Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem

About this Title

Gabriella Pinzari, Dipartimento di Matematica ed Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Monte Sant’Angelo – Via Cinthia I-80126 Napoli (Italy)

Publication: Memoirs of the American Mathematical Society
Publication Year: 2018; Volume 255, Number 1218
ISBNs: 978-1-4704-4102-9 (print); 978-1-4704-4813-4 (online)
DOI: https://doi.org/10.1090/memo/1218
Published electronically: June 25, 2018
Keywords: Canonical coordinates, Jacobi’s reduction, Deprit’s reduction, Perihelia reduction, symmetries, quasi-periodic motions, Arnold’s theorem on the stability of planetary motions.
MSC: Primary 34C20, 70F10, 37J10, 37J15, 37J40; Secondary 34D10, 70F07, 70F15, 37J25, 37J35

View full volume PDF

View other years and numbers:

Table of Contents

Chapters

  • 1. Background and results
  • 2. Kepler maps and the Perihelia reduction
  • 3. The $\mathcal {P}$-map and the planetary problem
  • 4. Global Kolmogorov tori in the planetary problem
  • 5. Proofs
  • A. Computing the domain of holomorphy
  • B. Proof of Lemma 3.2
  • C. Checking the non-degeneracy condition
  • D. Some results from perturbation theory
  • E. More on the geometrical structure of the $\mathcal {P}$-coordinates, compared to Deprit’s coordinates

Abstract

We prove the existence of an almost full measure set of $(3n-2)$-dimensional quasi-periodic motions in the planetary problem with $(1+n)$ masses, with eccentricities arbitrarily close to the Levi–Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold (1963) in the 60s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group.

The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, common tool of previous literature.

References [Enhancements On Off] (What's this?)

References
  • V. I. Arnol′d, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 13–40 (Russian). MR 0163025
  • V. I. Arnol′d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91–192 (Russian). MR 0170705
  • Françoise Boigey, Élimination des nœuds dans le problème newtonien des quatre corps, Celestial Mech. 27 (1982), no. 4, 399–414 (French, with English summary). MR 670321, DOI 10.1007/BF01228562
  • Alessandra Celletti and Gabriella Pinzari, Four classical methods for determining planetary elliptic elements: a comparison, Celestial Mech. Dynam. Astronom. 93 (2005), no. 1-4, 1–52. MR 2186799, DOI 10.1007/s10569-005-8663-8
  • L. Chierchia. The Planetary N-Body Problem. UNESCO Encyclopedia of Life Support Systems, 6.119.55, 2012.
  • Luigi Chierchia and Gabriella Pinzari, Properly-degenerate KAM theory (following V. I. Arnold), Discrete Contin. Dyn. Syst. Ser. S 3 (2010), no. 4, 545–578. MR 2684064, DOI 10.3934/dcdss.2010.3.545
  • Luigi Chierchia and Gabriella Pinzari, Deprit’s reduction of the nodes revisited, Celestial Mech. Dynam. Astronom. 109 (2011), no. 3, 285–301. MR 2777135, DOI 10.1007/s10569-010-9329-8
  • Luigi Chierchia and Gabriella Pinzari, Planetary Birkhoff normal forms, J. Mod. Dyn. 5 (2011), no. 4, 623–664. MR 2903753, DOI 10.3934/jmd.2011.5.623
  • Luigi Chierchia and Gabriella Pinzari, The planetary $N$-body problem: symplectic foliation, reductions and invariant tori, Invent. Math. 186 (2011), no. 1, 1–77. MR 2836051, DOI 10.1007/s00222-011-0313-z
  • L. Chierchia and G. Pinzari. Metric stability of the planetary n-body problem. Proceedings of the International Congress of Mathematicians, 2014.
  • A. Delshams, V. Kaloshin, A. de la Rosa, and T. M. Seara. Global instability in the elliptic restricted three body problem. arXiv: 1501.01214, 2015.
  • André Deprit, Elimination of the nodes in problems of $n$ bodies, Celestial Mech. 30 (1983), no. 2, 181–195. MR 711657, DOI 10.1007/BF01234305
  • J. Féjoz. Work in progress.
  • Jacques Féjoz, Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman), Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1521–1582 (French, with English and French summaries). MR 2104595, DOI 10.1017/S0143385704000410
  • Jacques Féjoz, On action-angle coordinates and the Poincaré coordinates, Regul. Chaotic Dyn. 18 (2013), no. 6, 703–718. MR 3146588, DOI 10.1134/S1560354713060105
  • J. Féjoz. On "Arnold’s theorem" in celestial mechanics -a summary with an appendix on the poincaré coordinates. Discrete and Continuous Dynamical Systems, 33:3555-3565, 2013.
  • J. Fejoz, M. Guardia, V. Kaloshin, and P. Roldan. Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three body problem. J. Eur. Math. Soc., 2014.
  • Sebastián Ferrer and Carlos Osácar, Harrington’s Hamiltonian in the stellar problem of three bodies: reductions, relative equilibria and bifurcations, Celestial Mech. Dynam. Astronom. 58 (1994), no. 3, 245–275. MR 1271458, DOI 10.1007/BF00691977
  • R. S. Harrington. The stellar three-body problem. Celestial Mech. and Dyn. Astronomy, 1(2):200-209, 1969.
  • M. R. Herman. Torsion du problème planétaire, edited by J. Féjoz in 2009. Available in the electronic ‘Archives Michel Herman’ at http://www.college-de-france.fr/default/EN/all/equ_dif/archives_michel_herman.htm.
  • C. G. J. Jacobi. Sur l’élimination des noeuds dans le problème des trois corps. Astronomische Nachrichten, Bd XX:81-102, 1842.
  • A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527–530 (Russian). MR 0068687
  • Jacques Laskar and Philippe Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom. 62 (1995), no. 3, 193–217. MR 1364477, DOI 10.1007/BF00692088
  • T. Levi-Civita. Sopra la equazione di Kepler. Astronomische Nachrichten, 165(20):313-314, 1904.
  • F. Malige, P. Robutel, and J. Laskar, Partial reduction in the $n$-body planetary problem using the angular momentum integral, Celestial Mech. Dynam. Astronom. 84 (2002), no. 3, 283–316. MR 1935017, DOI 10.1023/A:1020392219443
  • J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20. MR 147741
  • G. Pinzari. On the Kolmogorov set for many-body problems. PhD thesis, Università Roma Tre, April 2009.
  • Gabriella Pinzari, Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn. 18 (2013), no. 6, 860–906. MR 3146595, DOI 10.1134/S1560354713060178
  • Gabriella Pinzari, Canonical coordinates for the planetary problem, Acta Appl. Math. 137 (2015), 205–232. MR 3343379, DOI 10.1007/s10440-014-9996-7
  • H. Poincaré. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris, 1892.
  • Jürgen Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z. 213 (1993), no. 2, 187–216. MR 1221713, DOI 10.1007/BF03025718
  • R. Radau, Sur une transformation des équations différentielles de la dynamique, Ann. Sci. École Norm. Sup. 5 (1868), 311–375 (French). MR 1508550
  • Philippe Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions, Celestial Mech. Dynam. Astronom. 62 (1995), no. 3, 219–261. MR 1364478, DOI 10.1007/BF00692089
  • H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn. 6 (2001), no. 2, 119–204. MR 1843664, DOI 10.1070/RD2001v006n02ABEH000169
  • F. Tisserand. Traité de mécanique céleste. Gauthier-Villars, I, 1889-1896
  • Lei Zhao, Partial reduction and Delaunay/Deprit variables, Celestial Mech. Dynam. Astronom. 120 (2014), no. 4, 423–432. MR 3277249, DOI 10.1007/s10569-014-9584-1