
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Classification of actions of discrete Kac algebras on injective factors
About this Title
Toshihiko Masuda, Graduate School of Mathematics, Kyushu University, Fukuoka, 819-0395 , Japan Department of Mathematics, Hokkaido University, Hokkaido 060-0810 , Japan
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 245, Number 1160
ISBNs: 978-1-4704-2055-0 (print); 978-1-4704-3609-4 (online)
DOI: https://doi.org/10.1090/memo/1160
Published electronically: July 26, 2016
Keywords: von Neumann algebra,
discrete Kac algebra,
action
MSC: Primary 46L65; Secondary 46L55
Table of Contents
Chapters
- Introduction
- 1. Preliminary
- 2. Canonical extension of irreducible endomorphisms
- 3. Kac algebras
- 4. Classification of modular kernels
- 5. Classification of actions with non-trivial modular parts
- 6. Classification of centrally free actions
- 7. Related problems
- 8. Appendix
Abstract
We will study two kinds of actions of a discrete amenable Kac algebra. The first one is an action whose modular part is normal. We will construct a new invariant which generalizes a characteristic invariant for a discrete group action, and we will present a complete classification. The second is a centrally free action. By constructing a Rohlin tower in an asymptotic centralizer, we will show that the Connes–Takesaki module is a complete invariant.- Hiroshi Ando and Uffe Haagerup, Ultraproducts of von Neumann algebras, J. Funct. Anal. 266 (2014), no. 12, 6842–6913. MR 3198856, DOI 10.1016/j.jfa.2014.03.013
- François Combes and Claire Delaroche, Groupe modulaire d’une espérance conditionnele dans une algèbre de von Neumann, Bull. Soc. Math. France 103 (1975), no. 4, 385–426 (French). MR 415340
- Saad Baaj and Georges Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 425–488 (French, with English summary). MR 1235438
- Teodor Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), no. 4, 763–780. MR 1709109, DOI 10.1007/s002080050315
- Teodor Banica and Julien Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 75–114. MR 2492990, DOI 10.1515/CRELLE.2009.003
- Erik Bédos, Roberto Conti, and Lars Tuset, On amenability and co-amenability of algebraic quantum groups and their corepresentations, Canad. J. Math. 57 (2005), no. 1, 17–60. MR 2113848, DOI 10.4153/CJM-2005-002-8
- E. Bédos, G. J. Murphy, and L. Tuset, Co-amenability of compact quantum groups, J. Geom. Phys. 40 (2001), no. 2, 130–153. MR 1862084, DOI 10.1016/S0393-0440(01)00024-9
- Erik Bédos, Gerard J. Murphy, and Lars Tuset, Amenability and coamenability of algebraic quantum groups, Int. J. Math. Math. Sci. 31 (2002), no. 10, 577–601. MR 1931751, DOI 10.1155/S016117120210603X
- Julien Bichon, An De Rijdt, and Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703–728. MR 2202309, DOI 10.1007/s00220-005-1442-2
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- A. Connes, Periodic automorphisms of the hyperfinite factor of type II1, Acta Sci. Math. (Szeged) 39 (1977), no. 1-2, 39–66. MR 448101
- Alain Connes and Masamichi Takesaki, The flow of weights on factors of type $\textrm {III}$, Tohoku Math. J. (2) 29 (1977), no. 4, 473–575. MR 480760, DOI 10.2748/tmj/1178240493
- Sergio Doplicher and John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157–218. MR 1010160, DOI 10.1007/BF01388849
- Michel Enock and Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992. With a preface by Alain Connes; With a postface by Adrian Ocneanu. MR 1215933
- Tony Falcone and Masamichi Takesaki, The non-commutative flow of weights on a von Neumann algebra, J. Funct. Anal. 182 (2001), no. 1, 170–206. MR 1829246, DOI 10.1006/jfan.2000.3718
- Uffe Haagerup, Operator-valued weights in von Neumann algebras. I, J. Functional Analysis 32 (1979), no. 2, 175–206. MR 534673, DOI 10.1016/0022-1236(79)90053-3
- Uffe Haagerup, Operator-valued weights in von Neumann algebras. II, J. Functional Analysis 33 (1979), no. 3, 339–361. MR 549119, DOI 10.1016/0022-1236(79)90072-7
- Toshihiro Hamachi, The normalizer group of an ergodic automorphism of type $\textrm {III}$ and the commutant of an ergodic flow, J. Functional Analysis 40 (1981), no. 3, 387–403. MR 611590, DOI 10.1016/0022-1236(81)90055-0
- Fumio Hiai, Minimizing indices of conditional expectations onto a subfactor, Publ. Res. Inst. Math. Sci. 24 (1988), no. 4, 673–678. MR 976765, DOI 10.2977/prims/1195174872
- Tommaso Isola, Modular structure of the crossed product by a compact group dual, J. Operator Theory 33 (1995), no. 1, 3–31. MR 1342474
- Masaki Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953–994. MR 1145672, DOI 10.2977/prims/1195169007
- Masaki Izumi, Canonical extension of endomorphisms of type III factors, Amer. J. Math. 125 (2003), no. 1, 1–56. MR 1953517
- Masaki Izumi and Hideki Kosaki, Finite-dimensional Kac algebras arising from certain group actions on a factor, Internat. Math. Res. Notices 8 (1996), 357–370. MR 1393328, DOI 10.1155/S1073792896000232
- Masaki Izumi and Hideki Kosaki, Kac algebras arising from composition of subfactors: general theory and classification, Mem. Amer. Math. Soc. 158 (2002), no. 750, 198. MR 1903399, DOI 10.1090/memo/0750
- Masaki Izumi and Hideki Kosaki, On a subfactor analogue of the second cohomology, Rev. Math. Phys. 14 (2002), no. 7-8, 733–757. Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday. MR 1932664, DOI 10.1142/S0129055X02001375
- Masaki Izumi, Roberto Longo, and Sorin Popa, A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Anal. 155 (1998), no. 1, 25–63. MR 1622812, DOI 10.1006/jfan.1997.3228
- Vaughan F. R. Jones, Actions of finite groups on the hyperfinite type $\textrm {II}_{1}$ factor, Mem. Amer. Math. Soc. 28 (1980), no. 237, v+70. MR 587749, DOI 10.1090/memo/0237
- V. F. R. Jones and M. Takesaki, Actions of compact abelian groups on semifinite injective factors, Acta Math. 153 (1984), no. 3-4, 213–258. MR 766264, DOI 10.1007/BF02392378
- G. I. Kac and V. G. Paljutkin, Finite ring groups, Trudy Moskov. Mat. Obšč. 15 (1966), 224–261 (Russian). MR 0208401
- Yoshikazu Katayama, Colin E. Sutherland, and Masamichi Takesaki, The characteristic square of a factor and the cocycle conjugacy of discrete group actions on factors, Invent. Math. 132 (1998), no. 2, 331–380. MR 1621416, DOI 10.1007/s002220050226
- Yoshikazu Katayama and Masamichi Takesaki, Outer actions of a discrete amenable group on approximately finite dimensional factors. I. General theory, Operator algebras, quantization, and noncommutative geometry, Contemp. Math., vol. 365, Amer. Math. Soc., Providence, RI, 2004, pp. 181–237. MR 2106821, DOI 10.1090/conm/365/06704
- Y. Kawahigashi, C. E. Sutherland, and M. Takesaki, The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions, Acta Math. 169 (1992), no. 1-2, 105–130. MR 1179014, DOI 10.1007/BF02392758
- Yasuyuki Kawahigashi and Masamichi Takesaki, Compact abelian group actions on injective factors, J. Funct. Anal. 105 (1992), no. 1, 112–128. MR 1156672, DOI 10.1016/0022-1236(92)90074-S
- Adam Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965), 11–34. MR 174656, DOI 10.1007/BF01370393
- Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups. Part I, Mathematical Surveys and Monographs, vol. 56, American Mathematical Society, Providence, RI, 1998. MR 1614943
- Hideki Kosaki, Extension of Jones’ theory on index to arbitrary factors, J. Funct. Anal. 66 (1986), no. 1, 123–140. MR 829381, DOI 10.1016/0022-1236(86)90085-6
- Hideki Kosaki, Type III factors and index theory, Lecture Notes Series, vol. 43, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1998. MR 1662525
- Larry Baggett and Adam Kleppner, Multiplier representations of abelian groups, J. Functional Analysis 14 (1973), 299–324. MR 0364537, DOI 10.1016/0022-1236(73)90075-x
- Roberto Longo, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys. 126 (1989), no. 2, 217–247. MR 1027496
- Roberto Longo, Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial, Comm. Math. Phys. 130 (1990), no. 2, 285–309. MR 1059320
- Toshihiko Masuda, Unified approach to the classification of actions of discrete amenable groups on injective factors, J. Reine Angew. Math. 683 (2013), 1–47. MR 3181546, DOI 10.1515/crelle-2011-0011
- Toshihiko Masuda and Reiji Tomatsu, Classification of minimal actions of a compact Kac algebra with amenable dual, Comm. Math. Phys. 274 (2007), no. 2, 487–551. MR 2322913, DOI 10.1007/s00220-007-0269-4
- Toshihiko Masuda and Reiji Tomatsu, Approximate innerness and central triviality of endomorphisms, Adv. Math. 220 (2009), no. 4, 1075–1134. MR 2483716, DOI 10.1016/j.aim.2008.10.005
- Toshihiko Masuda and Reiji Tomatsu, Classification of minimal actions of a compact Kac algebra with amenable dual on injective factors of type III, J. Funct. Anal. 258 (2010), no. 6, 1965–2025. MR 2578461, DOI 10.1016/j.jfa.2009.11.014
- Masuda, T., Tomatsu, R., Rohlin flows on von Neumann algebras, to appear in Mem. Amer. Math. Soc.
- Müger, M., Abstract duality for symmetric tensor $*$-categories (Appendix to Halvorson, H.: “Algebraic Quantum Field Theory”), Handbook of the Philosophy of Physics, p. 865-922. North Holland, 2007. arXiv:math-ph/0602036.
- Sergey Neshveyev and Lars Tuset, On second cohomology of duals of compact groups, Internat. J. Math. 22 (2011), no. 9, 1231–1260. MR 2844801, DOI 10.1142/S0129167X11007239
- Yoshiomi Nakagami and Masamichi Takesaki, Duality for crossed products of von Neumann algebras, Lecture Notes in Mathematics, vol. 731, Springer, Berlin, 1979. MR 546058
- Adrian Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138, Springer-Verlag, Berlin, 1985. MR 807949
- Dorte Olesen, Gert K. Pedersen, and Masamichi Takesaki, Ergodic actions of compact abelian groups, J. Operator Theory 3 (1980), no. 2, 237–269. MR 578942
- John E. Roberts, Cross products of von Neumann algebras by group duals, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C^*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAm, Rome, 1974) Academic Press, London, 1976, pp. 335–363. MR 0473859
- Yoshihiro Sekine, Flows of weights of crossed products of type $\textrm {III}$ factors by discrete groups, Publ. Res. Inst. Math. Sci. 26 (1990), no. 4, 655–666. MR 1081509, DOI 10.2977/prims/1195170851
- Colin E. Sutherland and Masamichi Takesaki, Actions of discrete amenable groups on injective factors of type $\textrm {III}_\lambda ,\;\lambda \neq 1$, Pacific J. Math. 137 (1989), no. 2, 405–444. MR 990219
- Colin E. Sutherland and Masamichi Takesaki, Right inverse of the module of approximately finite-dimensional factors of type III and approximately finite ergodic principal measured groupoids, Operator algebras and their applications, II (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 20, Amer. Math. Soc., Providence, RI, 1998, pp. 149–159. MR 1643188, DOI 10.1007/s002220050226
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
- Reiji Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), no. 4, 949–964. MR 2276175
- Reiji Tomatsu, A paving theorem for amenable discrete Kac algebras, Internat. J. Math. 17 (2006), no. 8, 905–919. MR 2261640, DOI 10.1142/S0129167X06003734
- Reiji Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), no. 1, 271–296. MR 2335776, DOI 10.1007/s00220-007-0267-6
- Shuzhou Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195–211. MR 1637425, DOI 10.1007/s002200050385
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), no. 2, 273–319. MR 1014926, DOI 10.2307/1971422
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), no. 6, 1482–1527. MR 990110, DOI 10.4153/CJM-1988-068-4
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. III. Classification for $\textrm {SU}(2)$, Invent. Math. 93 (1988), no. 2, 309–354. MR 948104, DOI 10.1007/BF01394336
- Antony Wassermann, Coactions and Yang-Baxter equations for ergodic actions and subfactors, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 203–236. MR 996457
- S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) North-Holland, Amsterdam, 1998, pp. 845–884. MR 1616348
- Takehiko Yamanouchi, Canonical extension of actions of locally compact quantum groups, J. Funct. Anal. 201 (2003), no. 2, 522–560. MR 1986698, DOI 10.1016/S0022-1236(02)00153-2
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770