
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Homology of Normal Chains and Cohomology of Charges
About this Title
Th. De Pauw, Université Denis Diderot, Institut de Mathématiques de Jussieu, Equipe de Géométrie et Dynamique, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France, R. M. Hardt, Department of Mathematics, Rice University, Houston, Texas 77251 and W. F. Pfeffer, Department of Mathematics, University of California, Davis, California 95616 – and – University of Arizona, Tucson, Arizona 85721
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 247, Number 1172
ISBNs: 978-1-4704-2335-3 (print); 978-1-4704-3705-3 (online)
DOI: https://doi.org/10.1090/memo/1172
Published electronically: January 12, 2017
Keywords: Flat chains,
normal chains,
charges,
homology,
cohomology
MSC: Primary 49Q15, 55N35
Table of Contents
Chapters
- Introduction
- 1. Notation and preliminaries
- 2. Rectifiable chains
- 3. Lipschitz chains
- 4. Flat norm and flat chains
- 5. The lower semicontinuity of slicing mass
- 6. Supports of flat chains
- 7. Flat chains of finite mass
- 8. Supports of flat chains of finite mass
- 9. Measures defined by flat chains of finite mass
- 10. Products
- 11. Flat chains in compact metric spaces
- 12. Localized topology
- 13. Homology and cohomology
- 14. $q$-bounded pairs
- 15. Dimension zero
- 16. Relation to the Čech cohomology
- 17. Locally compact spaces
Abstract
We consider a category of pairs of compact metric spaces and Lipschitz maps where the pairs satisfy a linearly isoperimetric condition related to the solvability of the Plateau problem with partially free boundary. It includes properly all pairs of compact Lipschitz neighborhood retracts of a large class of Banach spaces. On this category we define homology and cohomology functors with real coefficients which satisfy the Eilenberg-Steenrod axioms, but reflect the metric properties of the underlying spaces. As an example we show that the zero-dimensional homology of a space in our category is trivial if and only if the space is path connected by arcs of finite length. The homology and cohomology of a pair are, respectively, locally convex and Banach spaces that are in duality. Ignoring the topological structures, the homology and cohomology extend to all pairs of compact metric spaces. For locally acyclic spaces, we establish a natural isomorphism between our cohomology and the Čech cohomology with real coefficients.- Tarn Adams, Flat chains in Banach spaces, J. Geom. Anal. 18 (2008), no. 1, 1–28. MR 2365666, DOI 10.1007/s12220-007-9008-5
- J. C. Álvarez Paiva and A. C. Thompson, Volumes on normed and Finsler spaces, A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ., vol. 50, Cambridge Univ. Press, Cambridge, 2004, pp. 1–48. MR 2132656, DOI 10.4171/prims/123
- Luigi Ambrosio and Bernd Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), no. 1, 1–80. MR 1794185, DOI 10.1007/BF02392711
- Luigi Ambrosio and Bernd Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527–555. MR 1800768, DOI 10.1007/s002080000122
- B. Bongiorno, W. F. Pfeffer, and B. S. Thomson, A full descriptive definition of the gage integral, Canad. Math. Bull. 39 (1996), no. 4, 390–401. MR 1426684, DOI 10.4153/CMB-1996-047-x
- B. Bongiorno, L. Di Piazza, and D. Preiss, Infinite variation and derivatives in $\mathbf R^m$, J. Math. Anal. Appl. 224 (1998), no. 1, 22–33. MR 1632942, DOI 10.1006/jmaa.1998.5982
- Ph. Bouafia and Th. De Pauw, Some theorems on charges, in preparation.
- N. Bourbaki, Espaces Vectoriels Topologiques, chapters III and IV, Herman at Cie, Paris, 1955.
- Zoltán Buczolich, Thierry De Pauw, and Washek F. Pfeffer, Charges, BV functions, and multipliers for generalized Riemann integrals, Indiana Univ. Math. J. 48 (1999), no. 4, 1471–1511. MR 1757080, DOI 10.1512/iumj.1999.48.1818
- Zoltán Buczolich and Washek F. Pfeffer, Variations of additive functions, Czechoslovak Math. J. 47(122) (1997), no. 3, 525–555. MR 1461431, DOI 10.1023/A:1022471719916
- Zoltán Buczolich and Washek F. Pfeffer, On absolute continuity, J. Math. Anal. Appl. 222 (1998), no. 1, 64–78. MR 1623859, DOI 10.1006/jmaa.1997.5804
- Dmitri Burago and Sergei Ivanov, Minimality of planes in normed spaces, Geom. Funct. Anal. 22 (2012), no. 3, 627–638. MR 2972604, DOI 10.1007/s00039-012-0170-y
- T. De Pauw, Approximation by polyhedral G chains in Banach spaces, submitted for publication.
- Thierry De Pauw, Topologies for the space of BV-integrable functions in $\mathbf R^N$, J. Funct. Anal. 144 (1997), no. 1, 190–231. MR 1430720, DOI 10.1006/jfan.1996.2997
- T. De Pauw and R. Hardt, Some basic theorems on flat G chains, preprint.
- Thierry De Pauw and Robert Hardt, Rectifiable and flat $G$ chains in a metric space, Amer. J. Math. 134 (2012), no. 1, 1–69. MR 2876138, DOI 10.1353/ajm.2012.0004
- Thierry De Pauw, Laurent Moonens, and Washek F. Pfeffer, Charges in middle dimensions, J. Math. Pures Appl. (9) 92 (2009), no. 1, 86–112 (English, with English and French summaries). MR 2541148, DOI 10.1016/j.matpur.2009.04.001
- Thierry De Pauw and Washek F. Pfeffer, Distributions for which $\textrm {div}\,v=F$ has a continuous solution, Comm. Pure Appl. Math. 61 (2008), no. 2, 230–260. MR 2368375, DOI 10.1002/cpa.20204
- R. E. Edwards, Functional analysis, Dover Publications, Inc., New York, 1995. Theory and applications; Corrected reprint of the 1965 original. MR 1320261
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR 0050886
- R. Engelking, General Topology, PWN, Warsaw, 1977.
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985.
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- Herbert Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974/75), 351–407. MR 348598, DOI 10.1512/iumj.1974.24.24031
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- Wendell H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160–186. MR 185084, DOI 10.1090/S0002-9947-1966-0185084-5
- Richard J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 1356221
- R. J. Gardner and W. F. Pfeffer, Borel measures, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 961–1043. MR 776641
- F. Ghiraldin, Flat currents and Mumford-Shah functionals in codimension highr than one, PhD Thesis, Sc. Norm. Pisa, 2013.
- V. M. Gol′dshtein, V. I. Kuz′minov, and I. A. Shvedov, Differential forms on a Lipschitz manifold, Sibirsk. Mat. Zh. 23 (1982), no. 2, 16–30, 215 (Russian). MR 652220
- F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713
- Eric J. Howard and Washek F. Pfeffer, Luzin’s theorem for charges, Proc. Amer. Math. Soc. 132 (2004), no. 3, 857–863. MR 2019966, DOI 10.1090/S0002-9939-03-07276-9
- A. James Humphreys and Stephen G. Simpson, Separable Banach space theory needs strong set existence axioms, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4231–4255. MR 1373639, DOI 10.1090/S0002-9947-96-01725-4
- Thomas Jech, Set theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR 506523
- William B. Johnson, Joram Lindenstrauss, and Gideon Schechtman, Extensions of Lipschitz maps into Banach spaces, Israel J. Math. 54 (1986), no. 2, 129–138. MR 852474, DOI 10.1007/BF02764938
- Bernd Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123. MR 1189747, DOI 10.1090/S0002-9939-1994-1189747-7
- Urs Lang, Higher-dimensional linear isoperimetric inequalities in hyperbolic groups, Internat. Math. Res. Notices 13 (2000), 709–717. MR 1772520, DOI 10.1155/S1073792800000398
- Urs Lang, Local currents in metric spaces, J. Geom. Anal. 21 (2011), no. 3, 683–742. MR 2810849, DOI 10.1007/s12220-010-9164-x
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, New York, 1977.
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
- Laurent Moonens and Washek F. Pfeffer, The multidimensional Luzin theorem, J. Math. Anal. Appl. 339 (2008), no. 1, 746–752. MR 2370691, DOI 10.1016/j.jmaa.2007.07.041
- Frank Morgan, Geometric measure theory, Academic Press, Inc., Boston, MA, 1988. A beginner’s guide. MR 933756
- Lawrence Narici and Edward Beckenstein, Topological vector spaces, 2nd ed., Pure and Applied Mathematics (Boca Raton), vol. 296, CRC Press, Boca Raton, FL, 2011. MR 2723563
- Washek F. Pfeffer, The divergence theorem and sets of finite perimeter, Pure and Applied Mathematics (Boca Raton), CRC Press, Boca Raton, FL, 2012. MR 2963550
- Washek F. Pfeffer, Integrals and measures, Marcel Dekker, Inc., New York-Basel, 1977. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 42. MR 0460580
- Washek F. Pfeffer, A descriptive definition of a variational integral and applications, Indiana Univ. Math. J. 40 (1991), no. 1, 259–270. MR 1101229, DOI 10.1512/iumj.1991.40.40011
- Washek F. Pfeffer, The Gauss-Green theorem, Adv. Math. 87 (1991), no. 1, 93–147. MR 1102966, DOI 10.1016/0001-8708(91)90063-D
- W. F. Pfeffer, Comparing variations of charges, Indiana Univ. Math. J. 45 (1996), no. 3, 643–654. MR 1422100, DOI 10.1512/iumj.1996.45.1000
- Washek F. Pfeffer, Derivation and integration, Cambridge Tracts in Mathematics, vol. 140, Cambridge University Press, Cambridge, 2001. MR 1816996
- Washek F. Pfeffer, Derivatives and primitives, Sci. Math. Jpn. 55 (2002), no. 2, 399–425. MR 1887074
- C. Riedweg, Virtual flat chains and homologies in metric spaces, PhD Thesis, ETH, Zurich, 2013.
- H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR 0151555
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Walter Rudin, Functional Analysis, McGraw-Hill, New York, 1991.
- Marie A. Snipes, Flat forms in Banach spaces, J. Geom. Anal. 23 (2013), no. 2, 490–538. MR 3023847, DOI 10.1007/s12220-011-9246-4
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
- Michael Spivak, Calculus on manifolds. A modern approach to classical theorems of advanced calculus, W. A. Benjamin, Inc., New York-Amsterdam, 1965. MR 0209411
- Pekka Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149–160. MR 639972, DOI 10.5186/aasfm.1981.0625
- Stefan Wenger, Flat convergence for integral currents in metric spaces, Calc. Var. Partial Differential Equations 28 (2007), no. 2, 139–160. MR 2284563, DOI 10.1007/s00526-006-0034-0
- Brian White, The deformation theorem for flat chains, Acta Math. 183 (1999), no. 2, 255–271. MR 1738045, DOI 10.1007/BF02392829
- Brian White, Rectifiability of flat chains, Ann. of Math. (2) 150 (1999), no. 1, 165–184. MR 1715323, DOI 10.2307/121100
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148