
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Local Structure Theorem for Finite Groups with a Large $p$-Subgroup
About this Title
U. Meierfrankenfeld, Department of Mathematics, Michigan State University, East Lansing Michigan 48824, B. Stellmacher, Gneisenaustrasse 6, D24105 Kiel and G. Stroth, Martin-Luther-UniversitΓ€t Halle-Wittenberg, Institut fΓΌr Mathematik, D06099 Halle
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 242, Number 1147
ISBNs: 978-1-4704-1877-9 (print); 978-1-4704-2948-5 (online)
DOI: https://doi.org/10.1090/memo/1147
Published electronically: April 8, 2016
Previous Version:Original version posted April 8, 2016 with incorrect title
Keywords: Local characteristic $p$,
large subgroup,
finite simple groups
MSC: Primary 20D05
Table of Contents
Chapters
- Introduction
- 1. Definitions and Preliminary Results
- 2. The Case Subdivision and Preliminary Results
- 3. The Orthogonal Groups
- 4. The Symmetric Case
- 5. The Short Asymmetric Case
- 6. The Tall $char\, p$-Short Asymmetric Case
- 7. The $char\, p$-Tall $Q$-Short Asymmetric Case
- 8. The $Q$-Tall Asymmetric Case I
- 9. The $Q$-tall Asymmetric Case II
- 10. Proof of the Local Structure Theorem
- A. Module theoretic Definitions and Results
- B. Classical Spaces and Classical Groups
- C. FF-Module Theorems and Related Results
- D. The Fitting Submodule
- E. The Amalgam Method
- Bibliography
Abstract
Let $p$ be a prime, $G$ a finite $\mathcal {K}_p$-group $S$ a Sylow $p$-subgroup of $G$ and $Q$ a large subgroup of $G$ in $S$ (i.e., $C_G(Q) \leq Q$ and $N_G(U) \leq N_G(Q)$ for $1 \ne U \leq C_G(Q)$). Let $L$ be any subgroup of $G$ with $S\leq L$, $O_p(L)\neq 1$ and $Q\ntrianglelefteq L$. In this paper we determine the action of $L$ on the largest elementary abelian normal $p$-reduced $p$-subgroup $Y_L$ of $L$.- Michael Aschbacher, On finite groups of component type, Illinois J. Math. 19 (1975), 87β115. MR 376843
- Michael Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann. of Math. (2) 106 (1977), no.Β 2, 353β398. MR 498828, DOI 10.2307/1971100
- Michael Aschbacher, The uniqueness case for finite groups. I, Ann. of Math. (2) 117 (1983), no.Β 2, 383β454. MR 690850, DOI 10.2307/2007081
- Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups. I, Mathematical Surveys and Monographs, vol. 111, American Mathematical Society, Providence, RI, 2004. Structure of strongly quasithin $K$-groups. MR 2097623
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775β1029. MR 166261
- Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no.Β 276, vii+731. MR 690900, DOI 10.1090/memo/0276
- Robert M. Guralnick, Ross Lawther, and Gunter Malle, The 2F-modules for nearly simple groups, J. Algebra 307 (2007), no.Β 2, 643β676. MR 2275366, DOI 10.1016/j.jalgebra.2006.10.011
- M. Mainardis, U. Meierfrankenfeld, G. Parmeggiani, and B. Stellmacher, The $\~P$!-theorem, J. Algebra 292 (2005), no.Β 2, 363β392. MR 2172160, DOI 10.1016/j.jalgebra.2005.07.001
- U. Meierfrankenfeld and G. Stroth, A characterization of $\textrm {Aut}(G_2(3))$, J. Group Theory 11 (2008), no.Β 4, 479β494. MR 2429349, DOI 10.1515/JGT.2008.028
- Ulrich Meierfrankenfeld, Gernot Stroth, and Richard M. Weiss, Local identification of spherical buildings and finite simple groups of Lie type, Math. Proc. Cambridge Philos. Soc. 154 (2013), no.Β 3, 527β547. MR 3044213, DOI 10.1017/S0305004113000078
- Chris Parker and Gernot Stroth, Strongly $p$-embedded subgroups, Pure Appl. Math. Q. 7 (2011), no.Β 3, Special Issue: In honor of Jacques Tits, 797β858. MR 2848592, DOI 10.4310/PAMQ.2011.v7.n3.a9
- Chris Parker and Gernot Stroth, On strongly $p$-embedded subgroups of Lie rank 2, Arch. Math. (Basel) 93 (2009), no.Β 5, 405β413. MR 2563586, DOI 10.1007/s00013-009-0052-1
- M. Reza Salarian and Gernot Stroth, Existence of strongly $p$-embedded subgroups, Comm. Algebra 43 (2015), no.Β 3, 983β1024. MR 3298118, DOI 10.1080/00927872.2013.865036
- Franz Timmesfeld, Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extraspecial, Ann. of Math. (2) 107 (1978), no.Β 2, 297β369. MR 486255, DOI 10.2307/1971146
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
- M. Aschbacher, Finite group theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 2000. MR 1777008
- Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlΓ€Γt, J. Algebra 17 (1971), 527β554 (German). MR 288172, DOI 10.1016/0021-8693(71)90008-1
- D. Bundy, N. Hebbinghaus, and B. Stellmacher, The local $C(G,T)$ theorem, J. Algebra 300 (2006), no.Β 2, 741β789. MR 2228220, DOI 10.1016/j.jalgebra.2005.08.040
- Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR 0407163
- Andrew Chermak and Alberto Delgado, A measuring argument for finite groups, Proc. Amer. Math. Soc. 107 (1989), no.Β 4, 907β914. MR 994774, DOI 10.1090/S0002-9939-1989-0994774-4
- George Glauberman, Weakly closed elements of Sylow subgroups, Math. Z. 107 (1968), 1β20. MR 251141, DOI 10.1007/BF01111043
- George Glauberman, Failure of factorization in $p$-solvable groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 71β77. MR 318301, DOI 10.1093/qmath/24.1.71
- Daniel Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980. MR 569209
- Robert M. Guralnick and Gunter Malle, Classification of $2F$-modules. I, J. Algebra 257 (2002), no.Β 2, 348β372. MR 1947326, DOI 10.1016/S0021-8693(02)00526-4
- Robert M. Guralnick and Gunter Malle, Classification of $2F$-modules. II, Finite groups 2003, Walter de Gruyter, Berlin, 2004, pp.Β 117β183. MR 2125071
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592
- R.L. Griess, Schur multipliers of the known finite simple groups. II. The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 279β282, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., (1980).
- Robert L. Griess Jr., A remark about representations of .1, Comm. Algebra 13 (1985), no.Β 4, 835β844. MR 776866, DOI 10.1080/00927878508823196
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961
- Hans Kurzweil and Bernd Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004. An introduction; Translated from the 1998 German original. MR 2014408
- U. Meierfrankenfeld and B. Stellmacher, The other ${\scr P}(G,V)$-theorem, Rend. Sem. Mat. Univ. Padova 115 (2006), 41β50. MR 2245586
- U. Meierfrankenfeld and B. Stellmacher, The Fitting submodule, Arch. Math. (Basel) 87 (2006), no.Β 3, 193β205. MR 2258918, DOI 10.1007/s00013-006-1709-7
- U. Meierfrankenfeld and B. Stellmacher, Nearly quadratic modules, J. Algebra 319 (2008), no.Β 11, 4798β4843. MR 2416744, DOI 10.1016/j.jalgebra.2007.12.015
- U. Meierfrankenfeld and B. Stellmacher, $F$-stability in finite groups, Trans. Amer. Math. Soc. 361 (2009), no.Β 5, 2509β2525. MR 2471927, DOI 10.1090/S0002-9947-08-04541-8
- U. Meierfrankenfeld and B. Stellmacher, The general FF-module theorem, J. Algebra 351 (2012), 1β63. MR 2862198, DOI 10.1016/j.jalgebra.2011.10.029
- U. Meierfrankenfeld and B. Stellmacher, Applications of the FF-Module Theorem and related results, J. Algebra 351 (2012), 64β106. MR 2862199, DOI 10.1016/j.jalgebra.2011.10.028
- U. Meierfrankenfeld, B. Stellmacher, G. Stroth, Groups of local characteristic $p$ An overview, in Proceedings of the 2001 Durham Conference on Groups and Geometry (2003).
- U. Meierfrankenfeld and G. Stroth, Quadratic $\textrm {GF}(2)$-modules for sporadic simple groups and alternating groups, Comm. Algebra 18 (1990), no.Β 7, 2099β2139. MR 1063127, DOI 10.1080/00927879008824012
- Gemma Parmeggiani, Pushing up point stabilizers. I, J. Algebra 319 (2008), no.Β 9, 3854β3884. MR 2407852, DOI 10.1016/j.jalgebra.2008.01.034
- Gemma Parmeggiani, Pushing up point stabilizers. II, J. Algebra 322 (2009), no.Β 7, 2272β2285. MR 2553199, DOI 10.1016/j.jalgebra.2009.07.014
- Ch. W. Parker, G. Parmeggiani, and B. Stellmacher, The $P$!-theorem, J. Algebra 263 (2003), no.Β 1, 17β58. MR 1974077, DOI 10.1016/S0021-8693(03)00075-9
- M. A. Ronan and G. Stroth, Minimal parabolic geometries for the sporadic groups, European J. Combin. 5 (1984), no.Β 1, 59β91. MR 746047, DOI 10.1016/S0195-6698(84)80020-7
- Ibrahim A. I. Suleiman and Robert A. Wilson, The $2$-modular characters of Conwayβs group $\textrm {Co}_2$, Math. Proc. Cambridge Philos. Soc. 116 (1994), no.Β 2, 275β283. MR 1281546, DOI 10.1017/S0305004100072571