
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces
About this Title
F. Dahmani, Université de Grenoble Alpes, Institut Fourier, F-38000 Grenoble, France, V. Guirardel, Université de Rennes 1 263 avenue du Général Leclerc, CS 74205, F-35042 RENNES Cedex France and D. Osin, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 245, Number 1156
ISBNs: 978-1-4704-2194-6 (print); 978-1-4704-3601-8 (online)
DOI: https://doi.org/10.1090/memo/1156
Published electronically: July 14, 2016
MSC: Primary 20F65, 20F67; Secondary 20F06, 20E08, 57M27
Table of Contents
Chapters
- 1. Introduction
- 2. Main results
- 3. Preliminaries
- 4. Generalizing relative hyperbolicity
- 5. Very rotating families
- 6. Examples
- 7. Dehn filling
- 8. Applications
- 9. Some open problems
Abstract
We introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, $Out(F_n)$, and the Cremona group. Other examples can be found among groups acting geometrically on $CAT(0)$ spaces, fundamental groups of graphs of groups, etc. We obtain a number of general results about rotating families and hyperbolically embedded subgroups; although our technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, we solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.- Charles A. Akemann, Operator algebras associated with Fuchsian groups, Houston J. Math. 7 (1981), no. 3, 295–301. MR 640971
- Charles A. Akemann and Tan Yu Lee, Some simple $C^{\ast }$-algebras associated with free groups, Indiana Univ. Math. J. 29 (1980), no. 4, 505–511. MR 578202, DOI 10.1512/iumj.1980.29.29038
- Yael Algom-Kfir, Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011), no. 4, 2181–2233. MR 2862155, DOI 10.2140/gt.2011.15.2181
- Juan M. Alonso, Finiteness conditions on groups and quasi-isometries, J. Pure Appl. Algebra 95 (1994), no. 2, 121–129. MR 1293049, DOI 10.1016/0022-4049(94)90069-8
- J. M. Alonso, X. Wang, and S. J. Pride, Higher-dimensional isoperimetric (or Dehn) functions of groups, J. Group Theory 2 (1999), no. 1, 81–112. MR 1670329, DOI 10.1515/jgth.1999.008
- James W. Anderson, Javier Aramayona, and Kenneth J. Shackleton, An obstruction to the strong relative hyperbolicity of a group, J. Group Theory 10 (2007), no. 6, 749–756. MR 2364824, DOI 10.1515/JGT.2007.054
- Y. Antolin, A. Minasyan, A. Sisto, Commensurating endomorphisms of acylindrically hyperbolic groups and applications, to appear in Groups, Geometry, and Dynamics.
- G. Arzhantseva, T. Delzant, Examples of random groups, preprint, 2010.
- G. Arzhantseva and A. Minasyan, Relatively hyperbolic groups are $C^\ast$-simple, J. Funct. Anal. 243 (2007), no. 1, 345–351. MR 2291441, DOI 10.1016/j.jfa.2006.06.003
- G. Arzhantseva, A. Minasyan, and D. Osin, The SQ-universality and residual properties of relatively hyperbolic groups, J. Algebra 315 (2007), no. 1, 165–177. MR 2344339, DOI 10.1016/j.jalgebra.2007.04.029
- Werner Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann. 259 (1982), no. 1, 131–144. MR 656659, DOI 10.1007/BF01456836
- Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin. MR 1377265
- Werner Ballmann, Misha Brin, and Patrick Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2) 122 (1985), no. 1, 171–203. MR 799256, DOI 10.2307/1971373
- Werner Ballmann, Misha Brin, and Ralf Spatzier, Structure of manifolds of nonpositive curvature. II, Ann. of Math. (2) 122 (1985), no. 2, 205–235. MR 808219, DOI 10.2307/1971303
- Werner Ballmann and Sergei Buyalo, Periodic rank one geodesics in Hadamard spaces, Geometric and probabilistic structures in dynamics, Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 19–27. MR 2478464, DOI 10.1090/conm/469/09159
- Andreas Baudisch, On superstable groups, J. London Math. Soc. (2) 42 (1990), no. 3, 452–464. MR 1087220, DOI 10.1112/jlms/s2-42.3.452
- Benjamin Baumslag and Stephen J. Pride, Groups with two more generators than relators, J. London Math. Soc. (2) 17 (1978), no. 3, 425–426. MR 491967, DOI 10.1112/jlms/s2-17.3.425
- Jason A. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006), 1523–1578. MR 2255505, DOI 10.2140/gt.2006.10.1523
- Jason Behrstock, Cornelia Druţu, and Mark Sapir, Median structures on asymptotic cones and homomorphisms into mapping class groups, Proc. Lond. Math. Soc. (3) 102 (2011), no. 3, 503–554. MR 2783135, DOI 10.1112/plms/pdq025
- Jason Behrstock, Cornelia Druţu, and Mark Sapir, Addendum: Median structures on asymptotic cones and homomorphisms into mapping class groups [MR2783135], Proc. Lond. Math. Soc. (3) 102 (2011), no. 3, 555–562. MR 2783136, DOI 10.1112/plms/pdr008
- M. Bachir Bekka and Pierre de la Harpe, Groups with simple reduced $C^*$-algebras, Expo. Math. 18 (2000), no. 3, 215–230. MR 1763888
- Mladen Bestvina and Noel Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445–470. MR 1465330, DOI 10.1007/s002220050168
- Mladen Bestvina, Ken Bromberg, and Koji Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1–64. MR 3415065, DOI 10.1007/s10240-014-0067-4
- Mladen Bestvina, Ken Bromberg, and Koji Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces, Comment. Math. Helv. 91 (2016), no. 2, 203–218. MR 3493369, DOI 10.4171/CMH/383
- Mladen Bestvina and Mark Feighn, A hyperbolic $\textrm {Out}(F_n)$-complex, Groups Geom. Dyn. 4 (2010), no. 1, 31–58. MR 2566300, DOI 10.4171/GGD/74
- Mladen Bestvina and Mark Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014), 104–155. MR 3177291, DOI 10.1016/j.aim.2014.02.001
- Mladen Bestvina and Koji Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69–89. MR 1914565, DOI 10.2140/gt.2002.6.69
- Joan S. Birman, Alex Lubotzky, and John McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983), no. 4, 1107–1120. MR 726319, DOI 10.1215/S0012-7094-83-05046-9
- J. Blanc and S. Cantat, Dynamical degrees of birational transformations of projective surfaces, arXiv:1307.0361.
- Brian H. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105–129. MR 2270568, DOI 10.1515/CRELLE.2006.070
- Brian H. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), no. 2, 281–300. MR 2367021, DOI 10.1007/s00222-007-0081-y
- B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66. MR 2922380, DOI 10.1142/S0218196712500166
- Martin R. Bridson, Polynomial Dehn functions and the length of asynchronously automatic structures, Proc. London Math. Soc. (3) 85 (2002), no. 2, 441–466. MR 1912057, DOI 10.1112/S0024611502013564
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
- Martin R. Bridson and Pierre de la Harpe, Mapping class groups and outer automorphism groups of free groups are $C^*$-simple, J. Funct. Anal. 212 (2004), no. 1, 195–205. MR 2065242, DOI 10.1016/S0022-1236(03)00216-7
- Martin R. Bridson and Richard D. Wade, Actions of higher-rank lattices on free groups, Compos. Math. 147 (2011), no. 5, 1573–1580. MR 2834733, DOI 10.1112/S0010437X11005598
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Keith Burns and Ralf Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 35–59. MR 908215
- S. Cantat, The Cremona group in two variables, Proc. of the sixth European Congress of Math., 211-225. (Europ. Math. Soc., 2013)
- Serge Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), no. 1, 299–340 (French, with English and French summaries). MR 2811600, DOI 10.4007/annals.2011.174.1.8
- Serge Cantat and Stéphane Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), no. 1, 31–94. With an appendix by Yves de Cornulier. MR 3037611, DOI 10.1007/s11511-013-0090-1
- Pierre-Emmanuel Caprace and Bertrand Rémy, Simplicity and superrigidity of twin building lattices, Invent. Math. 176 (2009), no. 1, 169–221. MR 2485882, DOI 10.1007/s00222-008-0162-6
- Pierre-Emmanuel Caprace and Michah Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011), no. 4, 851–891. MR 2827012, DOI 10.1007/s00039-011-0126-7
- David Carter and Gordon Keller, Bounded elementary generation of $\textrm {SL}_{n}({\cal O})$, Amer. J. Math. 105 (1983), no. 3, 673–687. MR 704220, DOI 10.2307/2374319
- Christophe Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math. (6) 3 (1994), no. 2, 161–221 (French, with English and French summaries). MR 1283206
- Ruth Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007), 141–158. MR 2322545, DOI 10.1007/s10711-007-9148-6
- Vladimir Chaynikov, On the generators of the kernels of hyperbolic group presentations, Algebra Discrete Math. 11 (2011), no. 2, 18–50. MR 2858127
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994
- Rémi Coulon, Asphericity and small cancellation theory for rotation families of groups, Groups Geom. Dyn. 5 (2011), no. 4, 729–765. MR 2836458, DOI 10.4171/GGD/146
- Rémi Coulon, On the geometry of Burnside quotients of torsion free hyperbolic groups, Internat. J. Algebra Comput. 24 (2014), no. 3, 251–345. MR 3211906, DOI 10.1142/S0218196714500143
- François Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003), 933–963. MR 2026551, DOI 10.2140/gt.2003.7.933
- François Dahmani and Vincent Guirardel, Presenting parabolic subgroups, Algebr. Geom. Topol. 13 (2013), no. 6, 3203–3222. MR 3248731, DOI 10.2140/agt.2013.13.3203
- Thomas Delzant, Sous-groupes distingués et quotients des groupes hyperboliques, Duke Math. J. 83 (1996), no. 3, 661–682 (French). MR 1390660, DOI 10.1215/S0012-7094-96-08321-0
- Thomas Delzant and Misha Gromov, Courbure mésoscopique et théorie de la toute petite simplification, J. Topol. 1 (2008), no. 4, 804–836 (French, with English and French summaries). MR 2461856, DOI 10.1112/jtopol/jtn023
- Cornelia Druţu, Relatively hyperbolic groups: geometry and quasi-isometric invariance, Comment. Math. Helv. 84 (2009), no. 3, 503–546. MR 2507252, DOI 10.4171/CMH/171
- Cornelia Druţu, Quasi-isometry rigidity of groups, Géométries à courbure négative ou nulle, groupes discrets et rigidités, Sémin. Congr., vol. 18, Soc. Math. France, Paris, 2009, pp. 321–371 (English, with English and French summaries). MR 2655317
- Cornelia Druţu, Shahar Mozes, and Mark Sapir, Divergence in lattices in semisimple Lie groups and graphs of groups, Trans. Amer. Math. Soc. 362 (2010), no. 5, 2451–2505. MR 2584607, DOI 10.1090/S0002-9947-09-04882-X
- Cornelia Druţu and Mark Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), no. 5, 959–1058. With an appendix by Denis Osin and Mark Sapir. MR 2153979, DOI 10.1016/j.top.2005.03.003
- Edward G. Effros, Property $\Gamma$ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486. MR 355626, DOI 10.1090/S0002-9939-1975-0355626-6
- David B. A. Epstein and Koji Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997), no. 6, 1275–1289. MR 1452851, DOI 10.1016/S0040-9383(96)00046-8
- B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810–840. MR 1650094, DOI 10.1007/s000390050075
- Benson Farb, Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 11–55. MR 2264130, DOI 10.1090/pspum/074/2264130
- Benson Farb and Howard Masur, Superrigidity and mapping class groups, Topology 37 (1998), no. 6, 1169–1176. MR 1632912, DOI 10.1016/S0040-9383(97)00099-2
- Benjamin Fine and Marvin Tretkoff, On the SQ-universality of HNN groups, Proc. Amer. Math. Soc. 73 (1979), no. 3, 283–290. MR 518506, DOI 10.1090/S0002-9939-1979-0518506-2
- Victor Gerasimov and Leonid Potyagailo, Quasiconvexity in relatively hyperbolic groups, J. Reine Angew. Math. 710 (2016), 95–135. MR 3437561, DOI 10.1515/crelle-2015-0029
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- M. Gromov, $\textrm {CAT}(\kappa )$-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), no. Geom. i Topol. 7, 100–140, 299–300 (English, with Russian summary); English transl., J. Math. Sci. (N.Y.) 119 (2004), no. 2, 178–200. MR 1879258, DOI 10.1023/B:JOTH.0000008756.15786.0f
- M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003), no. 1, 73–146. MR 1978492, DOI 10.1007/s000390300002
- Misha Gromov, Mesoscopic curvature and hyperbolicity, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000) Contemp. Math., vol. 288, Amer. Math. Soc., Providence, RI, 2001, pp. 58–69. MR 1871000, DOI 10.1090/conm/288/04817
- Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429. MR 2448064, DOI 10.1007/s11856-008-1070-6
- Daniel Groves and Jason Fox Manning, Fillings, finite generation and direct limits of relatively hyperbolic groups, Groups Geom. Dyn. 1 (2007), no. 3, 329–342. MR 2314049, DOI 10.4171/GGD/16
- Vincent Guirardel, Geometric small cancellation, Geometric group theory, IAS/Park City Math. Ser., vol. 21, Amer. Math. Soc., Providence, RI, 2014, pp. 55–90. MR 3329725, DOI 10.1090/pcms/021/03
- M. Hamann, Group actions on metric spaces: fixed points and free subgroups, arXiv:1301.6513.
- Ursula Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 315–349. MR 2390326, DOI 10.4171/JEMS/112
- Ursula Hamenstädt, Rank-one isometries of proper $\textrm {CAT}(0)$-spaces, Discrete groups and geometric structures, Contemp. Math., vol. 501, Amer. Math. Soc., Providence, RI, 2009, pp. 43–59. MR 2581914, DOI 10.1090/conm/501/09839
- Michael Handel and Lee Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672. MR 3073931, DOI 10.2140/gt.2013.17.1581
- Pierre de la Harpe, On simplicity of reduced $C^\ast$-algebras of groups, Bull. Lond. Math. Soc. 39 (2007), no. 1, 1–26. MR 2303514, DOI 10.1112/blms/bdl014
- Pierre de la Harpe, Operator algebras, free groups and other groups, Astérisque 232 (1995), 121–153. Recent advances in operator algebras (Orléans, 1992). MR 1372530
- Pierre de la Harpe, Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 14, 771–774 (French, with English summary). MR 972078
- Pierre de la Harpe and Jean-Philippe Préaux, $C^*$-simple groups: amalgamated free products, HNN extensions, and fundamental groups of 3-manifolds, J. Topol. Anal. 3 (2011), no. 4, 451–489. MR 2887672, DOI 10.1142/S1793525311000659
- Pierre de la Harpe and Georges Skandalis, Les réseaux dans les groupes semi-simples ne sont pas intérieurement moyennables, Enseign. Math. (2) 40 (1994), no. 3-4, 291–311 (French, with English and French summaries). MR 1309130
- Allen Hatcher and Karen Vogtmann, The complex of free factors of a free group, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 196, 459–468. MR 1660045, DOI 10.1093/qjmath/49.196.459
- Arnaud Hilion and Camille Horbez, The hyperbolicity of the sphere complex via surgery paths, to appear in Journal für die reine und angewandte Mathematik.
- Graham Higman, B. H. Neumann, and Hanna Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254. MR 32641, DOI 10.1112/jlms/s1-24.4.247
- Craig D. Hodgson and Steven P. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998), no. 1, 1–59. MR 1622600
- James Howie, On the $\textrm {SQ}$-universality of $T(6)$-groups, Forum Math. 1 (1989), no. 3, 251–272. MR 1005426, DOI 10.1515/form.1989.1.251
- G. Christopher Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), no. 3, 1807–1856. MR 2684983, DOI 10.2140/agt.2010.10.1807
- M. Hull, Small cancellation in acylindrically hyperbolic groups, arXiv:1308.4345.
- Michael Hull and Denis Osin, Induced quasicocycles on groups with hyperbolically embedded subgroups, Algebr. Geom. Topol. 13 (2013), no. 5, 2635–2665. MR 3116299, DOI 10.2140/agt.2013.13.2635
- N. V. Ivanov, Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 786–789 (Russian). MR 745513
- Nikolai V. Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, vol. 115, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose and revised by the author. MR 1195787
- Nikolai V. Ivanov, Fifteen problems about the mapping class groups, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 71–80. MR 2264532, DOI 10.1090/pspum/074/2264532
- Paul Jolissaint, Moyennabilité intérieure du groupe $F$ de Thompson, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 1, 61–64 (French, with English and French summaries). MR 1461398, DOI 10.1016/S0764-4442(97)83934-1
- Sang Jin Lee and Won Taek Song, The kernel of $\textrm {Burau}(4)\otimes Z_p$ is all pseudo-Anosov, Pacific J. Math. 219 (2005), no. 2, 303–310. MR 2175118, DOI 10.2140/pjm.2005.219.303
- K. I. Lossov, $\textrm {SQ}$-universality of free products with amalgamated finite subgroups, Sibirsk. Mat. Zh. 27 (1986), no. 6, 128–139, 225 (Russian). MR 883588
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. MR 0577064
- J.M. Mackay and A. Sisto, Quasi-hyperbolic planes in relatively hyperbolic groups, preprint arXiv:1111.2499.
- David Marker, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002. An introduction. MR 1924282
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- Jon McCammond and Daniel Wise, Windmills and extreme 2-cells, Illinois J. Math. 54 (2010), no. 1, 69–87. MR 2776985
- John McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), no. 2, 583–612. MR 800253, DOI 10.1090/S0002-9947-1985-0800253-8
- Ashot Minasyan, Groups with finitely many conjugacy classes and their automorphisms, Comment. Math. Helv. 84 (2009), no. 2, 259–296. MR 2495795, DOI 10.4171/CMH/162
- Ashot Minasyan and Denis Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Ann. 362 (2015), no. 3-4, 1055–1105. MR 3368093, DOI 10.1007/s00208-014-1138-z
- Nicolas Monod, An invitation to bounded cohomology, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1183–1211. MR 2275641
- Nicolas Monod and Yehuda Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. of Math. (2) 164 (2006), no. 3, 825–878. MR 2259246, DOI 10.4007/annals.2006.164.825
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954), 236–248. MR 62122, DOI 10.1112/jlms/s1-29.2.236
- Peter M. Neumann, The $SQ$-universality of some finitely presented groups, J. Austral. Math. Soc. 16 (1973), 1–6. Collection of articles dedicated to the memory of Hanna Neumann, I. MR 0333017
- A. Yu. Ol′shanskiĭ, Geometry of defining relations in groups, Mathematics and its Applications (Soviet Series), vol. 70, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1989 Russian original by Yu. A. Bakhturin. MR 1191619
- A. Yu. Ol′shanskiĭ, Periodic quotient groups of hyperbolic groups, Mat. Sb. 182 (1991), no. 4, 543–567 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 519–541. MR 1119008
- A. Yu. Ol′shanskiĭ, On residualing homomorphisms and $G$-subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993), no. 4, 365–409. MR 1250244, DOI 10.1142/S0218196793000251
- A. Yu. Ol′shanskiĭ, $\textrm {SQ}$-universality of hyperbolic groups, Mat. Sb. 186 (1995), no. 8, 119–132 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 8, 1199–1211. MR 1357360, DOI 10.1070/SM1995v186n08ABEH000063
- Alexander Yu. Olshanskii and Denis V. Osin, $C^*$-simple groups without free subgroups, Groups Geom. Dyn. 8 (2014), no. 3, 933–983. MR 3267529, DOI 10.4171/GGD/253
- Alexander Yu. Ol′shanskii, Denis V. Osin, and Mark V. Sapir, Lacunary hyperbolic groups, Geom. Topol. 13 (2009), no. 4, 2051–2140. With an appendix by Michael Kapovich and Bruce Kleiner. MR 2507115, DOI 10.2140/gt.2009.13.2051
- D. Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016), no. 2, 851–888. MR 3430352, DOI 10.1090/S0002-9947-2015-06343-0
- Denis Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Ann. of Math. (2) 172 (2010), no. 1, 1–39. MR 2680416, DOI 10.4007/annals.2010.172.1
- Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326. MR 2270456, DOI 10.1007/s00222-006-0012-3
- Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100. MR 2182268, DOI 10.1090/memo/0843
- Denis V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (2006), no. 1, 99–118. MR 2217644, DOI 10.1142/S0218196706002901
- D. V. Osin, Relative Dehn functions of amalgamated products and HNN-extensions, Topological and asymptotic aspects of group theory, Contemp. Math., vol. 394, Amer. Math. Soc., Providence, RI, 2006, pp. 209–220. MR 2216718, DOI 10.1090/conm/394/07446
- D. Osin, Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. 35 (2005), 2143–2161. MR 2181790, DOI 10.1155/IMRN.2005.2143
- D. V. Osin, Weak hyperbolicity and free constructions, Group theory, statistics, and cryptography, Contemp. Math., vol. 360, Amer. Math. Soc., Providence, RI, 2004, pp. 103–111. MR 2105438, DOI 10.1090/conm/360/06572
- Abderezak Ould Houcine, On superstable CSA-groups, Ann. Pure Appl. Logic 154 (2008), no. 1, 1–7. MR 2413926, DOI 10.1016/j.apal.2006.04.005
- Frédéric Paulin, Outer automorphisms of hyperbolic groups and small actions on $\textbf {R}$-trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331–343. MR 1105339, DOI 10.1007/978-1-4612-3142-4_{1}2
- Carlo Petronio and Joan Porti, Negatively oriented ideal triangulations and a proof of Thurston’s hyperbolic Dehn filling theorem, Expo. Math. 18 (2000), no. 1, 1–35. MR 1751141
- Gabriel Picioroaga, The inner amenability of the generalized Thompson group, Proc. Amer. Math. Soc. 134 (2006), no. 7, 1995–2002. MR 2215768, DOI 10.1090/S0002-9939-05-08236-5
- Alfred Pietrowski, The isomorphism problem for one-relator groups with non-trivial centre, Math. Z. 136 (1974), 95–106. MR 349851, DOI 10.1007/BF01214345
- Bruno Poizat, Groupes stables, avec types génériques réguliers, J. Symbolic Logic 48 (1983), no. 2, 339–355 (French). MR 704088, DOI 10.2307/2273551
- Robert T. Powers, Simplicity of the $C^{\ast }$-algebra associated with the free group on two generators, Duke Math. J. 42 (1975), 151–156. MR 374334
- A. S. Rapinchuk, The congruence subgroup problem for arithmetic groups of bounded generation, Dokl. Akad. Nauk SSSR 314 (1990), no. 6, 1327–1331 (Russian); English transl., Soviet Math. Dokl. 42 (1991), no. 2, 664–668. MR 1088588
- Donovan Yves Rebbechi, Algorithmic properties of relatively hyperbolic groups, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Rutgers The State University of New Jersey - Newark. MR 2701979
- George S. Sacerdote and Paul E. Schupp, SQ-universality in HNN groups and one relator groups, J. London Math. Soc. (2) 7 (1974), 733–740. MR 364464, DOI 10.1112/jlms/s2-7.4.733
- Paul E. Schupp, A survey of SQ-universality, Conference on Group Theory (Univ. Wisconsin-Parkside, Kenosha, Wis., 1972), Springer, Berlin, 1973, pp. 183–188. Lecture Notes in Math., Vol. 319. MR 0382459
- Z. Sela, Diophantine geometry over groups VIII: Stability, Ann. of Math. (2) 177 (2013), no. 3, 787–868. MR 3034289, DOI 10.4007/annals.2013.177.3.1
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504
- Yehuda Shalom, Bounded generation and Kazhdan’s property (T), Inst. Hautes Études Sci. Publ. Math. 90 (1999), 145–168 (2001). MR 1813225
- S. Shelah, Stable theories, Israel J. Math. 7 (1969), 187–202. MR 253889, DOI 10.1007/BF02787611
- Saharon Shelah, Classification of first order theories which have a structure theorem, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 227–232. MR 776474, DOI 10.1090/S0273-0979-1985-15354-6
- A. Sisto, Quasi-convexity of hyperbolically embedded subgroups, To appear in Math. Z. arXiv:1310.7753.
- A. Sisto, Contracting elements and random walks, to appear in Journal für die reine und angewandte Mathematik.
- Yves Stalder, Moyennabilité intérieure et extensions HNN, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 2, 309–323 (French, with English and French summaries). MR 2226017
- O. I. Tavgen′, Bounded generability of Chevalley groups over rings of $S$-integer algebraic numbers, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 97–122, 221–222 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 1, 101–128. MR 1044049, DOI 10.1070/IM1991v036n01ABEH001950
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- Stefaan Vaes, An inner amenable group whose von Neumann algebra does not have property Gamma, Acta Math. 208 (2012), no. 2, 389–394. MR 2931384, DOI 10.1007/s11511-012-0079-1
- Frank Wagner, Stable groups, Handbook of algebra, Vol. 2, Handb. Algebr., vol. 2, Elsevier/North-Holland, Amsterdam, 2000, pp. 277–318. MR 1759598, DOI 10.1016/S1570-7954(00)80030-3
- Kim Whittlesey, Normal all pseudo-Anosov subgroups of mapping class groups, Geom. Topol. 4 (2000), 293–307. MR 1786168, DOI 10.2140/gt.2000.4.293
- Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41–89. MR 2039323, DOI 10.1515/crll.2004.007