AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Abelian Properties of Anick Spaces
About this Title
Brayton Gray, Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois 60607-7045
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 246, Number 1162
ISBNs: 978-1-4704-2308-7 (print); 978-1-4704-3633-9 (online)
DOI: https://doi.org/10.1090/memo/1162
Published electronically: September 29, 2016
MSC: Primary 55Q15, 55Q20, 55Q51; Secondary 55Q40, 55Q52, 55R99
Table of Contents
Chapters
- 1. Introduction
- 2. Abelian Structures
- 3. Whitehead Products
- 4. Index $p$ approximation
- 5. Simplification
- 6. Constructing $\gamma _k$
- 7. Universal Properties
- A. The Case $n=1$ and the Case $p=3$
Abstract
Anick spaces are closely connected with both EHP sequences and the study of torsion exponents. In addition they refine the secondary suspension and enter unstable periodicity. In this work we describe their $H$-space properties as well as universal properties. Techniques include a new kind on Whitehead product defined for maps out of co-H spaces, calculations in an additive category that lies between the unstable category and the stable category, and a controlled version of the extension theorem of Gray and Theriault (Geom. Topol. 14 (2010), no. 1, 243–275).- David Anick and Brayton Gray, Small $H$ spaces related to Moore spaces, Topology 34 (1995), no. 4, 859–881. MR 1362790, DOI 10.1016/0040-9383(95)00001-1
- David J. Anick, Single loop space decompositions, Trans. Amer. Math. Soc. 334 (1992), no. 2, 929–940. MR 1145728, DOI 10.1090/S0002-9947-1992-1145728-3
- David Anick, Differential algebras in topology, Research Notes in Mathematics, vol. 3, A K Peters, Ltd., Wellesley, MA, 1993. MR 1213682
- M. G. Barratt, Note on a formula due to Toda, J. London Math. Soc. 36 (1961), 95–96. MR 125582, DOI 10.1112/jlms/s1-36.1.95
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Decompositions of loop spaces and applications to exponents, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 1–12. MR 561210
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979), no. 1, 121–168. MR 519355, DOI 10.2307/1971269
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no. 3, 549–565. MR 554384, DOI 10.2307/1971238
- Frederick R. Cohen, The unstable decomposition of $\Omega ^{2}\Sigma ^{2}X$ and its applications, Math. Z. 182 (1983), no. 4, 553–568. MR 701370, DOI 10.1007/BF01215483
- Albrecht Dold and Richard Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285–305. MR 101521
- Tudor Ganea, Cogroups and suspensions, Invent. Math. 9 (1969/70), 185–197. MR 267582, DOI 10.1007/BF01404323
- Brayton I. Gray, Spaces of the same $n$-type, for all $n$, Topology 5 (1966), 241–243. MR 196743, DOI 10.1016/0040-9383(66)90008-5
- Brayton Gray, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology 8 (1969), 219–232. MR 245008, DOI 10.1016/0040-9383(69)90012-3
- Brayton Gray, A note on the Hilton-Milnor theorem, Topology 10 (1971), 199–201. MR 281202, DOI 10.1016/0040-9383(71)90004-8
- Brayton Gray, On the iterated suspension, Topology 27 (1988), no. 3, 301–310. MR 963632, DOI 10.1016/0040-9383(88)90011-0
- Brayton Gray, $EHP$ spectra and periodicity. I. Geometric constructions, Trans. Amer. Math. Soc. 340 (1993), no. 2, 595–616. MR 1152323, DOI 10.1090/S0002-9947-1993-1152323-X
- Brayton Gray, $EHP$ spectra and periodicity. II. $\Lambda$-algebra models, Trans. Amer. Math. Soc. 340 (1993), no. 2, 617–640. MR 1152324, DOI 10.1090/S0002-9947-1993-1152324-1
- Brayton Gray, The periodic lambda algebra, Stable and unstable homotopy (Toronto, ON, 1996) Fields Inst. Commun., vol. 19, Amer. Math. Soc., Providence, RI, 1998, pp. 93–101. MR 1622340
- Brayton Gray, On the homotopy type of the loops on a 2-cell complex, Homotopy methods in algebraic topology (Boulder, CO, 1999) Contemp. Math., vol. 271, Amer. Math. Soc., Providence, RI, 2001, pp. 77–98. MR 1831348, DOI 10.1090/conm/271/04351
- Brayton Gray, On decompositions in homotopy theory, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3305–3328. MR 2218977, DOI 10.1090/S0002-9947-05-03964-4
- Brayton Gray, Decompositions involving Anick’s spaces, 2008, \ttfamily arXiv 0804.0777v1.
- Brayton Gray, On generalized Whitehead products, Trans. Amer. Math. Soc. 363 (2011), no. 11, 6143–6158. MR 2817422, DOI 10.1090/S0002-9947-2011-05392-4
- Brayton Gray, Universal abelian H-spaces, Topology Appl. 159 (2012), no. 1, 209–224. MR 2852964, DOI 10.1016/j.topol.2011.09.002
- Brayton Gray and Stephen Theriault, An elementary construction of Anick’s fibration, Geom. Topol. 14 (2010), no. 1, 243–275. MR 2578305, DOI 10.2140/gt.2010.14.243
- Arunas Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962), 112. MR 182001
- Mark Mahowald, On the double suspension homomorphism, Trans. Amer. Math. Soc. 214 (1975), 169–178. MR 438333, DOI 10.1090/S0002-9947-1975-0438333-5
- Joseph Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc. 25 (1980), no. 232, iv+67. MR 567801, DOI 10.1090/memo/0232
- Joseph A. Neisendorfer, $3$-primary exponents, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 1, 63–83. MR 611286, DOI 10.1017/S0305004100058539
- Joseph Neisendorfer, Properties of certain $H$-spaces, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 134, 201–209. MR 698206, DOI 10.1093/qmath/34.2.201
- Joseph Neisendorfer, Algebraic methods in unstable homotopy theory, New Mathematical Monographs, vol. 12, Cambridge University Press, Cambridge, 2010. MR 2604913
- Joseph A. Neisendorfer, Homotopy groups with coefficients, J. Fixed Point Theory Appl. 8 (2010), no. 2, 247–338. MR 2739026, DOI 10.1007/s11784-010-0020-1
- James Dillon Stasheff, Homotopy associativity of $H$-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 (1963), 293–312. MR 0158400, DOI 10.1090/S0002-9947-1963-0158400-5
- Arne Strøm, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972), 435–441. MR 321082, DOI 10.1007/BF01304912
- Masahiro Sugawara, A condition that a space is group-like, Math. J. Okayama Univ. 7 (1957), 123–149. MR 97066
- Stephen D. Theriault, Properties of Anick’s spaces, Trans. Amer. Math. Soc. 353 (2001), no. 3, 1009–1037. MR 1709780, DOI 10.1090/S0002-9947-00-02623-4
- Stephen D. Theriault, Homotopy decompositions involving the loops of coassociative co-$H$ spaces, Canad. J. Math. 55 (2003), no. 1, 181–203. MR 1952331, DOI 10.4153/CJM-2003-008-5
- Stephen D. Theriault, The 3-primary classifying space of the fiber of the double suspension, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1489–1499. MR 2367123, DOI 10.1090/S0002-9939-07-09249-0
- Stephen D. Theriault, 2-primary Anick fibrations, J. Topol. 4 (2011), no. 2, 479–503. MR 2805999, DOI 10.1112/jtopol/jtr008
- Hirosi Toda, On the double suspension $E^2$, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 103–145. MR 92968
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217