
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Fourier Transform for Certain HyperKähler Fourfolds
About this Title
Mingmin Shen, Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090GE, Amsterdam, Netherlands and Charles Vial, DPMMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 240, Number 1139
ISBNs: 978-1-4704-1740-6 (print); 978-1-4704-2830-3 (online)
DOI: https://doi.org/10.1090/memo/1139
Published electronically: November 18, 2015
Keywords: HyperKähler manifolds,
irreducible holomorphic symplectic varieties,
cubic fourfolds,
Fano schemes of lines,
K3 surfaces,
Hilbert schemes of points,
Abelian varieties,
motives,
algebraic cycles,
Chow groups,
Chow ring,
Chow–Künneth decomposition,
Bloch–Beilinson filtration,
modified diagonals
MSC: Primary 14C25, 14C15, 53C26, 14J28, 14J32, 14K99, 14C17
Table of Contents
Chapters
- Introduction
1. The Fourier Transform for HyperKähler Fourfolds
- 1. The Cohomological Fourier Transform
- 2. The Fourier Transform on the Chow Groups of HyperKähler Fourfolds
- 3. The Fourier Decomposition Is Motivic
- 4. First Multiplicative Results
- 5. An Application to Symplectic Automorphisms
- 6. On the Birational Invariance of the Fourier Decomposition
- 7. An Alternate Approach to the Fourier Decomposition on the Chow Ring of Abelian Varieties
- 8. Multiplicative Chow–Künneth Decompositions
- 9. Algebraicity of $\mathfrak {B}$ for HyperKähler Varieties of $\mathrm {K3}^{[n]}$-type
2. The Hilbert Scheme $S^{[2]}$
- 10. Basics on the Hilbert Scheme of Length-$2$ Subschemes on a Variety $X$
- 11. The Incidence Correspondence $I$
- 12. Decomposition Results on the Chow Groups of $X^{[2]}$
- 13. Multiplicative Chow–Künneth Decomposition for $X^{[2]}$
- 14. The Fourier Decomposition for $S^{[2]}$
- 15. The Fourier Decomposition for $S^{[2]}$ is Multiplicative
- 16. The Cycle $L$ of $S^{[2]}$ via Moduli of Stable Sheaves
3. The Variety of Lines on a Cubic Fourfold
- 17. The Incidence Correspondence $I$
- 18. The Rational Self-Map $\varphi : F \dashrightarrow F$
- 19. The Fourier Decomposition for $F$
- 20. A First Multiplicative Result
- 21. The Rational Self-Map $\varphi :F\dashrightarrow F$ and the Fourier Decomposition
- 22. The Fourier Decomposition for $F$ is Multiplicative
- A. Some Geometry of Cubic Fourfolds
- B. Rational Maps and Chow Groups
Abstract
Using a codimension-$1$ algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety $A$ and showed that the Fourier transform induces a decomposition of the Chow ring $\mathrm {CH}^*(A)$. By using a codimension-$2$ algebraic cycle representing the Beauville–Bogomolov class, we give evidence for the existence of a similar decomposition for the Chow ring of hyperKähler varieties deformation equivalent to the Hilbert scheme of length-$2$ subschemes on a K3 surface. We indeed establish the existence of such a decomposition for the Hilbert scheme of length-$2$ subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.- Allen B. Altman and Steven L. Kleiman, Foundations of the theory of Fano schemes, Compositio Math. 34 (1977), no. 1, 3–47. MR 569043
- Ekaterina Amerik, A computation of invariants of a rational self-map, Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), no. 3, 445–457 (English, with English and French summaries). MR 2582437
- Ekaterina Amerik and Claire Voisin, Potential density of rational points on the variety of lines of a cubic fourfold, Duke Math. J. 145 (2008), no. 2, 379–408. MR 2449951, DOI 10.1215/00127094-2008-055
- G. Ancona, Décomposition de motifs abéliens, preprint, 2013.
- Yves André and Bruno Kahn, Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova 108 (2002), 107–291 (French, with English summary). With an appendix by Peter O’Sullivan. MR 1956434
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- A. Beauville, Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 238–260 (French). MR 726428, DOI 10.1007/BFb0099965
- Arnaud Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), no. 4, 647–651 (French). MR 826463, DOI 10.1007/BF01472135
- Arnaud Beauville, On the splitting of the Bloch-Beilinson filtration, Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2007, pp. 38–53. MR 2187148
- Arnaud Beauville and Ron Donagi, La variété des droites d’une hypersurface cubique de dimension $4$, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703–706 (French, with English summary). MR 818549
- Arnaud Beauville and Claire Voisin, On the Chow ring of a $K3$ surface, J. Algebraic Geom. 13 (2004), no. 3, 417–426. MR 2047674, DOI 10.1090/S1056-3911-04-00341-8
- A. A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131, DOI 10.1007/BFb0078364
- Spencer Bloch, Lectures on algebraic cycles, 2nd ed., New Mathematical Monographs, vol. 16, Cambridge University Press, Cambridge, 2010. MR 2723320
- S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235–1253. MR 714776, DOI 10.2307/2374341
- F. A. Bogomolov, Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR 243 (1978), no. 5, 1101–1104 (Russian). MR 514769
- F. A. Bogomolov, On the cohomology ring of a simple hyper-Kähler manifold (on the results of Verbitsky), Geom. Funct. Anal. 6 (1996), no. 4, 612–618. MR 1406665, DOI 10.1007/BF02247113
- Andrei Horia Caldararu, Derived categories of twisted sheaves on Calabi-Yau manifolds, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–Cornell University. MR 2700538
- Mark Andrea A. de Cataldo and Luca Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2002), no. 2, 824–848. MR 1919155, DOI 10.1006/jabr.2001.9105
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI 10.2307/1970801
- Izzet Coskun and Jason Starr, Rational curves on smooth cubic hypersurfaces, Int. Math. Res. Not. IMRN 24 (2009), 4626–4641. MR 2564370, DOI 10.1093/imrn/rnp102
- Christopher Deninger and Jacob Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201–219. MR 1133323
- Lie Fu, Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections, Adv. Math. 244 (2013), 894–924. MR 3077892, DOI 10.1016/j.aim.2013.06.008
- L. Fu, On the action of symplectic automorphisms on the $\mathrm {CH}_0$-groups of some hyper-Kähler fourfolds, preprint, 2013.
- Akira Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 105–165. MR 946237, DOI 10.2969/aspm/01010105
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- U. Greiner, On the Chow ring of birational irreducible symplectic varieties, preprint, 2013.
- B. H. Gross and C. Schoen, The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 649–679 (English, with English and French summaries). MR 1340948
- Daniel Huybrechts, Birational symplectic manifolds and their deformations, J. Differential Geom. 45 (1997), no. 3, 488–513. MR 1472886
- Daniel Huybrechts, The Kähler cone of a compact hyperkähler manifold, Math. Ann. 326 (2003), no. 3, 499–513. MR 1992275, DOI 10.1007/s00208-003-0433-x
- Daniel Huybrechts, Symplectic automorphisms of K3 surfaces of arbitrary finite order, Math. Res. Lett. 19 (2012), no. 4, 947–951. MR 3008427, DOI 10.4310/MRL.2012.v19.n4.a17
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR 2665168
- Uwe Jannsen, Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 245–302. MR 1265533
- Shun-Ichi Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), no. 1, 173–201. MR 2107443, DOI 10.1007/s00208-004-0577-3
- Ju. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475–507 (Russian). MR 0258836
- Eyal Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry, Springer Proc. Math., vol. 8, Springer, Heidelberg, 2011, pp. 257–322. MR 2964480, DOI 10.1007/978-3-642-20300-8_{1}5
- B. Moonen, On the Chow motive of an abelian scheme with non-trivial endomorphisms, J. Reine Angew. Math., in press.
- B. Moonen and Q. Yin, On a question of O’Grady about modified diagonals, preprint, 2013.
- J. P. Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190–204. MR 1061525, DOI 10.1515/crll.1990.409.190
- J. P. Murre, On a conjectural filtration on the Chow groups of an algebraic variety. I. The general conjectures and some examples, Indag. Math. (N.S.) 4 (1993), no. 2, 177–188. MR 1225267, DOI 10.1016/0019-3577(93)90038-Z
- Kieran G. O’Grady, The weight-two Hodge structure of moduli spaces of sheaves on a $K3$ surface, J. Algebraic Geom. 6 (1997), no. 4, 599–644. MR 1487228
- K. O’Grady, Computations with modified diagonals, preprint, 2013.
- Peter O’Sullivan, The structure of certain rigid tensor categories, C. R. Math. Acad. Sci. Paris 340 (2005), no. 8, 557–562 (English, with English and French summaries). MR 2138703, DOI 10.1016/j.crma.2005.03.018
- Peter O’Sullivan, Algebraic cycles on an abelian variety, J. Reine Angew. Math. 654 (2011), 1–81. MR 2795752, DOI 10.1515/CRELLE.2011.025
- Antonio Rapagnetta, On the Beauville form of the known irreducible symplectic varieties, Math. Ann. 340 (2008), no. 1, 77–95. MR 2349768, DOI 10.1007/s00208-007-0139-6
- A. A. Rojtman, The torsion of the group of $0$-cycles modulo rational equivalence, Ann. of Math. (2) 111 (1980), no. 3, 553–569. MR 577137, DOI 10.2307/1971109
- Mingmin Shen, On relations among 1-cycles on cubic hypersurfaces, J. Algebraic Geom. 23 (2014), no. 3, 539–569. MR 3205590, DOI 10.1090/S1056-3911-2014-00631-7
- M. Shen, Surface with involution and Prym constructions, preprint, 2012.
- M. Shen and C. Vial, On modified diagonals, in preparation.
- M. Shen and C. Vial, The motive of the Hilbert cube $X^{[3]}$, preprint, 2015.
- Charles Vial, Projectors on the intermediate algebraic Jacobians, New York J. Math. 19 (2013), 793–822. MR 3141813
- Charles Vial, Algebraic cycles and fibrations, Doc. Math. 18 (2013), 1521–1553. MR 3158241
- C. Vial, Remarks on motives of abelian type, Tohoku Math J., to appear.
- C. Vial, On the motive of some hyperKähler varieties. J. Reine Angew. Math., to appear.
- Claire Voisin, Théorème de Torelli pour les cubiques de $\textbf {P}^5$, Invent. Math. 86 (1986), no. 3, 577–601 (French). MR 860684, DOI 10.1007/BF01389270
- Claire Voisin, Intrinsic pseudo-volume forms and $K$-correspondences, The Fano Conference, Univ. Torino, Turin, 2004, pp. 761–792. MR 2112602
- Claire Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 613–649. MR 2435839, DOI 10.4310/PAMQ.2008.v4.n3.a2
- Claire Voisin, Chow rings and decomposition theorems for families of $K3$ surfaces and Calabi-Yau hypersurfaces, Geom. Topol. 16 (2012), no. 1, 433–473. MR 2916291, DOI 10.2140/gt.2012.16.433
- Claire Voisin, Symplectic involutions of $K3$ surfaces act trivially on $CH_0$, Doc. Math. 17 (2012), 851–860. MR 3007678
- Claire Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, vol. 187, Princeton University Press, Princeton, NJ, 2014. MR 3186044
- J. Wierzba, Birational geometry of symplectic $4$-folds, preprint, 2002.