
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Imaginary Schur-Weyl duality
About this Title
Alexander Kleshchev, Department of Mathematics, University of Oregon, Eugene, Oregon 97403 and Robert Muth, Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 245, Number 1157
ISBNs: 978-1-4704-2249-3 (print); 978-1-4704-3603-2 (online)
DOI: https://doi.org/10.1090/memo/1157
Published electronically: July 15, 2016
MSC: Primary 20C08, 20C30, 05E10
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. Khovanov-Lauda-Rouquier algebras
- 4. Imaginary Schur-Weyl duality
- 5. Imaginary Howe duality
- 6. Morita equaivalence
- 7. On formal characters of imaginary modules
- 8. Imaginary tensor space for non-simply-laced types
Abstract
We study imaginary representations of the Khovanov-Lauda-Rouquier algebras of affine Lie type. Irreducible modules for such algebras arise as simple heads of standard modules. In order to define standard modules one needs to have a cuspidal system for a fixed convex preorder. A cuspidal system consists of irreducible cuspidal modules—one for each real positive root for the corresponding affine root system $\texttt {X}_l^{(1)}$, as well as irreducible imaginary modules—one for each $l$-multiplication. We study imaginary modules by means of ‘imaginary Schur-Weyl duality’. We introduce an imaginary analogue of tensor space and the imaginary Schur algebra. We construct a projective generator for the imaginary Schur algebra, which yields a Morita equivalence between the imaginary and the classical Schur algebra. We construct imaginary analogues of Gelfand-Graev representations, Ringel duality and the Jacobi-Trudy formula.- Pierre Baumann, Joel Kamnitzer, and Peter Tingley, Affine Mirković-Vilonen polytopes, Publ. Math. Inst. Hautes Études Sci. 120 (2014), 113–205. MR 3270589, DOI 10.1007/s10240-013-0057-y
- Jonathan Beck, Vyjayanthi Chari, and Andrew Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), no. 3, 455–487. MR 1712630, DOI 10.1215/S0012-7094-99-09915-5
- Georgia Benkart, Seok-Jin Kang, Se-jin Oh, and Euiyong Park, Construction of irreducible representations over Khovanov-Lauda-Rouquier algebras of finite classical type, Int. Math. Res. Not. IMRN 5 (2014), 1312–1366. MR 3178600, DOI 10.1093/imrn/rns244
- Jonathan Brundan, Richard Dipper, and Alexander Kleshchev, Quantum linear groups and representations of $\textrm {GL}_n(\textbf {F}_q)$, Mem. Amer. Math. Soc. 149 (2001), no. 706, viii+112. MR 1804485, DOI 10.1090/memo/0706
- Jonathan Brundan and Alexander Kleshchev, Modular Littlewood-Richardson coefficients, Math. Z. 232 (1999), no. 2, 287–320. MR 1718701, DOI 10.1007/s002090050516
- Jonathan Brundan and Alexander Kleshchev, Representation theory of symmetric groups and their double covers, Groups, combinatorics & geometry (Durham, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 31–53. MR 1994959, DOI 10.1142/9789812564481_{0}003
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- Jonathan Brundan and Alexander Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), no. 6, 1883–1942. MR 2562768, DOI 10.1016/j.aim.2009.06.018
- Jonathan Brundan, Alexander Kleshchev, and Peter J. McNamara, Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 7, 1353–1404. MR 3205728, DOI 10.1215/00127094-2681278
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 632548
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20–52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Stephen Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39–60. MR 1200163, DOI 10.1007/BF02571640
- S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998. MR 1707336
- J. A. Green, Polynomial representations of $\textrm {GL}_{n}$, Second corrected and augmented edition, Lecture Notes in Mathematics, vol. 830, Springer, Berlin, 2007. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker. MR 2349209
- I. Grojnowski, Affine $\mathfrak {sl}_p$ controls the representation theory of the symmetric group and related Hecke algebras, arXiv:math.RT/9907129.
- David Hill, George Melvin, and Damien Mondragon, Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra 216 (2012), no. 5, 1052–1079. MR 2875327, DOI 10.1016/j.jpaa.2011.12.015
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
- Seok-Jin Kang and Masaki Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math. 190 (2012), no. 3, 699–742. MR 2995184, DOI 10.1007/s00222-012-0388-1
- S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and $R$-matrices of quantum affine algebras, arXiv:1304.0323.
- Syu Kato, Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 3, 619–663. MR 3165425, DOI 10.1215/00127094-2405388
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700. MR 2763732, DOI 10.1090/S0002-9947-2010-05210-9
- Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457
- Alexander Kleshchev, Representation theory of symmetric groups and related Hecke algebras, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 3, 419–481. MR 2651085, DOI 10.1090/S0273-0979-09-01277-4
- Alexander S. Kleshchev, Cuspidal systems for affine Khovanov-Lauda-Rouquier algebras, Math. Z. 276 (2014), no. 3-4, 691–726. MR 3175157, DOI 10.1007/s00209-013-1219-9
- Alexander S. Kleshchev, Joseph W. Loubert, and Vanessa Miemietz, Affine cellularity of Khovanov-Lauda-Rouquier algebras in type $A$, J. Lond. Math. Soc. (2) 88 (2013), no. 2, 338–358. MR 3106725, DOI 10.1112/jlms/jdt023
- Alexander S. Kleshchev, Andrew Mathas, and Arun Ram, Universal graded Specht modules for cyclotomic Hecke algebras, Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1245–1289. MR 3004104, DOI 10.1112/plms/pds019
- Alexander Kleshchev and Arun Ram, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann. 349 (2011), no. 4, 943–975. MR 2777040, DOI 10.1007/s00208-010-0543-1
- Alexander Kleshchev and Arun Ram, Homogeneous representations of Khovanov-Lauda algebras, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1293–1306. MR 2677617, DOI 10.4171/JEMS/230
- Aaron D. Lauda and Monica Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803–861. MR 2822211, DOI 10.1016/j.aim.2011.06.009
- P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910
- Bernard Leclerc, Dual canonical bases, quantum shuffles and $q$-characters, Math. Z. 246 (2004), no. 4, 691–732. MR 2045836, DOI 10.1007/s00209-003-0609-9
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Olivier Mathieu and Georges Papadopoulo, A character formula for a family of simple modular representations of $\textrm {GL}_n$, Comment. Math. Helv. 74 (1999), no. 2, 280–296. MR 1691950, DOI 10.1007/s000140050089
- Peter J. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math. 707 (2015), 103–124. MR 3403455, DOI 10.1515/crelle-2013-0075
- Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209–223. MR 1128706, DOI 10.1007/BF02571521
- R. Rouquier, $2$-Kac-Moody algebras; arXiv:0812.5023.
- John R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996), no. 4, 353–385. MR 1406459, DOI 10.1023/A:1022452717148
- John R. Stembridge, Minuscule elements of Weyl groups, J. Algebra 235 (2001), no. 2, 722–743. MR 1805477, DOI 10.1006/jabr.2000.8488
- P. Tingley and B. Webster, Mirkovic-Vilonen polytopes and Khovanov-Lauda-Rouquier algebras, arXiv:1210.6921.