How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

   1a. To purchase any ebook backfile or to subscibe to the current year of Contemporary Mathematics, please download this required license agreement,

   1b. To subscribe to the current year of Memoirs of the AMS, please download this required license agreement.

   2. Complete and sign the license agreement.

   3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2213  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046
Email: cust-serv@ams.org

Visit the AMS Bookstore for individual volume purchases.

Browse the current eBook Collections price list

Powered by MathJax
  Remote Access

Holomorphic Automorphic Forms and Cohomology


About this Title

Roelof Bruggeman, YoungJu Choie and Nikolaos Diamantis

Publication: Memoirs of the American Mathematical Society
Publication Year: 2018; Volume 253, Number 1212
ISBNs: 978-1-4704-2855-6 (print); 978-1-4704-4419-8 (online)
DOI: https://doi.org/10.1090/memo/1212
Published electronically: March 29, 2018
Keywords:Holomorphic automorphic form, Eichler integral, cohomology, mixed parabolic cohomology, period function, harmonic lift, harmonic functions, boundary germ

View full volume PDF

View other years and numbers:

Table of Contents


Chapters

  • Introduction

Part 1. Cohomology with Values in Holomorphic Functions

  • Chapter 1. Definitions and notations
  • Chapter 2. Modules and cocycles
  • Chapter 3. The image of automorphic forms in cohomology
  • Chapter 4. One-sided averages

Part 2. Harmonic Functions

  • Chapter 5. Harmonic functions and cohomology
  • Chapter 6. Boundary germs
  • Chapter 7. Polar harmonic functions

Part 3. Cohomology with values in Analytic Boundary Germs

  • Chapter 8. Highest weight spaces of analytic boundary germs
  • Chapter 9. Tesselation and cohomology
  • Chapter 10. Boundary germ cohomology and automorphic forms
  • Chapter 11. Automorphic forms of integral weights at least $2$ and analytic boundary germ cohomology

Part 4. Miscellaneous

  • Chapter 12. Isomorphisms between parabolic cohomology groups
  • Chapter 13. Cocycles and singularities
  • Chapter 14. Quantum automorphic forms
  • Chapter 15. Remarks on the literature
  • Appendix A. Universal covering group and representations
  • Indices

Abstract


We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least this correspondence is given by the Eichler integral. We use Knopp's generalization of this integral to real weights, and apply it to complex weights that are not an integer at least . We show that for these weights the generalized Eichler integral gives an injection into the first cohomology group with values in a module of holomorphic functions, and characterize the image. We impose no condition on the growth of the automorphic forms at the cusps. Our result concerns arbitrary cofinite discrete groups with cusps, and covers exponentially growing automorphic forms, like those studied by Borcherds, and like those in the theory of mock automorphic forms.For real weights that are not an integer at least we similarly characterize the space of cusp forms and the space of entire automorphic forms. We give a relation between the cohomology classes attached to holomorphic automorphic forms of real weight and the existence of harmonic lifts.A tool in establishing these results is the relation to cohomology groups with values in modules of âĂIJanalytic boundary germsâĂİ, which are represented by harmonic functions on subsets of the upper half-plane. It turns out that for integral weights at least the map from general holomorphic automorphic forms to cohomology with values in analytic boundary germs is injective. So cohomology with these coefficients can distinguish all holomorphic automorphic forms, unlike the classical Eichler theory.

References [Enhancements On Off] (What's this?)

  • [1] A. Ash: Parabolic cohomology of arithmetic subgroups of with coefficients in the field of rational functions on the Riemann sphere; Am. J. Math. 111.1 (1989) 35âĂŞ51
  • [2] K. Bringmann, P. Guerzhoy, Z. Kent, K. Ono: Eichler-Shimura theory for mock modular forms; Math. Annalen 355 (2013) 1085âĂŞ1121
  • [3] K. Bringmann, K. Ono: Lifting elliptic cusp forms to Maass forms with an application to partitions; Proc. Nat. Acad. Sci. U.S.A. 104 (2007) 3725-3731
  • [4] K. Bringmann, N. Diamantis, M. Raum: Mock period functions, sesquiharmonic Maass forms, and non-critical values of -functions; Advances in Mathematics 233.1 (2013) 115âĂŞ134
  • [5] K. Bringmann, B. Kane, S. Zwegers: On a completed generating function of locally harmonic Maass forms; Compositio Math. 150 (2014), no. 5, 749âĂŞ762.
  • [6] G. Bol: Invarianten linearer Differentialgleichungen; Abh. math. Seminar Hamburg 16 (1949) 1âĂŞ28
  • [7] R. Borcherds: Automorphic forms on and infinite products; Invent. Math. 120.1 (1995), 161âĂŞ213
  • [8] K.S. Brown: Cohomology of Groups; Grad. Texts in Math. 87, Springer-Verlag, 1982
  • [9] R. W. Bruggeman: Families of Automorphic Forms; Monographs in Math. 88, Birkhäuser, 1994
  • [10] R.W. Bruggeman: Automorphic forms, hyperfunction cohomology, and period functions; J. reine angew. Math. 492 (1997) 1âĂŞ39
  • [11] R.W. Bruggeman: Quantum Maass forms; p. 1âĂŞ15 in The Conference on L-functions, Fukuoka, Japan 18 âĂŞ 23 February 2006, ed. Lin Weng & Masanobu Kaneko; World Scientific, 2007
  • [12] R.W. Bruggeman, T. Mühlenbruch: Eigenfunctions of transfer operators and cohomology; J. Number Th. 129 (2009) 158âĂŞ181
  • [13] R. Bruggeman, J. Lewis, D. Zagier: Function theory related to the group ; p. 107âĂŞ201 in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, In memory of Leon Ehrenpreis; ed. H.M. Farkas, R.C. Gunning, M. Knopp, B.A. Taylor; Developments in Mathematics 28, Springer-Verlag, 2013
  • [14] R. W. Bruggeman, N. Diamantis: Higher order Maass forms; Algebra & Number Theory 6.7 (2012) 1409âĂŞ1458
  • [15] R. Bruggeman, J. Lewis, D. Zagier: Period Functions for Maass Wave Forms and Cohomology; Memoirs AMS 237, Number 1118; September 2015
  • [16] R. Bruggeman: Harmonic lifts of modular forms; Ramanujan Journal 33 (2014) 55âĂŞ82
  • [17] J.H. Bruinier, J. Funke: On two geometric theta lifts; Duke Math. Journal 125 (2004) 45âĂŞ90
  • [18] J.H. Bruinier, K. Ono, R.C. Rhoades: Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues; Math. Ann. 342 (2008) 673âĂŞ693
  • [19] U. Bunke, M. Olbrich: Gamma-cohomology and the Selberg zeta function; J. reine angew. Math. 467 (1995) 199âĂŞ219
  • [20] U. Bunke, M. Olbrich: Resolutions of distribution globalizations of Harish-Chandra modules and cohomology; J. reine angew. Math. 497 (1998) 47âĂŞ81
  • [21] D. Choi, S. Lim, W. Raji: Period functions of half-integral weight modular forms; Journal de Théorie des Nombres de Bordeaux 27 (2015, no. 1, 33âĂŞ45.
  • [22] Y. Choie: Rational period functions for the modular group and real quadratic fields; Illinois J. Mathematics 33.3 (1989) 495âĂŞ529
  • [23] Y. Choie, A. Parson: Rational period functions and indefinite binary quadratic forms I; Math. Ann. 286 (1990) 697âĂŞ707
  • [24] Y. Choie, A.L. Parson: Rational period functions and indefinite binary quadratic forms II; Illinois J. Mathematics 35.3 (1991) 374âĂŞ400
  • [25] Y. Choie: Rational period functions, class numbers and Diophantine equations; J. Number Th. 42 (1992) 158âĂŞ188
  • [26] Y. Choie, D. Zagier: Rational period functions for ; in A Tribute to Emil Grosswald: Number Theory and Related Analysis, ed. M. Knopp, M. Sheingorn; Contemp. Mathematics 143 (1993) 89âĂŞ108
  • [27] Y. Choie: Hecke operators on rational period functions on the Hecke groups; Results in Mathematics 25 (1994) 40âĂŞ49
  • [28] Y. Choie, N. Diamantis: Values of -functions at integers outside the critical strip; Ramanujan Journal 14-3 (2007) 339âĂŞ350
  • [29] Y. Choie, S. Lim: The heat operator and mock Jacobi forms; Ramanujan J. 22.2 (2010) 209âĂŞ219
  • [30] Y. Choie, W. Kohnen: Mellin transforms attached to certain automorphic integrals; J. Number Theory 132.2 (2012) 301âĂŞ313
  • [31] Y. Choie, S. Lim: Eichler integrals, period relations and Jacobi forms; Math. Z. 271.3âĂŞ4 (2012) 639âĂŞ661
  • [32] Y. Choie, Y. Park, D. Zagier: Periods of modular forms on and products of Jacobi theta funtions; to appear in Journal of the European Mathematical Society (2018); arXiv: 1706.07885[Math]
  • [33] H. Cohn: Variational property of cusp forms; Trans. AMS 82.1 (1956) 117âĂŞ127
  • [34] H. Cohn, M. Knopp: Note on automorphic forms with real period polynomials; Duke Math. J. 32.1 (1965) 115âĂŞ120
  • [35] A. Deitmar, J. Hilgert: Cohomology of arithmetic groups with infinite dimensional coefficient spaces; Documenta Math. 10 (2005) 199âĂŞ216
  • [36] A. Deitmar, J. Hilgert: A Lewis correspondence for submodular groups; Forum Math. 19.6 (2007) 1075âĂŞ1099
  • [37] A. Deitmar: Higher order group cohomology and the Eichler-Shimura map; J. reine angew. Math. 629, (2009) 221âĂŞ235
  • [38] A. Deitmar: Lewis-Zagier correspondence for higher-order forms; Pac. J. Math. 249.1 (2011) 11âĂŞ21
  • [39] A. Deitmar: Invariants, cohomology, and automorphic forms of higher order; Sel. Math. New Ser. 18.5 (2012) 855âĂŞ883
  • [40] N. Diamantis: Special values of higher derivatives of -functions; Forum Mathematica 11.2 (1999) 229âĂŞ252
  • [41] N. Diamantis, C. O'Sullivan: The dimensions of spaces of holomorphic second-order automorphic forms and their cohomology; Trans. Amer. Math. Soc. 360.11 (2008) 5629âĂŞ5666
  • [42] W. Duke, Ö. Imamo[[ovln]]glu, Á. Tóth: Rational period functions and cycle integrals; Abh. Math. Semin. Hambg. 80 (2010) 255âĂŞ264
  • [43] W. Duke, Ö. Imamo[[ovln]]glu, Á. Tóth: Regularized inner products of modular functions; Ramanujan Journal, online 2014, DOI 10.1007/s11139-013-9544-5
  • [44] M. Eichler: Eine Verallgemeinerung der Abelsche Integrale; Math. Z. 67 (1957) 267âĂŞ298
  • [45] M. Eichler: Grenzkreisgruppen und kettenbruchartige Algorithmen; Acta Arithm. 11.2 (1965) 169âĂŞ180
  • [46] W.A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi: Higher Transcendental Functions, vol. I; McGraw-Hill, 1953
  • [47] J.D. Fay: Fourier coefficient of the resolvent for a Fuchsian group; J. reine angew. Math. 293/294 (1977) 143âĂŞ203
  • [48] A. Folsom: What is a mock modular form? Notices of the AMS 57.11 (2010) 1441âĂŞ1443
  • [49] S. Fukuhara: The space of period polynomials; Acta Arithm. 82.1 (1977) 77âĂŞ93
  • [50] S. Fukuhara: Modular forms, generalized Dedekind symbols and period polynomials; Math. Ann. 310 (1998) 83âĂŞ101
  • [51] S.S. Gelbart: Weil's Representation and the Spectrum of the Metaplectic Group; Lect. Notes in Math. 530, Springer-Verlag, 1976
  • [52] D. Goldfeld: Special values of derivatives of -functions; Number theory (Halifax, NS, 1994); CMS Conf. Proc. 15, Amer. Math. Soc., Providence, RI (1995) 159-17
  • [53] L. Goldstein, M. Razar: The theory of Hecke integrals; Nagoya Math. J. 63 (1976), 93âĂŞ121
  • [54] R.C. Gunning: Factors of automorphy and other formal cohomology groups for Lie groups; Ann. of Math. 69.2 (1959) 314âĂŞ326
  • [55] R.C. Gunning: The Eichler cohomology groups and automorphic forms; Trans. AMS 100.1 (1961) 44âĂŞ62
  • [56] K. Haberland: Perioden von Modulformen einer Variabeler und Gruppencohomologie I, II, III; Math. Nachr. 112 (1983) 245âĂŞ282, 283âĂŞ295, 297âĂŞ315
  • [57] J.H. Hawkins, M.I. Knopp: A Hecke correspondence theorem for automorphic integrals with rational period functions; Ill. J. Math. 36.2 (1992) 178âĂŞ207
  • [58] L. Hörmander: An Introduction to Complex Analysis in Several Variables; van Nostrand, 1966
  • [59] S.Y. Husseini, M.I. Knopp: Eichler cohomology and automorphic forms; Illinois J. of Math. 15.4 (1971) 565âĂŞ577
  • [60] K. Ihara, M. Kaneko, D. Zagier: Derivation and double shuffle relations for multiple zeta values; Compos. Math. 142.2 (2006) 307âĂŞ338
  • [61] D. Jeon, S.-Y. Kang, Chang.H. Kim: Weak Maass-Poincaré series and weight 3/2 mock modular forms; J. Number Th. 133.8 (2013) 2567âĂŞ2587
  • [62] S. Kanemitsu, M. Katsurada and M. Yoshimoto: On the Hurwitz-Lerch zeta-function; Aequationes Math. 59.1 (2000), 1âĂŞ19
  • [63] S. Katok, J.J. Millson: Eichler-Shimura homology, intersection numbers and rational structures on spaces of modular forms; Trans. AMS 300.2 (1987) 737âĂŞ757
  • [64] M. Katsurada: Power series and asymptotic series associated with the Lerch zeta-function; Proc. Japan Acad. Ser. A 74.10 (1998) 167âĂŞ170
  • [65] A.W. Knapp: Representation Theory of Semisimple Groups, an Overview based on Examples; Princeton University Press, 1986
  • [66] M. Knopp: Construction of automorphic forms on -groups and supplementary Fourier series; Trans. AMS 103.1 (1962) 168âĂŞ188
  • [67] M. Knopp: Some new results on the Eichler cohomology of automorphic forms; Bull. AMS 80.4 (1974) 607âĂŞ632
  • [68] M. Knopp: Rational period functions of the modular group; Duke Math. J. 45.1 (1978) 47âĂŞ62
  • [69] M. Knopp: Rational period functions of the modular group, II; Glasgow Math. J. 22.2 (1981) 185âĂŞ197
  • [70] M. Knopp, G. Mason: Generalized modular forms; J. Number Theory 99.1 (2003) 1âĂŞ28
  • [71] M. Knopp, J. Lehner, W. Raji: Eichler cohomology for generalized modular forms; Int. J. Number Theory 5.6 (2009) 1049âĂŞ1059
  • [72] M. Knopp, H. Mawi: Eichler cohomology theorem for automorphic forms of small weights; Proc. AMS 138.2 (2010) 395âĂŞ404
  • [73] M. Knopp, W. Raji: Eichler cohomology and generalized modular forms II; Int. J. Number Theory 6.5 (2010) 1083âĂŞ1090
  • [74] W. Kohnen, D. Zagier: Modular forms with rational periods; in Modular Forms, R.A. Rankin (ed.), Durham; Ellis Horwood, Chichester, 1984, 197âĂŞ249
  • [75] M. Kontsevich, D. Zagier: Periods; in Mathematics unlimited âĂŤ 2001 and beyond, B. Engquist, W. Schmid eds.; 771âĂŞ808, Springer, Berlin, 2001
  • [76] I. Kra: On cohomology of kleinian groups; Ann. of Math. 89.3 (1969) 533âĂŞ556
  • [77] I. Kra: On cohomology of kleinian groups, II; Ann. of Math. 90.3 (1969) 576âĂŞ590
  • [78] J.C. Lagarias, W-C.W. Li: The Lerch zeta function II. Analytic continuation; Forum Math. 24.1 (2012) 49âĂŞ84
  • [79] S. Lang: ; Addison-Wesley, Reading, MA-London-Amsterdam, 1975
  • [80] S. Lang: Real and Functional Analysis; Springer-Verlag, 1993
  • [81] J. Lehner: Automorphic integrals with preassigned periods; J. of research Nat. Bureau of Standards V 738 (1969)
  • [82] J. Lehner: Automorphic integrals with preassigned period polynomials and the Eichler cohomology; Computers in Number Theory, Proc. Science research Council Atlas Sympos, no. 2 (ed. by A.O. Atkin and B.J. Birch), Academic press, London, New York, 1971, 49âĂŞ56
  • [83] J.B. Lewis: Spaces of holomorphic functions equivalent to the even Maass cusp forms; Invent. math. 127 (1997) 271âĂŞ306
  • [84] J. Lewis, D. Zagier: Period functions and the Selberg zeta function for the modular group; 83âĂŞ97 in The Mathematical Beauty of Physics, A Memorial Volume for Claude Itzykson, eds. J.M. Drouffe and J.B. Zuber; Adv. Series in Mathematical Physics 24, World Scientific, Singapore (1997)
  • [85] J.B. Lewis, D. Zagier: Period functions for Maass wave forms. I; Ann. of Math. (2) 153 (2001), no. 1, 191âĂŞ258
  • [86] Ju.I. Manin: Parabolic points and zeta functions of modular curves; Izv. Akad. Nauk SSSR Ser. Mat. 36.1 (1972) 19âĂŞ66
  • [87] Ju.I. Manin: Periods of cusp forms, and -adic Hecke series. (Russian); Mat. Sb. (N.S.) 92(134) (1973), 378âĂŞ401, 503; translation: Math. USSR-Sb. 21 (1973) 371âĂŞ393
  • [88] F. Martin: Périodes de formes modulaires de poids 1; J. Number Theory 116 (2006) 399âĂŞ442
  • [89] D.H. Mayer: The thermodynamic formalism approach to Selberg's zeta function for ; Bull. AMS 25.1 (1991) 55-60
  • [90] H. Meier, G. Rosenberger: Hecke-Integrale mit rationalen periodischen Funktionen und Dirichlet-Reihen mit Funktionalgleichung; Results in Math. 7 (1984) 209âĂŞ233
  • [91] M. Möller, A. Pohl: Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant; Erg. Th. Dyn. Syst. 33.1 (2013) 247-283
  • [92] T. Mühlenbruch: Systems of Automorphic Forms and Period Functions; Ph.D. thesis Utrecht, 2003
  • [93] T. Mühlenbruch, W. Raji: Eichler integrals for Maass cusp forms of half-integral weight; Illinois J. of Math. 57 (2013), no. 2, 445âĂŞ475.
  • [94] D. Niebur: A class of nonanalytic automorphic functions; Nagoya Math. J. 52 (1973) 133âĂŞ145
  • [95] D. Niebur: Construction of automorphic forms and integrals; Trans. AMS 191 (1974) 373âĂŞ385
  • [96] L.A. Parson: Rational period functions and indefinite binary quadratic forms, III; in A tribute to Emil Grosswald: Number Theory and Related Analysis, ed. M. Knopp, M. Sheingorn; Contemp. Mathematics 143 (1993) 109âĂŞ116
  • [97] H. Petersson: Zur analytischen Theorie der Grenzkreisgruppen, I; Math. Ann. 115 (1938) 23âĂŞ67
  • [98] A.D. Pohl: Period functions for Maass cusp forms for : a transfer operator approach; Int. Math. Res. Not. 13.14 (2013) 3250âĂŞ3273
  • [99] A.D. Pohl: A dynamical approach to Maass cusp forms; Journal of modern dynamics 6.4 (2012) 563âĂŞ596
  • [100] A.D. Pohl: Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow; Ergodic Theory Dynam. Systems 36 (2016), no. 1, 142âĂŞ172.
  • [101] H. Poincaré: Sur les invariants arithmétiques; J. reine angew. Math. 129 (1905) 89âĂŞ150
  • [102] W. Pribitkin: The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I; Acta Arithm. 91.4 (1999) 291âĂŞ309
  • [103] W. Pribitkin: The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II; Acta Arithm. 93.4 (2000) 343âĂŞ358
  • [104] W. Pribitkin: Fractional integrals of modular forms; Acta Arithm. 116 (2005) 43âĂŞ62
  • [105] L. Pukánsky: The Plancherel formula for the universal covering group of ; Math. Ann. 156 (1964) 96âĂŞ143
  • [106] W. Raji: Eichler cohomology theorem for generalized modular forms; Int. J. Number Theory 7.4 (2011) 1103âĂŞ1113
  • [107] W. Raji: Eichler cohomology of generalized modular forms of real weights; Proc. Amer. Math. Soc. 141 (2013) 383âĂŞ392
  • [108] M. Razar: Values of Dirichlet series at integers in the critical strip; Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 1âĂŞ10. Lecture Notes in Math. 627, Springer, Berlin, 1977
  • [109] M. Razar: Modular forms for and Dirichlet series; Trans. Amer. Math. Soc. 231.2 (1977) 489âĂŞ495
  • [110] W. Roelcke: Das Eigenwertproblem der automorphen Formen in der hyperbolische Ebene, I; Math. Ann. 167 (1966) 292âĂŞ337
  • [111] T.A. Schmidt: Rational period functions and parabolic cohomology; J. Number Theory 57.1 (1996) 50âĂŞ65
  • [112] A. Selberg: Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces with applications to Dirichlet series; J. Indian Math. Soc. 20 (1956) 47âĂŞ87
  • [113] G. Shimura: Sur les intégrales attachées aux formes automorphes; J. math. Soc. Japan 11 (1959) 291âĂŞ311
  • [114] V. Shokurov: Shimura integrals of parabolic forms (Russian); Izvestija Akademia Nauk SSSR, Serija Matem. 44: 3 (1980) 670âĂŞ718; translation: Mathematics of the USSR/Izvestija 16 (1980) 603âĂŞ646
  • [115] D. Sim: Ring Structure of Higher Order Modular Forms; Univ. of Nottingham, PhD thesis 2009
  • [116] L.J. Slater: Confluent Hypergeometric Functions; Cambridge Univ. Press, 1960
  • [117] K. Taylor: A decomposition of the space of higher order modular cusp forms; Acta Arith. 153.2 (2012) 109âĂŞ132
  • [118] M. Vlasenko, D. Zagier: Higher Kronecker limit formulas for real quadratic fields; J. Reine Angew. Math. 679 (2013) 23âĂŞ64
  • [119] D. Zagier: Hecke operators and periods of modular forms; Festschrift I.I. Piatetski-Shapiro, ed. S. Gelbart, R. Howe, P. Sarnak; Israel Math. Conf. Proc. 3, Part II (1990) 321âĂŞ336
  • [120] D. Zagier: Periods of modular forms and Jacobi theta functions; Invent. math. 104 (1991) 449âĂŞ465
  • [121] D. Zagier: Derivation and double shuffle relations for multiple zeta values; Compos. Math. 142.2 (2006) 307âĂŞ338
  • [122] D. Zagier: New points of view on the Selberg zeta function; Proceedings of the Japanese-German Seminar âĂIJExplicit Structures of Modular Forms and Zeta FunctionsâĂİ, Ryushi-do (2002) 1âĂŞ10
  • [123] D. Zagier: Théorie des nombres; report Collège de France 2003, http://www.college-de-france.fr/media/don-zagier/UPL11218_zagier_cours0203r.pdf
  • [124] D. Zagier: Ramanujan's mock theta functions and their applications [d'après Zwegers and Bringmann-Ono]; Séminaire Bourbaki, 60ème année, 2007-2008, no 986, Astérisque 326 (2009), Soc Math. de France, 143âĂŞ164
  • [125] D. Zagier: Quantum modular forms; in Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings 11, AMS and Clay Mathematics Institute 2010, 659âĂŞ675
  • [126] D. Zagier: Evaluation of the multiple zeta values ; Ann. of Math. (2) 175 (2012) no. 2, 977âĂŞ1000
American Mathematical Society