
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Hypercontractivity in group von Neumann algebras
About this Title
Marius Junge, Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St. Urbana, Illinois, Carlos Palazuelos, Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/ Nicolás Cabrera 13-15. Madrid. Spain, Javier Parcet, Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/ Nicolás Cabrera 13-15. Madrid. Spain and Mathilde Perrin, Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/ Nicolás Cabrera 13-15. Madrid. Spain
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 249, Number 1183
ISBNs: 978-1-4704-2565-4 (print); 978-1-4704-4133-3 (online)
DOI: https://doi.org/10.1090/memo/1183
Published electronically: August 8, 2017
Keywords: Hypercontractivity,
Fourier multiplier,
group von Neumann algebra
MSC: Primary 22D15, 43A22, 47D07
Table of Contents
Chapters
- Introduction
- 1. The combinatorial method
- 2. Optimal time estimates
- 3. Poisson-like lengths
- A. Logarithmic Sobolev inequalities
- B. The word length in $\mathbb {Z}_n$
- C. Numerical analysis
- D. Technical inequalities
Abstract
In this paper, we provide a combinatorial/numerical method to establish \hskip-1pt new \hskip-1pt hypercontractivity estimates in group \hskip-1pt von Neumann algebras. \hskip-3pt We will illustrate our method with free groups, triangular groups and finite cyclic groups, for which we shall obtain optimal time hypercontractive $L_2 \to L_q$ inequalities with respect to the Markov process given by the word length and with $q$ an even integer. Interpolation and differentiation also yield general $L_p \to L_q$ hypercontrativity for $1 < p \le q < \infty$ via logarithmic Sobolev inequalities. Our method admits further applications to other discrete groups without small loops as far as the numerical part (which varies from one group to another) is implemented and tested in a computer. We also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) $L_p \to L_q$ hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a conditionally negative word length, like infinite Coxeter groups. Our second method also yields hypercontractivity bounds for groups admitting a finite dimensional proper cocycle. Hypercontractivity fails for conditionally negative lengths in groups satisfying Kazhdan’s property (T).- Mats Erik Andersson, Remarks on hypercontractivity for the smallest groups, Complex analysis and differential equations (Uppsala, 1997) Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., vol. 64, Uppsala Univ., Uppsala, 1999, pp. 51–60. MR 1758914
- Mats Erik Andersson, Beitrag zur Theorie des Poissonschen Integrals über endlichen Gruppen, Monatsh. Math. 134 (2002), no. 3, 177–190 (German, with English summary). MR 1883499, DOI 10.1007/s605-002-8255-5
- D. Bakry and Michel Émery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177–206 (French). MR 889476, DOI 10.1007/BFb0075847
- Keith Ball, Eric A. Carlen, and Elliott H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463–482. MR 1262940, DOI 10.1007/BF01231769
- William Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), no. 1, 159–182. MR 385456, DOI 10.2307/1970980
- William Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 11, 4816–4819. MR 1164616, DOI 10.1073/pnas.89.11.4816
- Philippe Biane, Free hypercontractivity, Comm. Math. Phys. 184 (1997), no. 2, 457–474. MR 1462754, DOI 10.1007/s002200050068
- Aline Bonami, Étude des coefficients de Fourier des fonctions de $L^{p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 2, 335–402 (1971) (French, with English summary). MR 283496
- M. Bożejko, T. Januszkiewicz, and R. J. Spatzier, Infinite Coxeter groups do not have Kazhdan’s property, J. Operator Theory 19 (1988), no. 1, 63–67. MR 950825
- Eric A. Carlen and Elliott H. Lieb, Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities, Comm. Math. Phys. 155 (1993), no. 1, 27–46. MR 1228524
- Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, and Alain Valette, Groups with the Haagerup property, Progress in Mathematics, vol. 197, Birkhäuser Verlag, Basel, 2001. Gromov’s a-T-menability. MR 1852148
- Yves de Cornulier, Romain Tessera, and Alain Valette, Isometric group actions on Hilbert spaces: growth of cocycles, Geom. Funct. Anal. 17 (2007), no. 3, 770–792. MR 2346274, DOI 10.1007/s00039-007-0604-0
- Michael Cowling and Stefano Meda, Harmonic analysis and ultracontractivity, Trans. Amer. Math. Soc. 340 (1993), no. 2, 733–752. MR 1127154, DOI 10.1090/S0002-9947-1993-1127154-7
- E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59 (1984), no. 2, 335–395. MR 766493, DOI 10.1016/0022-1236(84)90076-4
- P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab. 6 (1996), no. 3, 695–750. MR 1410112, DOI 10.1214/aoap/1034968224
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688
- Leonard Gross, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form, Duke Math. J. 42 (1975), no. 3, 383–396. MR 372613
- Leonard Gross, Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys, Diffusion, quantum theory, and radically elementary mathematics, Math. Notes, vol. 47, Princeton Univ. Press, Princeton, NJ, 2006, pp. 45–73. MR 2325763
- Uffe Haagerup, An example of a nonnuclear $C^{\ast }$-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293. MR 520930, DOI 10.1007/BF01410082
- Uffe Haagerup, Marius Junge, and Quanhua Xu, A reduction method for noncommutative $L_p$-spaces and applications, Trans. Amer. Math. Soc. 362 (2010), no. 4, 2125–2165. MR 2574890, DOI 10.1090/S0002-9947-09-04935-6
- P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175, 1989.
- Svante Janson, On hypercontractivity for multipliers on orthogonal polynomials, Ark. Mat. 21 (1983), no. 1, 97–110. MR 706641, DOI 10.1007/BF02384302
- Paul Jolissaint, $K$-theory of reduced $C^*$-algebras and rapidly decreasing functions on groups, $K$-Theory 2 (1989), no. 6, 723–735. MR 1010979, DOI 10.1007/BF00538429
- Paul Jolissaint, Rapidly decreasing functions in reduced $C^*$-algebras of groups, Trans. Amer. Math. Soc. 317 (1990), no. 1, 167–196. MR 943303, DOI 10.1090/S0002-9947-1990-0943303-2
- M. Junge and T. Mei, Noncommutative Riesz transforms—a probabilistic approach, Amer. J. Math. 132 (2010), no. 3, 611–680. MR 2666903, DOI 10.1353/ajm.0.0122
- Marius Junge, Tao Mei, and Javier Parcet, Smooth Fourier multipliers on group von Neumann algebras, Geom. Funct. Anal. 24 (2014), no. 6, 1913–1980. MR 3283931, DOI 10.1007/s00039-014-0307-2
- M. Junge, C. Palazuelos, J. Parcet, M. Perrin and E. Ricard, Hypercontractivity for free products. To appear in Annales Sc. de l’ENS.
- Marius Junge and Qiang Zeng, Noncommutative martingale deviation and Poincaré type inequalities with applications, Probab. Theory Related Fields 161 (2015), no. 3-4, 449–507. MR 3334274, DOI 10.1007/s00440-014-0552-1
- R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras I and II. Grad. Stud. Math. 15 and 16. American Mathematical Society, 1997.
- Todd Kemp, Hypercontractivity in non-commutative holomorphic spaces, Comm. Math. Phys. 259 (2005), no. 3, 615–637. MR 2174419, DOI 10.1007/s00220-005-1379-5
- Todd Kemp, $\scr R$-diagonal dilation semigroups, Math. Z. 264 (2010), no. 1, 111–136. MR 2564935, DOI 10.1007/s00209-008-0455-x
- Malik Koubi, Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 5, 1441–1453 (French, with English and French summaries). MR 1662255
- Hun Hee Lee and Éric Ricard, Hypercontractivity on the $q$-Araki-Woods algebras, Comm. Math. Phys. 305 (2011), no. 2, 533–553. MR 2805471, DOI 10.1007/s00220-011-1221-1
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727–740. MR 288405, DOI 10.1002/cpa.3160240507
- Edward Nelson, The free Markoff field, J. Functional Analysis 12 (1973), 211–227. MR 0343816, DOI 10.1016/0022-1236(73)90025-6
- Robert Olkiewicz and Bogusław Zegarlinski, Hypercontractivity in noncommutative $L_p$ spaces, J. Funct. Anal. 161 (1999), no. 1, 246–285. MR 1670230, DOI 10.1006/jfan.1998.3342
- Narutaka Ozawa and Marc A. Rieffel, Hyperbolic group $C^*$-algebras and free-product $C^*$-algebras as compact quantum metric spaces, Canad. J. Math. 57 (2005), no. 5, 1056–1079. MR 2164594, DOI 10.4153/CJM-2005-040-0
- J. Parcet and K.M. Rogers, Twisted Hilbert transforms vs Kakeya sets of directions. Preprint 2012. arXiv:1207.1992.
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), no. 4, 811–841. MR 1503439, DOI 10.2307/1968466
- Irving Segal, Construction of non-linear local quantum processes. I, Ann. of Math. (2) 92 (1970), 462–481. MR 272306, DOI 10.2307/1970628
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- W. Forrest Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216. MR 69403, DOI 10.1090/S0002-9939-1955-0069403-4
- N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), no. 2, 240–260. MR 803094, DOI 10.1016/0022-1236(85)90087-4
- Fred B. Weissler, Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Amer. Math. Soc. 237 (1978), 255–269. MR 479373, DOI 10.1090/S0002-9947-1978-0479373-2
- Fred B. Weissler, Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Functional Analysis 37 (1980), no. 2, 218–234. MR 578933, DOI 10.1016/0022-1236(80)90042-7