
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Exotic cluster structures on $SL_n$: the Cremmer–Gervais case
About this Title
M. Gekhtman, Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, M. Shapiro, Department of Mathematics, Michigan State University, East Lansing, Michigan 48823 and A. Vainshtein, Department of Mathematics & Department of Computer Science, University of Haifa, Haifa, Mount Carmel 31905, Israel
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 246, Number 1165
ISBNs: 978-1-4704-2258-5 (print); 978-1-4704-3639-1 (online)
DOI: https://doi.org/10.1090/memo/1165
Published electronically: December 1, 2016
Keywords: Poisson–Lie group,
cluster algebra,
Belavin–Drinfeld triple
MSC: Primary 53D17, 13F60
Table of Contents
Chapters
- 1. Introduction
- 2. Cluster structures and Poisson–Lie groups
- 3. Main result and the outline of the proof
- 4. Initial cluster
- 5. Initial quiver
- 6. Regularity
- 7. Quiver transformations
- 8. Technical results on cluster algebras
Abstract
This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson–Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on $\mathcal {G}$ corresponds to a cluster structure in $\mathcal {O}(\mathcal {G})$. We have shown before that this conjecture holds for any $\mathcal {G}$ in the case of the standard Poisson–Lie structure and for all Belavin-Drinfeld classes in $SL_n$, $n<5$. In this paper we establish it for the Cremmer–Gervais Poisson–Lie structure on $SL_n$, which is the least similar to the standard one.- A. A. Belavin and V. G. Drinfel′d, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen. 16 (1982), no. 3, 1–29, 96 (Russian). MR 674005
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52. MR 2110627, DOI 10.1215/S0012-7094-04-12611-9
- David M. Bressoud, Proofs and confirmations, MAA Spectrum, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 1999. The story of the alternating sign matrix conjecture. MR 1718370
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. MR 1300632
- Eugène Cremmer and Jean-Loup Gervais, The quantum group structure associated with nonlinearly extended Virasoro algebras, Comm. Math. Phys. 134 (1990), no. 3, 619–632. MR 1086746
- Idan Eisner, Exotic cluster structures on $SL_5$, J. Phys. A 47 (2014), no. 47, 474002, 23. MR 3279993, DOI 10.1088/1751-8113/47/47/474002
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), no. 2, 119–144. MR 1888840, DOI 10.1006/aama.2001.0770
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), no. 3, 899–934, 1199 (English, with English and Russian summaries). {Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday}. MR 2078567, DOI 10.17323/1609-4514-2003-3-3-899-934
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math. 206 (2011), no. 2, 245–310. MR 2810853, DOI 10.1007/s11511-011-0063-1
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010. MR 2683456
- M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster structures on simple complex Lie groups and Belavin-Drinfeld classification, Mosc. Math. J. 12 (2012), no. 2, 293–312, 460 (English, with English and Russian summaries). MR 2978758, DOI 10.17323/1609-4514-2012-12-2-293-312
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cremmer-Gervais cluster structure on $SL_n$, Proc. Natl. Acad. Sci. USA 111 (2014), no. 27, 9688–9695. MR 3263300, DOI 10.1073/pnas.1315283111
- M. Gekhtman, M. Shapiro, A. Stolin, and A. Vainshtein, Poisson structures compatible with the cluster algebra structure in Grassmannians, Lett. Math. Phys. 100 (2012), no. 2, 139–150. MR 2912476, DOI 10.1007/s11005-012-0547-8
- Timothy J. Hodges, On the Cremmer-Gervais quantizations of $\textrm {SL}(n)$, Internat. Math. Res. Notices 10 (1995), 465–481. MR 1358031, DOI 10.1155/S107379289500033X
- Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups. Part I, Mathematical Surveys and Monographs, vol. 56, American Mathematical Society, Providence, RI, 1998. MR 1614943
- A. Reyman and M. Semenov-Tian-Shansky Group-theoretical methods in the theory of finite-dimensional integrable systems Encyclopaedia of Mathematical Sciences, vol.16, Springer–Verlag, Berlin, 1994 pp.116–225.
- Milen Yakimov, Symplectic leaves of complex reductive Poisson-Lie groups, Duke Math. J. 112 (2002), no. 3, 453–509. MR 1896471, DOI 10.1215/S0012-9074-02-11233-2