CR Embedded Submanifolds of CR Manifolds
About this Title
Sean N. Curry and A. Rod Gover
Publication: Memoirs of the American Mathematical Society
Publication Year:
2019; Volume 258, Number 1241
ISBNs: 978-1-4704-3544-8 (print); 978-1-4704-5073-1 (online)
DOI: https://doi.org/10.1090/memo/1241
Published electronically: March 11, 2019
Keywords:CR embeddings, CR invariants, tractor calculus, Gauss-Codazzi-Ricci
equations, Bonnet theorem.
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Weighted Tanaka-Webster Calculus
- Chapter 3. CR Tractor Calculus
- Chapter 4. CR Embedded Submanifolds and Contact Forms
- Chapter 5. CR Embedded Submanifolds and Tractors
- Chapter 6. Higher Codimension Embeddings
- Chapter 7. Invariants of CR Embedded Submanifolds
- Chapter 8. A CR Bonnet Theorem
Abstract
We develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. We define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles we are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss formula. This leads also to CR analogues of the Gauss, Codazzi, and Ricci equations. The tractor Gauss formula includes two basic invariants of a CR embedding which, along with the submanifold and ambient curvatures, capture the jet data of the structure of a CR embedding. These objects therefore form the basic building blocks for the construction of local invariants of the embedding. From this basis we develop a broad calculus for the construction of the invariants and invariant differential operators of CR embedded submanifolds.The CR invariant tractor calculus of CR embeddings is developed concretely in terms of the Tanaka-Webster calculus of an arbitrary (suitably adapted) ambient contact form. This enables straightforward and explicit calculation of the pseudohermitian invariants of the embedding which are also CR invariant. These are extremely difficult to find and compute by more naïve methods. We conclude by establishing a CR analogue of the classical Bonnet theorem in Riemannian submanifold theory.
- [1] M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330. MR 0650828, https://doi.org/10.1007/BF01425417
- [2] T. N. Bailey, M. G. Eastwood, and A. R. Gover, Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), no. 4, 1191–1217. MR 1322223, https://doi.org/10.1216/rmjm/1181072333
- [3] Toby N. Bailey, Michael G. Eastwood, and C. Robin Graham, Invariant theory for conformal and CR geometry, Ann. of Math. (2) 139 (1994), no. 3, 491–552. MR 1283869, https://doi.org/10.2307/2118571
- [4] Eric Bedford, Proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 157–175. MR 733691, https://doi.org/10.1090/S0273-0979-1984-15235-2
- [5] Francis E. Burstall and David M. J. Calderbank, Submanifold geometry in generalized flag manifolds, Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 13–41. MR 2069394
- [6] F. E. Burstall & D. M. J. Calderbank, Conformal submanifold geometry I-III, preprint, (2010), arXiv:1006.5700v1 [math.DG].
- [7] David M. J. Calderbank and Tammo Diemer, Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–103. MR 1856258, https://doi.org/10.1515/crll.2001.059
- [8] Andreas Čap and A. Rod Gover, Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1511–1548. MR 1873017, https://doi.org/10.1090/S0002-9947-01-02909-9
- [9] Andreas Čap and A. Rod Gover, CR-tractors and the Fefferman space, Indiana Univ. Math. J. 57 (2008), no. 5, 2519–2570. MR 2463976, https://doi.org/10.1512/iumj.2008.57.3359
- [10] Andreas Čap and Jan Slovák, Parabolic geometries. I, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009. Background and general theory. MR 2532439
- [11] Andreas Čap, Jan Slovák, and Vladimír Souček, Bernstein-Gelfand-Gelfand sequences, Ann. of Math. (2) 154 (2001), no. 1, 97–113. MR 1847589, https://doi.org/10.2307/3062111
- [12] E. Cartan, Sur la géometrié pseudo-conforme des hypersurfaces de deux variables complexes. I, Ann. Math. Pura Appl. 11 (1932) 17-90; II, Ann. Scoula Norm. Sup. Pisa 1 (1932) 333âĂŞ354.
- [13] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 0425155, https://doi.org/10.1007/BF02392146
- [14] Sean N. Curry and A. Rod Gover, An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, Asymptotic analysis in general relativity, London Math. Soc. Lecture Note Ser., vol. 443, Cambridge Univ. Press, Cambridge, 2018, pp. 86–170. MR 3792084
- [15] Sorin Dragomir, On pseudo-Hermitian immersions between strictly pseudoconvex CR manifolds, Amer. J. Math. 117 (1995), no. 1, 169–202. MR 1314462, https://doi.org/10.2307/2375040
- [16] Sorin Dragomir and André Minor, CR immersions and Lorentzian geometry: Part I: Pseudohermitian rigidity of CR immersions, Ric. Mat. 62 (2013), no. 2, 229–263. MR 3120051, https://doi.org/10.1007/s11587-013-0157-5
- [17] Sorin Dragomir and Giuseppe Tomassini, Differential geometry and analysis on CR manifolds, Progress in Mathematics, vol. 246, Birkhäuser Boston, Inc., Boston, MA, 2006. MR 2214654
- [18] Michael Eastwood, Notes on conformal differential geometry, The Proceedings of the 15th Winter School “Geometry and Physics” (Srní, 1995), 1996, pp. 57–76. MR 1463509
- [19] Michael G. Eastwood and John W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys. 109 (1987), no. 2, 207–228. MR 880414
- [20] Peter Ebenfelt, Xiaojun Huang, and Dmitri Zaitsev, Rigidity of CR-immersions into spheres, Comm. Anal. Geom. 12 (2004), no. 3, 631–670. MR 2128606, https://doi.org/10.4310/CAG.2004.v12.n3.a6
- [21] James J. Faran V, A reflection principle for proper holomorphic mappings and geometric invariants, Math. Z. 203 (1990), no. 3, 363–377. MR 1038706, https://doi.org/10.1007/BF02570744
- [22] Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 0350069, https://doi.org/10.1007/BF01406845
- [23] Charles Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31 (1979), no. 2, 131–262. MR 526424, https://doi.org/10.1016/0001-8708(79)90025-2
- [24] Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- [25] Charles Fefferman and C. Robin Graham, The ambient metric, Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012. MR 2858236
- [26] A. Rod Gover, Invariants on projective space, J. Amer. Math. Soc. 7 (1994), no. 1, 145–158. MR 1214703, https://doi.org/10.1090/S0894-0347-1994-1214703-8
- [27] A. Rod Gover, Invariant theory for a parabolic subgroup of ${\rm SL}(n+1,{\bf R})$, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1543–1553. MR 1231035, https://doi.org/10.1090/S0002-9939-1995-1231035-5
- [28] A. Rod Gover, Invariants and calculus for projective geometries, Math. Ann. 306 (1996), no. 3, 513–538. MR 1415076, https://doi.org/10.1007/BF01445263
- [29] A. Rod Gover, Aspects of parabolic invariant theory, Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 25–47. The 18th Winter School “Geometry and Physics” (Srní, 1998). MR 1692257
- [30] A. Rod Gover, Invariant theory and calculus for conformal geometries, Adv. Math. 163 (2001), no. 2, 206–257. MR 1864834, https://doi.org/10.1006/aima.2001.1999
- [31] A. Rod Gover, Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys. 60 (2010), no. 2, 182–204. MR 2587388, https://doi.org/10.1016/j.geomphys.2009.09.016
- [32] A. Rod Gover and C. Robin Graham, CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1–27. MR 2146851, https://doi.org/10.1515/crll.2005.2005.583.1
- [33] A. R. Gover and A. Waldron, Conformal hypersurface geometry via a boundary Loewner-Nirenberg-Yamabe problem, preprint, (2015), arXiv:1506.02723 [math.DG].
- [34] D. H. Grant, A conformally invariant third order Neumann-type operator for hypersurfaces, MSc thesis, University of Auckland, 2003.
- [35] Kengo Hirachi, Construction of boundary invariants and the logarithmic singularity of the Bergman kernel, Ann. of Math. (2) 151 (2000), no. 1, 151–191. MR 1745015, https://doi.org/10.2307/121115
- [36] Bernhard Lamel, A reflection principle for real-analytic submanifolds of complex spaces, J. Geom. Anal. 11 (2001), no. 4, 627–633. MR 1861300, https://doi.org/10.1007/BF02930759
- [37] John M. Lee, The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer. Math. Soc. 296 (1986), no. 1, 411–429. MR 837820, https://doi.org/10.1090/S0002-9947-1986-0837820-2
- [38] Hans Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155–158. MR 0088629, https://doi.org/10.2307/1970121
- [39] Michael J. Markowitz, CR-hypersurfaces in a space with a pseudoconformal connection, Trans. Amer. Math. Soc. 276 (1983), no. 1, 117–132. MR 684496, https://doi.org/10.1090/S0002-9947-1983-0684496-0
- [40] A. Minor, CR embeddings, chains, and the Fefferman bundle, preprint, (2013), arXiv:1010.3458v3 [math.DG].
- [41] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185âĂŞ220.
- [42] R. Stafford, Tractor calculus and invariants for conformal submanifolds, MSc thesis, University of Auckland, 2006.
- [43] Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 0145555, https://doi.org/10.2969/jmsj/01440397
- [44] Noboru Tanaka, Graded Lie algebras and geometric structures, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. 147–150. MR 0222802
- [45] Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. MR 0399517
- [46] Noboru Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), no. 1, 131–190. MR 0589931, https://doi.org/10.4099/math1924.2.131
- [47] Yoshiya Takemura, On the invariant submanifold of a CR-manifold, Kodai Math. J. 5 (1982), no. 3, 416–425. MR 684799
- [48] Y. Vyatkin, Manufacturing conformal invariants of hypersurfaces, PhD thesis, The University of Auckland, 2013.
- [49] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25–41. MR 520599
- [50] S. M. Webster, On mapping an $n$-ball into an $(n+1)$-ball in complex spaces, Pacific J. Math. 81 (1979), no. 1, 267–272. MR 543749
- [51] S. M. Webster, The rigidity of C-R hypersurfaces in a sphere, Indiana Univ. Math. J. 28 (1979), no. 3, 405–416. MR 529673, https://doi.org/10.1512/iumj.1979.28.28027