Diagonalizing quadratic bosonic operators by non-autonomous flow equation
About this Title
Volker Bach and Jean-Bernard Bru
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 240, Number 1138
ISBNs: 978-1-4704-1705-5 (print); 978-1-4704-2828-0 (online)
DOI: http://dx.doi.org/10.1090/memo/1138
Published electronically: November 13, 2015
Keywords:Quadratic operators, flow equations for operators, evolution equations,
Brocket–Wegner flow, double bracket flow
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Diagonalization of Quadratic Boson Hamiltonians
- Chapter 3. Brocket–Wegner Flow for Quadratic Boson Operators
- Chapter 4. Illustration of the Method
- Chapter 5. Technical Proofs on the One–Particle Hilbert Space
- Chapter 6. Technical Proofs on the Boson Fock Space
- Chapter 7. Appendix
Abstract
We study a non–autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. We specify assumptions that ensure the global existence of its solutions and allow us to derive its asymptotics at temporal infinity. We demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocket–Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non–linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.
- [1] N. Bogolubov, On the theory of superfluidity, Acad. Sci. USSR. J. Phys. 11 (1947), 23–32. MR 0022177
- [2] Valentin A. Zagrebnov and Jean-Bernard Bru, The Bogoliubov model of weakly imperfect Bose gas, Phys. Rep. 350 (2001), no. 5-6, 291–434. MR 1853206, 10.1016/S0370-1573(00)00132-0
- [3] K. O. Friedrichs, Mathematical aspects of the quantum theory of fields, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1953. MR 0056468
- [4] F. A. Berezin, The method of second quantization, Translated from the Russian by Nobumichi Mugibayashi and Alan Jeffrey. Pure and Applied Physics, Vol. 24, Academic Press, New York-London, 1966. MR 0208930
- [5] Y. Kato and N. Mugibayashi, Friedrichs-Berezin Transformation and Its Application to the Spectral Analysis of the BCS Reduced Hamiltonian, Progress of Theoretical Physics 38(4), 813âĂŞ831 (1967).
- [6] R. W. Brockett, Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems, Linear Algebra Appl. 146 (1991), 79–91. MR 1083465, 10.1016/0024-3795(91)90021-N
- [7] Franz J. Wegner, Flow equations for Hamiltonians, Phys. Rep. 348 (2001), no. 1-2, 77–89. Renormalization group theory in the new millennium, II. MR 1849062, 10.1016/S0370-1573(00)00136-8
- [8] Volker Bach and Jean-Bernard Bru, Rigorous foundations of the Brockett-Wegner flow for operators, J. Evol. Equ. 10 (2010), no. 2, 425–442. MR 2643803, 10.1007/s00028-010-0055-1
- [9] Tosio Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208–234. MR 0058861
- [10] Tosio Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 241–258. MR 0279626
- [11] Tosio Kato, Linear evolution equations of “hyperbolic” type. II, J. Math. Soc. Japan 25 (1973), 648–666. MR 0326483
- [12] Tosio Kato, Abstract evolution equations, linear and quasilinear, revisited, Functional analysis and related topics, 1991 (Kyoto), Lecture Notes in Math., vol. 1540, Springer, Berlin, 1993, pp. 103–125. MR 1225814, 10.1007/BFb0085477
- [13] Oliver Caps, Evolution equations in scales of Banach spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 140, B. G. Teubner, Stuttgart, 2002. MR 2352809
- [14] Roland Schnaubelt, Asymptotic behaviour of parabolic nonautonomous evolution equations, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 401–472. MR 2108962, 10.1007/978-3-540-44653-8_5
- [15] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
- [16] Hagen Neidhardt and Valentin A. Zagrebnov, Linear non-autonomous Cauchy problems and evolution semigroups, Adv. Differential Equations 14 (2009), no. 3-4, 289–340. MR 2493564
- [17] Susumu Ishii, An approach to linear hyperbolic evolution equations by the Yosida approximation method, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), no. 1, 17–20. MR 485479
- [18] Susumu Ishii, Linear evolution equations $du/dt+A(t)u=0$ : a case where $A(t)$ is strongly uniform-measurable, J. Math. Soc. Japan 34 (1982), no. 3, 413–424. MR 659612, 10.2969/jmsj/03430413
- [19] Laurent Bruneau and Jan Dereziński, Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations, J. Math. Phys. 48 (2007), no. 2, 022101, 24. MR 2297950, 10.1063/1.2435597
- [20] David Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149–167. MR 0137504, 10.1090/S0002-9947-1962-0137504-6
- [21] S. N. M. Ruijsenaars, On Bogoliubov transformations for systems of relativistic charged particles, J. Mathematical Phys. 18 (1977), no. 3, 517–526. MR 0452323
- [22] S. N. M. Ruijsenaars, On Bogoliubov transformations. II. The general case, Ann. Physics 116 (1978), no. 1, 105–134. MR 516713, 10.1016/0003-4916(78)90006-4
- [23] Harald Grosse, Models in statistical physics and quantum field theory, Trieste Notes in Physics, Springer-Verlag, Berlin, 1988. MR 961843
- [24] S. Adams and J.-B. Bru, Critical analysis of the Bogoliubov theory of superfluidity, Phys. A 332 (2004), no. 1-4, 60–78. MR 2048363, 10.1016/j.physa.2003.10.031
- [25] Stephan Adams and Jean-Bernard Bru, A new microscopic theory of superfluidity at all temperatures, Ann. Henri Poincaré 5 (2004), no. 3, 435–476. MR 2067786, 10.1007/s00023-004-0175-7
- [26] J.-B. Bru, Beyond the dilute Bose gas, Physica A 359, 306âĂŞ344 (2006).
- [27] R. F. Snider, Perturbation variation methods for a quantum Boltzmann equation, J. Mathematical Phys. 5 (1964), 1580–1587. MR 0169627
- [28] R. M. Wilcox, Exponential operators and parameter differentiation in quantum physics., J. Mathematical Phys. 8 (1967), 962–982. MR 0234689
- [29] V. Bach, Evolution Equations, Lecture Notes (in German), Mainz University, Spring 2007.
- [30] Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153
- [31] Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- [32] John Williamson, On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems, Amer. J. Math. 58 (1936), no. 1, 141–163. MR 1507138, 10.2307/2371062
- [33] Lars Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z. 219 (1995), no. 3, 413–449. MR 1339714, 10.1007/BF02572374
- [34] Philip Grech and Robert Seiringer, The excitation spectrum for weakly interacting bosons in a trap, Comm. Math. Phys. 322 (2013), no. 2, 559–591. MR 3077925, 10.1007/s00220-013-1736-8