Systems of Transversal Sections near Critical Energy Levels of Hamiltonian Systems in $\mathbb R^4$
About this Title
Naiara V. de Paulo and Pedro A. S. Salomão
Publication: Memoirs of the American Mathematical Society
Publication Year:
2018; Volume 252, Number 1202
ISBNs: 978-1-4704-2801-3 (print); 978-1-4704-4373-3 (online)
DOI: https://doi.org/10.1090/memo/1202
Published electronically: January 25, 2018
Keywords:Hamiltonian dynamics, systems of transversal sections, pseudo-holomorphic
curves, periodic orbits, homoclinic orbits
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Proof of the main statement
- Chapter 3. Proof of Proposition 2.1
- Chapter 4. Proof of Proposition 2.2
- Chapter 5. Proof of Proposition 2.8
- Chapter 6. Proof of Proposition 2.9
- Chapter 7. Proof of Proposition 2.10-$\rm i)$
- Chapter 8. Proof of Proposition 2.10-ii)
- Chapter 9. Proof of Proposition 2.10-iii)
- Appendix A. Basics on pseudo-holomorphic curves in symplectizations
- Appendix B. Linking properties
- Appendix C. Uniqueness and intersections of pseudo-holomorphic curves
Abstract
In this article we study Hamiltonian flows associated to smooth functions restricted to energy levels close to critical levels. We assume the existence of a saddle-center equilibrium point in the zero energy level . The Hamiltonian function near is assumed to satisfy Moser's normal form and is assumed to lie in a strictly convex singular subset of . Then for all small, the energy level contains a subset near , diffeomorphic to the closed -ball, which admits a system of transversal sections , called a foliation. is a singular foliation of and contains two periodic orbits and as binding orbits. is the Lyapunoff orbit lying in the center manifold of , has Conley-Zehnder index and spans two rigid planes in . has Conley-Zehnder index and spans a one parameter family of planes in . A rigid cylinder connecting to completes . All regular leaves are transverse to the Hamiltonian vector field. The existence of a homoclinic orbit to in follows from this foliation.
- [1] Salvador Addas-Zanata and Clodoaldo Grotta-Ragazzo, Conservative dynamics: unstable sets for saddle-center loops, J. Differential Equations 197 (2004), no. 1, 118–146. MR 2030151, https://doi.org/10.1016/j.jde.2003.07.010
- [2] Peter Albers, Urs Frauenfelder, Otto van Koert, and Gabriel P. Paternain, Contact geometry of the restricted three-body problem, Comm. Pure Appl. Math. 65 (2012), no. 2, 229–263. MR 2855545, https://doi.org/10.1002/cpa.21380
- [3] E. Barrabés, J. M. Mondelo, and M. Ollé, Dynamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP, Celestial Mech. Dynam. Astronom. 105 (2009), no. 1-3, 197–210. MR 2551833, https://doi.org/10.1007/s10569-009-9190-9
- [4] Daniel Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87–161 (French). MR 753131
- [5] Patrick Bernard, Homoclinic orbits in families of hypersurfaces with hyperbolic periodic orbits, J. Differential Equations 180 (2002), no. 2, 427–452. MR 1894179, https://doi.org/10.1006/jdeq.2001.4062
- [6] Patrick Bernard, Homoclinic orbit to a center manifold, Calc. Var. Partial Differential Equations 17 (2003), no. 2, 121–157. MR 1986316, https://doi.org/10.1007/s00526-002-0162-0
- [7] Patrick Bernard, Clodoaldo Grotta Ragazzo, and Pedro A. Santoro Salomão, Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with two degrees of freedom, Astérisque 286 (2003), xviii–xix, 151–165 (English, with English and French summaries). Geometric methods in dynamics. I. MR 2052300
- [8] P. Bernard, E. Lombardi and T. Jézéquel. Homoclinic connections with many loops near a resonant fixed point for Hamiltonian systems. preprint arXiv:1401.1509 (2014).
- [9] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799–888. MR 2026549, https://doi.org/10.2140/gt.2003.7.799
- [10] C. Conley, Twist mappings, linking, analyticity, and periodic solutions which pass close to an unstable periodic solution, Topological dynamics (Sympos., Colorado State Univ., Ft. Collins, Colo., 1967) Benjamin, New York, 1968, pp. 129–153. MR 0293203
- [11] C. C. Conley, Low energy transit orbits in the restricted three-body problem, SIAM J. Appl. Math. 16 (1968), 732–746. MR 0233535
- [12] Charles C. Conley, On the ultimate behavior of orbits with respect to an unstable critical point. I. Oscillating, asymptotic, and capture orbits, J. Differential Equations 5 (1969), 136–158. MR 0251301
- [13] Vittorio Coti Zelati and Marta Macrì, Multibump solutions homoclinic to periodic orbits of large energy in a centre manifold, Nonlinearity 18 (2005), no. 6, 2409–2445. MR 2176940, https://doi.org/10.1088/0951-7715/18/6/001
- [14] V. Coti Zelati and M. Macrí, Existence of homoclinic solutions to periodic orbits in a center manifold, J. Differential Equations 202 (2004), no. 1, 158–182. MR 2060536, https://doi.org/10.1016/j.jde.2004.03.030
- [15] David DeLatte, On normal forms in Hamiltonian dynamics, a new approach to some convergence questions, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 49–66. MR 1314968, https://doi.org/10.1017/S0143385700008233
- [16] Yakov Eliashberg, Contact $3$-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165–192 (English, with French summary). MR 1162559
- [17] J. W. Fish, R. Siefring. Connected Sums and Finite Energy Foliations I: Contact connected sums, preprint arXiv:1311.4221 (2013).
- [18] Mohammad Ghomi, Strictly convex submanifolds and hypersurfaces of positive curvature, J. Differential Geom. 57 (2001), no. 2, 239–271. MR 1879227
- [19] Clodoaldo Grotta Ragazzo, Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers, Comm. Pure Appl. Math. 50 (1997), no. 2, 105–147. MR 1426709, https://doi.org/10.1002/(SICI)1097-0312(199702)50:2$\langle$105::AID-CPA1$\rangle$3.3.CO;2-8
- [20] Clodoaldo Grotta-Ragazzo and Pedro A. S. Salomão, The Conley-Zehnder index and the saddle-center equilibrium, J. Differential Equations 220 (2006), no. 1, 259–278. MR 2182088, https://doi.org/10.1016/j.jde.2005.03.015
- [21] C. Grotta-Ragazzo and Pedro A. S. Salomão, Global surfaces of section in non-regular convex energy levels of Hamiltonian systems, Math. Z. 255 (2007), no. 2, 323–334. MR 2262733, https://doi.org/10.1007/s00209-006-0026-y
- [22] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), no. 3, 515–563. MR 1244912, https://doi.org/10.1007/BF01232679
- [23] H. Hofer, K. Wysocki, and E. Zehnder, A characterisation of the tight three-sphere, Duke Math. J. 81 (1995), no. 1, 159–226 (1996). A celebration of John F. Nash, Jr. MR 1381975, https://doi.org/10.1215/S0012-7094-95-08111-3
- [24] H. Hofer, K. Wysocki, and E. Zehnder, A characterization of the tight $3$-sphere. II, Comm. Pure Appl. Math. 52 (1999), no. 9, 1139–1177. MR 1692144, https://doi.org/10.1002/(SICI)1097-0312(199909)52:9$\langle$1139::AID-CPA5$\rangle$3.3.CO;2-C
- [25] H. Hofer, K. Wysocki, and E. Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 3, 337–379 (English, with English and French summaries). MR 1395676
- [26] H. Hofer, K. Wysocki, and E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995), no. 2, 270–328. MR 1334869, https://doi.org/10.1007/BF01895669
- [27] H. Hofer, K. Wysocki, and E. Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl., vol. 35, Birkhäuser, Basel, 1999, pp. 381–475. MR 1725579
- [28] H. Hofer, K. Wysocki, and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2) 148 (1998), no. 1, 197–289. MR 1652928, https://doi.org/10.2307/120994
- [29] H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125–255. MR 1954266, https://doi.org/10.4007/annals.2003.157.125
- [30] A. Mielke, P. Holmes, and O. O’Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dynam. Differential Equations 4 (1992), no. 1, 95–126. MR 1150399, https://doi.org/10.1007/BF01048157
- [31] Umberto Hryniewicz, Fast finite-energy planes in symplectizations and applications, Trans. Amer. Math. Soc. 364 (2012), no. 4, 1859–1931. MR 2869194, https://doi.org/10.1090/S0002-9947-2011-05387-0
- [32] Umberto L. Hryniewicz, Systems of global surfaces of section for dynamically convex Reeb flows on the 3-sphere, J. Symplectic Geom. 12 (2014), no. 4, 791–862. MR 3333029
- [33] Umberto L. Hryniewicz, Joan E. Licata, and Pedro A. S. Salomão, A dynamical characterization of universally tight lens spaces, Proc. Lond. Math. Soc. (3) 110 (2015), no. 1, 213–269. MR 3299604, https://doi.org/10.1112/plms/pdu043
- [34] Umberto Hryniewicz, Al Momin, and Pedro A. S. Salomão, A Poincaré-Birkhoff theorem for tight Reeb flows on $S^3$, Invent. Math. 199 (2015), no. 2, 333–422. MR 3302117, https://doi.org/10.1007/s00222-014-0515-2
- [35] Umberto Hryniewicz and Pedro A. S. Salomão, On the existence of disk-like global sections for Reeb flows on the tight 3-sphere, Duke Math. J. 160 (2011), no. 3, 415–465. MR 2852366, https://doi.org/10.1215/00127094-1444278
- [36] U. Hryniewicz and Pedro A. S. Salomão. Elliptic bindings for dynamically convex Reeb flows on the real projective three-space. preprint arXiv:1505.02713 (2015).
- [37] Umberto L. Hryniewicz and Pedro A. S. Salomão, Global properties of tight Reeb flows with applications to Finsler geodesic flows on $S^2$, Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 1–27. MR 3002580, https://doi.org/10.1017/S0305004112000333
- [38] O. Yu. Kol′tsova and L. M. Lerman, Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), no. 2, 397–408. MR 1341274, https://doi.org/10.1142/S0218127495000338
- [39] Dusa McDuff, The local behaviour of holomorphic curves in almost complex $4$-manifolds, J. Differential Geom. 34 (1991), no. 1, 143–164. MR 1114456
- [40] Richard Paul McGehee, SOME HOMOCLINIC ORBITS FOR THE RESTRICTED THREE-BODY PROBLEM, ProQuest LLC, Ann Arbor, MI, 1969. Thesis (Ph.D.)–The University of Wisconsin - Madison. MR 2619180
- [41] A. Mielke, P. Holmes, and O. O’Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dynam. Differential Equations 4 (1992), no. 1, 95–126. MR 1150399, https://doi.org/10.1007/BF01048157
- [42] Jürgen Moser, On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math. 11 (1958), 257–271. MR 0096021
- [43] Helmut Rüssmann, Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. 154 (1964), 285–300 (German). MR 0179409
- [44] Pedro A. S. Salomão, Convex energy levels of Hamiltonian systems, Qual. Theory Dyn. Syst. 4 (2003), no. 2, 439–457 (2004). MR 2129729, https://doi.org/10.1007/BF02970869
- [45] Richard Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math. 61 (2008), no. 12, 1631–1684. MR 2456182, https://doi.org/10.1002/cpa.20224
- [46] Richard Siefring, Intersection theory of punctured pseudoholomorphic curves, Geom. Topol. 15 (2011), no. 4, 2351–2457. MR 2862160, https://doi.org/10.2140/gt.2011.15.2351