, and Masahiro Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal. 91 (2012), no. 8, 1409–1425. MR 2959541, DOI 10.1080/00036811.2011.639766
- T. Carleman, Sur une problème d’unicité pour les systèmes d’équations aux derivées partielles à deux variables indépendents, Ark. Mat. Astr. Fys. 26B (1939), 1-9.
- Sandra Cerrai and Philippe Clément, On a class of degenerate elliptic operators arising from Fleming-Viot processes, J. Evol. Equ. 1 (2001), no. 3, 243–276. Dedicated to Ralph S. Phillips. MR 1861222, DOI 10.1007/PL00001370
- Jean-Michel Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 35–75. MR 1393067, DOI 10.1051/cocv:1996102
- Jean-Michel Coron and Andrei V. Fursikov, Global exact controllability of the $2$D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys. 4 (1996), no. 4, 429–448. MR 1470445
- J.-M. Coron and S. Guerrero, Singular optimal control: a linear 1-D parabolic-hyperbolic example, Asymptot. Anal. 44 (2005), no. 3-4, 237–257. MR 2176274
- Jean-Michel Coron and Emmanuel Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim. 43 (2004), no. 2, 549–569. MR 2086173, DOI 10.1137/S036301290342471X
- R. Courant, D. Hilbert, Methods of mathematical physics, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore.
- Michael G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms, J. Funct. Anal. 90 (1990), no. 2, 237–283. MR 1052335, DOI 10.1016/0022-1236(90)90084-X
- Michael G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and $B$-continuous solutions, J. Funct. Anal. 97 (1991), no. 2, 417–465. MR 1111190, DOI 10.1016/0022-1236(91)90010-3
- Michel Cristofol, Patricia Gaitan, and Hichem Ramoul, Inverse problems for a $2\times 2$ reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems 22 (2006), no. 5, 1561–1573. MR 2261254, DOI 10.1088/0266-5611/22/5/003
- Giuseppe Da Prato and Hélène Frankowska, Stochastic viability for compact sets in terms of the distance function, Dynam. Systems Appl. 10 (2001), no. 2, 177–184. MR 1843735
- Giuseppe Da Prato and Hélène Frankowska, Existence, uniqueness, and regularity of the invariant measure for a class of elliptic degenerate operators, Differential Integral Equations 17 (2004), no. 7-8, 737–750. MR 2074684
- Giuseppe Da Prato and Hélène Frankowska, Stochastic viability of convex sets, J. Math. Anal. Appl. 333 (2007), no. 1, 151–163. MR 2323483, DOI 10.1016/j.jmaa.2006.08.057
- E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. MR 1349825
- Luz de Teresa, Approximate controllability of a semilinear heat equation in $\mathbf R^N$, SIAM J. Control Optim. 36 (1998), no. 6, 2128–2147. MR 1638956, DOI 10.1137/S036012997322042
- Luz de Teresa and Enrique Zuazua, Approximate controllability of a semilinear heat equation in unbounded domains, Nonlinear Anal. 37 (1999), no. 8, Ser. A: Theory Methods, 1059–1090. MR 1689285, DOI 10.1016/S0362-546X(98)00085-6
- Jesús Ildefonso Díaz, On the mathematical treatment of energy balance climate models, The mathematics of models for climatology and environment (Puerto de la Cruz, 1995) NATO ASI Ser. Ser. I Glob. Environ. Change, vol. 48, Springer, Berlin, 1997, pp. 217–251. MR 1635284, DOI 10.1007/978-3-642-60603-8_{6}
- J. I. Díaz, G. Hetzer, and L. Tello, An energy balance climate model with hysteresis, Nonlinear Anal. 64 (2006), no. 9, 2053–2074. MR 2211199, DOI 10.1016/j.na.2005.07.038
- Szymon Dolecki and David L. Russell, A general theory of observation and control, SIAM J. Control Optim. 15 (1977), no. 2, 185–220. MR 451141, DOI 10.1137/0315015
- A. Doubova, E. Fernández-Cara, M. González-Burgos, and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim. 41 (2002), no. 3, 798–819. MR 1939871, DOI 10.1137/S0363012901386465
- Anna Doubova, A. Osses, and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var. 8 (2002), 621–661. A tribute to J. L. Lions. MR 1932966, DOI 10.1051/cocv:2002047
- Sylvain Ervedoza and Enrique Zuazua, Observability of heat processes by transmutation without geometric restrictions, Math. Control Relat. Fields 1 (2011), no. 2, 177–187. MR 2833258, DOI 10.3934/mcrf.2011.1.177
- L. Escauriaza, G. Seregin, and V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal. 169 (2003), no. 2, 147–157. MR 2005639, DOI 10.1007/s00205-003-0263-8
- L. Escauriaza, G. Seregin, and V. Šverák, Backward uniqueness for the heat operator in half-space, Algebra i Analiz 15 (2003), no. 1, 201–214; English transl., St. Petersburg Math. J. 15 (2004), no. 1, 139–148. MR 1979722, DOI 10.1090/S1061-0022-03-00806-9
- S. N. Ethier, A class of degenerate diffusion processes occurring in population genetics, Comm. Pure Appl. Math. 29 (1976), no. 5, 483–493. MR 428488, DOI 10.1002/cpa.3160290503
- S. N. Ethier and Thomas G. Kurtz, Fleming-Viot processes in population genetics, SIAM J. Control Optim. 31 (1993), no. 2, 345–386. MR 1205982, DOI 10.1137/0331019
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Caroline Fabre, Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems, ESAIM Contrôle Optim. Calc. Var. 1 (1995/96), 267–302. MR 1418484, DOI 10.1051/cocv:1996109
- Caroline Fabre and Gilles Lebeau, Prolongement unique des solutions de l’equation de Stokes, Comm. Partial Differential Equations 21 (1996), no. 3-4, 573–596 (French, with English and French summaries). MR 1387461, DOI 10.1080/03605309608821198
- Caroline Fabre, Jean-Pierre Puel, and Enrike Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 1, 31–61. MR 1318622, DOI 10.1017/S0308210500030742
- H. O. Fattorini, Infinite-dimensional optimization and control theory, Encyclopedia of Mathematics and its Applications, vol. 62, Cambridge University Press, Cambridge, 1999. MR 1669395
- H. O. Fattorini, Infinite dimensional linear control systems, North-Holland Mathematics Studies, vol. 201, Elsevier Science B.V., Amsterdam, 2005. The time optimal and norm optimal problems. MR 2158806
- H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal. 43 (1971), 272–292. MR 335014, DOI 10.1007/BF00250466
- H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math. 32 (1974/75), 45–69. MR 510972, DOI 10.1090/S0033-569X-1974-0510972-6
- Angelo Favini and Atsushi Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 215, Marcel Dekker, Inc., New York, 1999. MR 1654663
- William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468–519. MR 47886, DOI 10.2307/1969644
- William Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1–31. MR 63607, DOI 10.1090/S0002-9947-1954-0063607-6
- E. Fernández-Cara, Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var. 2 (1997), 87–103. MR 1445385, DOI 10.1051/cocv:1997104
- Enrique Fernández-Cara, Manuel González-Burgos, and Luz de Teresa, On the boundary controllability of non-scalar parabolic systems, C. R. Math. Acad. Sci. Paris 347 (2009), no. 13-14, 763–766 (English, with English and French summaries). MR 2543979, DOI 10.1016/j.crma.2009.04.020
- E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9) 83 (2004), no. 12, 1501–1542 (English, with English and French summaries). MR 2103189, DOI 10.1016/j.matpur.2004.02.010
- Enrique Fernández-Cara, Sergio Guerrero, Oleg Yurievich Imanuvilov, and Jean-Pierre Puel, Remarks on exact controllability for Stokes and Navier-Stokes systems, C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 375–380 (English, with English and French summaries). MR 2057167, DOI 10.1016/j.crma.2003.12.016
- Enrique Fernández-Cara, Sergio Guerrero, Oleg Yurievich Imanuvilov, and Jean-Pierre Puel, On the controllability of the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, C. R. Math. Acad. Sci. Paris 340 (2005), no. 4, 275–280 (English, with English and French summaries). MR 2121890, DOI 10.1016/j.crma.2004.12.013
- Enrique Fernández-Cara and Enrique Zuazua, The cost of approximate controllability for heat equations: the linear case, Adv. Differential Equations 5 (2000), no. 4-6, 465–514. MR 1750109
- Enrique Fernández-Cara and Enrique Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 5, 583–616 (English, with English and French summaries). MR 1791879, DOI 10.1016/S0294-1449(00)00117-7
- Simona Fornaro, Giorgio Metafune, Diego Pallara, and Jan Prüss, $L^p$-theory for some elliptic and parabolic problems with first order degeneracy at the boundary, J. Math. Pures Appl. (9) 87 (2007), no. 4, 367–393 (English, with English and French summaries). MR 2317339, DOI 10.1016/j.matpur.2007.02.001
- Avner Friedman, Stochastic differential equations and applications. Vol. 2, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Probability and Mathematical Statistics, Vol. 28. MR 0494491
- A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. MR 1406566
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation, SIAM J. Control Optim. 46 (2007), no. 4, 1211–1238. MR 2346380, DOI 10.1137/060664677
- Manuel González-Burgos and Luz de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math. 67 (2010), no. 1, 91–113. MR 2598471, DOI 10.4171/PM/1859
- S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations 32 (2007), no. 10-12, 1813–1836. MR 2372489, DOI 10.1080/03605300701743756
- S. Guerrero, A. Mercado, and A. Osses, An inverse inequality for some transport-diffusion equation. Application to the regional approximate controllability, Asymptot. Anal. 52 (2007), no. 3-4, 243–257. MR 2339956
- M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, to appear.
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- G. Hetzer, The number of stationary solutions for a one-dimensional Budyko-type climate model, Nonlinear Anal. Real World Appl. 2 (2001), no. 2, 259–272. MR 1822422, DOI 10.1016/S0362-546X(00)00103-6
- Lars Hörmander, Linear partial differential operators, Springer Verlag, Berlin-New York, 1976. MR 0404822
- L. Hörmander, The analysis of linear partial differential operators, vol. IV, Springer-Verlag, Berlin, 1985.
- O. Yu. Èmanuilov, Controllability of parabolic equations, Mat. Sb. 186 (1995), no. 6, 109–132 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 6, 879–900. MR 1349016, DOI 10.1070/SM1995v186n06ABEH000047
- O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 3 (1998), 97–131. MR 1617825, DOI 10.1051/cocv:1998104
- Oleg Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001), 39–72. MR 1804497, DOI 10.1051/cocv:2001103
- Oleg Yu. Imanuvilov and Masahiro Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems 14 (1998), no. 5, 1229–1245. MR 1654631, DOI 10.1088/0266-5611/14/5/009
- Victor Isakov, Inverse source problems, Mathematical Surveys and Monographs, vol. 34, American Mathematical Society, Providence, RI, 1990. MR 1071181
- Victor Isakov, Uniqueness and stability in multi-dimensional inverse problems, Inverse Problems 9 (1993), no. 6, 579–621. MR 1251194
- Victor Isakov, Inverse problems for partial differential equations, Applied Mathematical Sciences, vol. 127, Springer-Verlag, New York, 1998. MR 1482521
- E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, $3$rd edition, Chelsea Publishing Company, New York, 1948.
- Michael V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems 8 (1992), no. 4, 575–596. MR 1178231
- M. V. Klibanov and A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2004. MR 2126149
- I. Lasiecka and R. Triggiani, Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory, Lecture Notes in Control and Information Sciences, vol. 164, Springer-Verlag, Berlin, 1991. MR 1132440
- Irena Lasiecka and Roberto Triggiani, Carleman estimates and exact boundary controllability for a system of coupled, nonconservative second-order hyperbolic equations, Partial differential equation methods in control and shape analysis (Pisa), Lecture Notes in Pure and Appl. Math., vol. 188, Dekker, New York, 1997, pp. 215–243. MR 1452894
- Jérôme Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, J. Differential Equations 233 (2007), no. 2, 417–447. MR 2292514, DOI 10.1016/j.jde.2006.10.005
- G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations 20 (1995), no. 1-2, 335–356 (French). MR 1312710, DOI 10.1080/03605309508821097
- N. N. Lebedev, Special functions and their applications, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR 0350075
- Jingzhi Li, Masahiro Yamamoto, and Jun Zou, Conditional stability and numerical reconstruction of initial temperature, Commun. Pure Appl. Anal. 8 (2009), no. 1, 361–382. MR 2449114, DOI 10.3934/cpaa.2009.8.361
- Xun Jing Li and Jiong Min Yong, Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. MR 1312364
- Xu Liu, Null controllability of a class of Newtonian filtration equations, J. Math. Anal. Appl. 342 (2008), no. 2, 1096–1106. MR 2445262, DOI 10.1016/j.jmaa.2007.12.068
- Xu Liu and Hang Gao, Controllability of a class of Newtonian filtration equations with control and state constraints, SIAM J. Control Optim. 46 (2007), no. 6, 2256–2279. MR 2369317, DOI 10.1137/060649951
- Antonio López, Xu Zhang, and Enrique Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations, J. Math. Pures Appl. (9) 79 (2000), no. 8, 741–808 (English, with English and French summaries). MR 1782102, DOI 10.1016/S0021-7824(99)00144-0
- P. Martinez, J.-P. Raymond, and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim. 42 (2003), no. 2, 709–728. MR 1982289, DOI 10.1137/S0363012902403547
- P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ. 6 (2006), no. 2, 325–362. MR 2227700, DOI 10.1007/s00028-006-0214-6
- V. G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, New York, 1985.
- Sorin Micu and Enrique Zuazua, On the lack of null-controllability of the heat equation on the half-line, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1635–1659. MR 1806726, DOI 10.1090/S0002-9947-00-02665-9
- S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half space, Port. Math. (N.S.) 58 (2001), no. 1, 1–24. MR 1820835
- Luc Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differential Equations 204 (2004), no. 1, 202–226. MR 2076164, DOI 10.1016/j.jde.2004.05.007
- Luc Miller, On the null-controllability of the heat equation in unbounded domains, Bull. Sci. Math. 129 (2005), no. 2, 175–185. MR 2123266, DOI 10.1016/j.bulsci.2004.04.003
- Luc Miller, Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett. 12 (2005), no. 1, 37–47. MR 2122728, DOI 10.4310/MRL.2005.v12.n1.a4
- O. A. Oleĭnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Plenum Press, New York-London, 1973. Translated from the Russian by Paul C. Fife. MR 0457908
- O. A. Oleinik and V. N. Samokhin, Mathematical models in boundary layer theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1697762
- B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756
- Kim-Dang Phung, Remarques sur l’observabilité pour l’équation de Laplace, ESAIM Control Optim. Calc. Var. 9 (2003), 621–635 (French, with English and French summaries). MR 1998718, DOI 10.1051/cocv:2003030
- Jean-Pierre Puel and Masahiro Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems 12 (1996), no. 6, 995–1002. MR 1421661, DOI 10.1088/0266-5611/12/6/013
- J.-P. Raymond and M. Vanninathan, Null controllability in a heat-solid structure model, Appl. Math. Optim. 59 (2009), no. 2, 247–273. MR 2480782, DOI 10.1007/s00245-008-9053-x
- J.-P. Raymond and M. Vanninathan, Null controllability in a fluid-solid structure model, J. Differential Equations 248 (2010), no. 7, 1826–1865. MR 2593609, DOI 10.1016/j.jde.2009.09.015
- Lionel Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line, SIAM J. Control Optim. 39 (2000), no. 2, 331–351. MR 1788062, DOI 10.1137/S0363012999353229
- David L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Appl. Math. 52 (1973), 189–211. MR 341256, DOI 10.1002/sapm1973523189
- Saburou Saitoh and Masahiro Yamamoto, Stability of Lipschitz type in determination of initial heat distribution, J. Inequal. Appl. 1 (1997), no. 1, 73–83. MR 1731742, DOI 10.1155/S1025583497000052
- Thomas I. Seidman, Exact boundary control for some evolution equations, SIAM J. Control Optim. 16 (1978), no. 6, 979–999. MR 509463, DOI 10.1137/0316066
- Thomas I. Seidman, Two results on exact boundary control of parabolic equations, Appl. Math. Optim. 11 (1984), no. 2, 145–152. MR 743923, DOI 10.1007/BF01442174
- W. D. Sellers, A climate model based on the energy balance of the earth-atmosphere system, J. Appl. Meteor. 8 (1969), 392–400.
- Norio Shimakura, Partial differential operators of elliptic type, Translations of Mathematical Monographs, vol. 99, American Mathematical Society, Providence, RI, 1992. Translated and revised from the 1978 Japanese original by the author. MR 1168472
- Kazuaki Taira, Angelo Favini, and Silvia Romanelli, Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions, Studia Math. 145 (2001), no. 1, 17–53. MR 1828991, DOI 10.4064/sm145-1-2
- D. Tataru, A priori estimates of Carleman’s type in domains with boundary, J. Math. Pures Appl. (9) 73 (1994), no. 4, 355–387. MR 1290492
- D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl. (9) 75 (1996), no. 4, 367–408. MR 1411157
- J. Tort, Determination of source terms in a degenerate parabolic equation from a locally distributed observation, C. R. Acad. Sci. Paris, submitted.
- F. Tricomi, Sulle equazioni lineari alle derivate parziali di $2^0$ ordine di tipo misto. (Italian) Acc. Linc. Rend. 14 (1923), n. 5, 133–247.
- Hans Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645
- Judith Vancostenoble, Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), no. 3, 761–790. MR 2746432, DOI 10.3934/dcdss.2011.4.761
- Judith Vancostenoble, Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems, C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 801–805 (English, with English and French summaries). MR 2671164, DOI 10.1016/j.crma.2010.06.001
- J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, submitted.
- J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal. 254 (2008), no. 7, 1864–1902. MR 2397877, DOI 10.1016/j.jfa.2007.12.015
- J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal. 41 (2009), no. 4, 1508–1532. MR 2556573, DOI 10.1137/080731396
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- Masahiro Yamamoto and Jun Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems 17 (2001), no. 4, 1181–1202. Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000). MR 1861508, DOI 10.1088/0266-5611/17/4/340
- Jerzy Zabczyk, Mathematical control theory: an introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1193920
- Xu Zhang, A remark on null exact controllability of the heat equation, SIAM J. Control Optim. 40 (2001), no. 1, 39–53. MR 1855304, DOI 10.1137/S0363012900371691
- Enrique Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities, Control Cybernet. 28 (1999), no. 3, 665–683. Recent advances in control of PDEs. MR 1782020
- Enrique Zuazua, Controllability and observability of partial differential equations: some results and open problems, Handbook of differential equations: evolutionary equations. Vol. III, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007, pp. 527–621. MR 2549374, DOI 10.1016/S1874-5717(07)80010-7
- Claude Zuily, Uniqueness and nonuniqueness in the Cauchy problem, Progress in Mathematics, vol. 33, Birkhäuser Boston, Inc., Boston, MA, 1983. MR 701544