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AUTHOR’S FOREWORD TO THE TRANSLATION

The initiative for writing this book came from Edmund Landau, who suggested
it to me in Gottingen in 1928. The book was begun in collaboration with the Norwe-
gian mathematician Nagell, but we soon realized that it would be much more con-
venient for me to have a coauthor living in Leningrad, where I resided at that
time, in the person of my pupil, a very gifted algebraist, Dimitrii Konstantinovi¢
Faddeev. The whole book was conceived by me, in a sense, as a framework for
my investigations into indeterminate equations of the third degree, as developed
in Chapter VI.

After the works of Lagrange and Gauss in the theory of indeterminate equa-
tions of the second degree in two unknowns, which used to occupy an important
part of any course in the theory of numbers, there appeared on the one hand the
works of Dirichlet, and on the other those of Hermite. Dirichlet generalized the
work of Lagrange and Gauss to equations of the form ® = m, where ® is a form of
the nth degree in n variables, decomposable into irrational linear factors, and m
is a given number, while Hermite considered the equation ¥ = m, where ¥ is a
quadratic form in n variables. An interesting result concerning such equations
was also obtained by Dickson, As to indeterminate equations of the third and
higher degree in two unknowns, only the remarkable method of Thue was applica-
ble. This method was brought to its ultimate conclusion by Roth without introduc-
ing anything new in principle. However, for the effective solution of such equa-
tions one must apparently look fornew and deeper methods.

Around 1920 there appeared two series of papers on the indeterminate equa-
tions of the third degree in two unknowns: my papers, which are given here in
Chapter VI, having to do with integer solutions, and those of Mordell on a finite
basis for rational solutions, which form the culmination of an idea of Poincaré,

At the present time the following two problems in the theory of indeterminate
equations are unquestionably the ones to which attention should now be turned:
1) To test the effectiveness of the method for finding integer solutions of binary
equations, possibly by developing further my algorithm of ascent and at the same
time probably solving the problem of incomplete quotients. 2) To obtain effec-
tively the Poincaré basis for rational solutions. The second problem is being

iii



v AUTHOR’S FOREWORD TO THE TRANSL ATION

studied by some well-known modern mathematicians, such as Serre in Paris and
Safarevi¢ in Moscow, but nobody has given any serious attention to the develop-
ment of my method since I abandoned it in the 1930’s. It should be pointed out
that there is no algebraic irrational of degree higher than the second for which we
know whether the partial quotients in its expansion in a continued fraction are

3

bounded or not. However, an effective solution even of the equation ax’ + y3 = o,

with given integers ¢ and ¢, would apparently lead to the solution of this prob-

lem for \3/_
I hope that the publication of this book in the United States will serve as a

stimulus to others to develop further the methods presented in Chapter VI.

B. Delone
Moscow,
July 30, 1962

Translators’ note. The translators are deeply grateful to Professor Delone for his
valuable assistance with certain details of the text and for his suggestions regarding the
inclusion of recent or supplementary material.
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INTRODUCTION

A large part of the modern theory of algebraic numbers is concerned with prob-
lems whose simplest nontrivial examples can be found in the theory of quadratic
irrationalities given by Gauss in his Disquisitiones arithmeticae. To this belong
the theory of units, theory of ideals, laws of reciprocity and therefore, to a cer-

tain extent, class field theory.

A similar study of the theory of cubic irrationalities is interesting not only
as the next case in complexity after the quadratic case, in which it is still possi-
ble to give solutions in terms of convenient algorithms, but primarily because it
poses further problems that were so trivial in the quadratic case as to escape no-
tice. To this belong in the first place the problem of classification of cubic irra-
tionalities, the so-called inverse problem of the Galois theory for these irration-
alities, and the problem of approximation of irrational numbers of higher degree by
rationals, which is as yet not completely solved and which is closely connected
with the problem of representing numbers by incomplete reducible forms (i.e.,
forms in which the number of variables is less than the degree). These two funda-
mental problems first appeared in a nontrivial way in the theory of cubic irration-
alities, but they exist for irrationalities of any degree.

Until now there has appeared no monograph in the mathematical literature on
the theory of cubic irrationalities. Our book fills this gap.

It is natural that this book should be published by the Academy of Sciences
(U.S.S.R.), since many of the investigations in the theory of cubic irrationalities
are due to mathematicians who are in one way or another connected with the Acad-
emy, They are: E. Zolotarev, A. Markov, G. Voronoi, myself, V. A. Tartakovskif,
D. K. Faddeev, E. A. Venkov, and O. K. Zitomirskii. The most important contribu-
tions of foreign mathematicians to this subject are due to Eisenstein, Thue,
Mordell, Nagell, A. Weil and C. L. Siegel, as well as to Dedekind and Hasse. The
investigations of the last two mathematicians are not included in this monograph,
since their methods are more in the nature of application of general class field
theory to the special case of cubic fields.

One may hope that considerations similar to the ones discussed in Chapters

I and III may lead to the construction of a theory, close to class field theory, but

X1



xii INTRODUCTION

which will give solutions to problems now solved by class field theory without

the use of the analytical theory of numbers,

D. K. Faddeev and I are equal coauthors of this book, and about half of the
material contained in it belongs to D. K. Faddeev. Usually, the plan for each sec-
tion was discussed by us jointly in advance, and subsequently each of us looked
over the sections written by the other. Thus §§7—9, 12, 19, 22-25, 34, 35, 42—
59, 64, 70, 72—74, 79-82 were written by D. K. Faddeev, while $$1-6, 10, 11,
13-18, 20, 21, 26-33, 36—-41, 60-63, 65-68, 71, 75—78 were written by me. We
are indebted to V. A. Tartakovskii for $69.

The plan and the idea of the book are mine, but as a result of the invaluable
cooperation of D. K. Faddeev, who gave all his enthusiasm to this work, it be-
came possible to realize a much wider program than was first envisaged, when I
began to write this book with Nagell. Faddeev and I have developed especially
for this book many of the results in the theory of cubic irrationalities which were
not available among the known results. This is particularly true of much of the

material in Chapters I and III.
I shall give a brief account of the contents of the various chapters,

Chapter I contains the most complete step-by-step geometric development of
the theory of algebraic irrationalities of any degree, considered, on my sugges-
tion, as a theory of multiplicative lattices in n-dimensional complex space K, .
It serves as an introduction to the whole book. Such lattices are somewhat more
general than algebraic fields and are connected with their direct sums. They are
needed in Chapter III for the solution of the inverse problem of Galois theory for
fields of the third and fourth degree. The geometrical character of the exposition
in Chapter I was adopted because it was necessary in Chapter III and, even more
so in Chapter IV. In the beginning of Chapter I (§$2) will be found my proposed
proof of the theorem about the existence of infinitely many independent irreduci-
ble algebraic irrationalities of a given dimension and signature. The idea of con-
sidering an affine dilation with coefficients r, r2, .-+, 1" along the axes in calcu-
lating the volume Q*(r) is due to a student of the Moscow State University, E.
Vegeman, Further, in §3, we give the geometry of Galois theory which was devel-

oped by me [19].1) $4 contains a purely geometrical interpretation of Dirichlet

1) Numbers in square brackets after an author’s name refer to the bibliography. If
there is no such reference, then the result appears for the first time in this book.
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units, §5 contains the researches of Minkowski from Diophantische Approxima-
tionen of the geometry of the theory of ideals (this is the only mention of the pro-
posedAgeometrical theory of algebraic numbers which has so far appeared in the
literature). Theorem I of §5 is due to Faddeev. §6 is devoted to the development
of the theory of n-dimensional auxiliary lattices proposed by Klein, which is some-
what deeper than ideal theory. The special case n = 2 was considered by Klein
[27] in his famous lectures on the theory of numbers, while the case n =3 was
the subject of a Ph. D. dissertation by Furtwingler [63], Both the theory of units
and the theory of ideals are developed in Chapter I for a most general n-dimen-
sional maximal lattice, which may be reducible. §§7, 8, and 9 contain the theory
of various forms connected with the lattices in K . The suggestion of consider-
ing the generalized Bézoutiants arose in connection with my plan to tabulate, in
common with I. Sominskii and K. Billevi¢, the fields of the fourth degree [18]
(see $40) by making use of the projection of a field parallel to a subfield. D. K.
Faddeev [60] suggested the consideration of the lattice inverse to a given lattice
and correspondingly the form polar to a given reducible form. This form presents
a very useful algorithmic tool, as is evident in $64.

Chapter I may be useful to anyone wishing to study the theory of algebraic
numbers, as it contains a sufficiently complete step-by-step exposition of the fun-
damental facts of the theory.

Chapter II contains the elements of algebraic fields of the third degree, Its
exposition, in contrast to Chapter I, is purely algebraic and it can be read inde-
pendently of Chapter I. In Chapter II we give everywhere the most useful arithme-
tical algorithms which we know for actually carrying out the calculations involved
and sometimes we even give numerical examples, In §11 we give a formula for
raising a cubic number to any power. The method of extracting roots was sug-
gested by Faddeev. It is useful for checking whether a given unit is fundamental
or not and is used in §49 to solve the problem inverse to the Tschirnhausen prob-
lem for two equations of the fourth degree. In $13 I give my solution [15] of the
problem for two equations of the third degree. $15 contains the theory developed
by F. Levi [28] and by me [15]. $16 contains my method [15] for solving the prob-
lem of equivalence of two binary cubic forms without the reduction theory of forms.
$17 contains an exposition of the well known method of Voronor [8] for calculat-
ing a basis of a cubic field, a method which was the main result of his Master’s
dissertation. $18 contains the algorithm for the decomposition of a prime into

prime ideals in a field of the nth degree, and in particular for cubic fields
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according to Zolotarev [26],

Chapter III. §§26-30 and §$37—41 give an independent tabulation of multi-
plicative lattices and therefore also of fields of the third and fourth degree for all
signatures. These sections close by giving tables of these lattices. The tabula-
tion of rings of the third degree with positive discriminants was first achieved by
Arndt [1-4] in 1852, using Eisenstein’s idea [21], as a tabulation of clases of bi-
nary cubic forms. An analogous tabulation for negative discriminants was made by
Mathews and Berwick [30, 31] and in a different manner by me [15]. The tabulation
of rings of the fourth degree with signature r = 0 (number of pairs of complex
roots) was made by I. Sominskii and K. Billevi¢ [18] and myself, while for 7 =1
the table was calculated by . Poplavskif. §§32-35 contain the geometry of bi-
nary cubic forms. The reduction theory was developed by Mathews [30, 31] and my-
self. The consideration of binary cubic forms as norms is due to Faddeev. The
theorem in $36 was proved by Tartakovskii in 1919 as a result of our conjecture,
which arose from the study of a large table of discriminants of cubic units calcu-
lated for me in 1918 by students of the University of Kiev, using desk computers.
This theorem remained unpublished up to now. As to the classification of cubic
regions in terms of quadratic regions and of quartic regions in terms of cubic re-
gions the following remarks are in order. Eisenstein [21] gave, in 1841, an inter-
esting classification of binary cubic forms in terms of their quadratic covariants,
which was later perfected by Arndt [1-4], In my seminars at Leningrad University
I often pointed out that Eisenstein’s theory can be considered in the first place as
a classification of cubic rings in terms of quadratic regions, in the second place
it can be geometrized, and in the third place, it can be generalized to regions of
higher degree. Subsequently B. A. Venkov [6] translated Eisenstein’s classifica-
ticn into the language of algebraic number theory, while O. K. Zitomirskif [24]
completed its geometrization by showing how to select the axes in the projection
space. Later I was able to discover the generalization of this theory to regions of
the fourth degree. The detailed work on this generalization to the fourth degree
was done by D. K. Faddeev [59]. At the present time Faddeev and I are construct-
ing this theory, in [62], for fields of any degree. If by the direct problem of Galois
theory we mean the problem of finding all the algebraic properties of a given field
in terms of its Galois group and if by the inverse problem we mean that of finding
all fields having a certain Galois group, then the theory developed in §$42-53
could be thought of as the solution of the inverse problem of Galois theory for
fields of the third and fourth degree. We here give this theory (in a very careful
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and detailed account of Faddeev) also for fields of the fourth degree, since their
classification is based on the consideration of the fields of the third degree and
also, curiously enough, on the consideration of general three-dimensional multi-

plicative lattices (i.e., also reducible lattices) and their auxiliary lattices.

Chapter IV is devoted to Voronoi’s algorithm for the calculation of multipli-
cative automorphisms of fields of the third degree. At first we considered giving
all the algorithms existing for this purpose, such as those of Zolotarev [25],
Minkowski [33], Charve [67], Voronoi [?], Berwick [5] and Uspensky [55], but fi-
nally we decided to give only Voronoi’s algorithm, as being the most convenient
one. The case D > 0 was written up by D. K. Faddeev, while the case D <0
was done by me (see also my note [16]). In $64 we give a refinement of Voronoi’s
algorithm for D > 0 which was suggested by me at the Kharkov congress and per-
fected by D. K. Faddeev in such a way as to reduce the calculations to rational
integers, I must add that Faddeev has very elegantly perfected my calculations by
noting that it is best to transform in parallel the given reducible ternary cubic
form and its polar form. He also introduced the symbolic triangular notation for
reducible ternary cubic forms.,

Chapter V contains the exposition of Thue’s theorem. The main ideas in this
exposition, given in $§65, 66, 68, are due to V. A. Tartakovskii [17], who is re-
sponsible for the term “‘boundary series.”’ The result given in $69 is also due to
V. A. Tartakovskii. This result, which materially supplements Thue’s result, re-

mained unpublished up to now.

In $70 Siegel’s result [46], which was obtained by him from considerations
similar to those of Thue, is given in a more geometrical and therefore more ele-
mentary form, developed by Faddeev without the use of hypergeometric expansions
and their estimates. A more careful estimate enabled us to give a stronger result,
namely fifteen solutions instead of eighteen, This result is a generalization of my
theorem in $75 to the case of positive discriminant, One must suppose that
Siegel’s limit of eighteen as well as Faddeev’s limit of fifteen solutions is not
exact (my limit of five for the case of negative discriminant is exact).

Chapter VI contains in its first part, §§7l, 75, and 76, my investigations
[11-14] concerning the representation of numbers by binary cubic forms of nega-
tive discriminant, and secondly (at the end of §75) the addition of Nagell [42] to
my paper [12]. In §§72, 73, 74 we give the continuation of my investigation [11]
by D. K. Faddeev [57,61], Nagell’s theorem [40] is contained as a special case

of these investigations. The second part of Chapter VI contains a proof of the
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fundamental theorem of Mordell given by André Weil [7] and the investigations of
D. K. Faddeev on the equation x>+ y3 = Az3.

By the word ‘‘field’’ we mean throughout a finite algebraic extension of the
field of rationals. From the point of view of multiplicative lattices considered in
Chapter I the field consists of the totality of the coordinates of all the points of
an irreducible multiplicative lattice, together with all the quotients of these coordi-
nates obtained by dividing one point by another. The analogous totality of coor-

dinates for a reducible multiplicative lattice will be called a *‘region,”’

B. Delone,
Moscow,

1940.



SUPPLEMENT I

INTRODUCTION TO DIRICHLET’S LECTURES ON THE THEORY OF NUMBERS:
THE GEOMETRY OF BINARY QUADRATIC FORMS D

B. N. DELONE

$1. DEFINITIONS AND SOME GENERAL THEOREMS ABOUT LATTICES

1. DEFINITION. A uniform sequence of points on a straight line in which
the distance between two neighboring points is equal to a will be called a se-
quence of points with parameter a or a one-dimensional lattice, and will be de-
noted by E,.

Let OP and 5(7 be two vectors of a given length forming a given angle
POQ. The figure OPQ will be called a vector-pair, the point P being called the
end of the first vector, and the point Q the end of the second vector. The collec-
tion of points of the plane OP() whose coordinates are rational integers with
respect to the vector-pair OP(Q, i.e., with respect to the oblique-angled coordinate
system with origin at the point O, with axes OP and 0Q, and with scalar units
on these axes equal to OP and 0Q, will be called a two-dimensional lattice and
will be denoted by E,. The vector-pair OPQ will be said to be a basic vector-
pair and the parallelogram constructed on it will be called a basic parallelogram
of the lattice E,.

In the same way, three given vectors O—P;’, FQ, and O_E forming a given
angle in space will also be called a vector-triple. The collection of points of
space whose coordinates are integers with respect to the vector-triple OPQR, i.e., with.
respect to the oblique-angled coordinate system with origin at the point O, with
axes OP, 0Q, and OR, and with scalar units on these axes equal to OP, 0Q,
and OR, will be called a three-dimensional lattice, and will be denoted by E;.

1) This section is taken from the Introduction by B. N. Delone to the Russian trans-
lation of P. G. L. Dirichlet, Vorlesungen iiber Zahlentheorie, herausgegeben von R. Dede-
kind (4 Auflage, Braunschweig, Vieweg, 1894).
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The vector-triple OPQR will be said to be a basic vector-triple and the parallele-
piped constructed on it will be called a basic parallelepiped of the lattice E;.

If we are given an arbitrary system of points, then by‘a parallelogram of the
system and by a parallelepiped of the system we will mean a parallelogram or
parallelepiped all of whose vertices are points of the system. A parallelogram or
parallelepiped of the system will be said to be empty if it contains no points of

the system other than its vertices.
These definitions may be extended to lattices of any dimension.

2. THEOREM L. 4 lattice contains no pair of points situated closer together
than some given distance r. If D, E, and F are three arbitrary points of a lattice,
and the segment FG is equal and parallel to the segment DE, then G is also a
point of the lattice.

The last property is called the property of parallel translation and follows
easily from the definitions.

We will call two figures or two systems of points homologous with respect to
a given lattice if one of them may be obtained from the other by a parallel transla-
tion of the lattice.

3. THEOREM II. 4 parallelogram of some lattice E, or a parallelepiped of
some lattice E; is a basic parallelogram of E, or a basic parallelepiped of E,
if and only if it is empty.

PROOF. That a basic parallelogram of a lattice EZ is empty follows directly
from its definition. If, conversely, a parallelogram of the lattice E, is empty,
then in view of the property of parallel translation in EZ the lattice E2 contains
the lattice Eé constructed on this parallelogram. But E, cannot contain any
other points; for otherwise, again by the property of parallel translation, the given
lattice would have to contain points of the lattice E, other than its vertices. But
this is impossible since the parallelogram was assumed to be empty. Hence the
lattice Eé is identical with E, and the given empty parallelogram is a basic par-
allelogram of the lattice E,.

The proof is analogous for the case of a three-dimensional parallelepiped.

4. REMARK. A triangle of a lattice E, will be a fundamental triangle of
this lattice (a triangle constructed on the basic vector-pair of the lattice EZ) if
and only if it is empty, for then the parallelegram constructed on it will also be
empty. However, a tetrahedron of the lattice E; may be empty, while the parallele-

piped of this lattice constructed on it may turn out to be not empty, i.e., it will
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not be a basic parallelepiped for the lattice.

S. THEOREM HI. If in an arbitrary system of points 1) there is at least one
point such that the distance between the given point and any other point of the
system is not less than some given value r and 2) the system possesses the prop-

erty of parallel translation, then the system is a lattice.
This fundamental theorem is, so to speak, a converse of Theorem I.

PROOF. Let O be the point of the given system that is such that no other
point of the system is situated at a distance less than r from it. Then by the prop-
erty of parallel translation no two points of the system can be closer than the dis-
tance r to each other. Hence, no bounded region can contain an unbounded col-

lection of points of the system.

If the system does not consist of only the one point O (a case which, strictly
speaking, does not contradict the theorem), then let P be some point of the system
other than 0. On the segment OP there is only a finite number of points of the
system, and thus there is a point closest to O. Let this be the point P. If the
segment OP contains no points of the system, then this point P will be the point
P. The straight line OP contains, in view of the property of parallel translation,
all the points of the point sequence OP (if we take for the points D, E, and F
the points O, P, and I_’, and so on), and it contains no other points of the system;
for in the contrary case, again by the property of parallel translation, such points
would then belong also to the segment OP, which would contradict the assump-
tion that P is the point closest to O on the segment OP. Hence, if the given
system is one-dimensional, it is identical with the sequence of points OP and is
thus a one-dimensional lattice.

If the system is not one-dimensional, i.e., it possesses points that do not lie
on the straight line OP, then in view of the property of parallel translation there
emanates from each of these points a sequence of points equal and parallel to the
sequence OP, the so-called sequence of points homologous to the sequence OP.
Let Q be some point of the system that does not lie on the straight line OP, and let
6 O-' be the sequence of points passing through Q_ that is homologous to the se-

quence OP. If in the plane OPQ there is a sequence of points Q—Q_' of the given

system that is homologous to the sequence of points OP, and whose straight line

Q—é' passes between the lines OP and 66’, then the straight line 66’ bas a
segment in common with the parallelogram OPQ that is equal in magnitude and

direction to the segment QQ Thus, the sequence of points Q() undoubtedly
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contains a point belonging to this parallelogram (lying either within it or on its
boundary). Hence, there can be only a finite number of such intervening sequences
(if they exist at all). This means that there is some sequence QQ' that is closest
to the sequence OP with no sequence parallel to it passing between the straight
lines OP and QQ'. Then in the plane OP(Q, by the property of parallel transla-
tion of the given system, there exists a two-dimensional lattice with the basic para-
llelogram OPQ. No points of the given system other than the points of this lat-
tice can lie in this plane for otherwise, again because of the property of parallel
translation, the parallelogram OPQ would contain points of the system other than
its vertices. But this would contradict the assumption that P is the point of the
straight line OP that is closest to O, while QQ' is the parallel sequence of
points of the plane OP(Q) that is closest to OP.

Hence if the system is two-dimensional, it is identical with this two-dimen-
sional lattice.

Finally, if the system is three-dimensional, then it possesses points that
do not lie in the plane OPQ. Let R be one of these points. By the property of
parallel translation, there passes through this point a lattice equal and parallel
to the two-dimensional lattice OP(), namely, the so-called lattice homologous to
OoPqQ. Let I—?E' R" be this two-dimensional lattice. If there exists in the system a

lattice RR'R" homologous to OPQ whose plane passes between the planes OP(Q

and RR'R", then the plane RR'R" has a parallelogram in common with the paral-
lelepiped OPQR -and this parallelogram is equal in magnitude and direction to

the parallelogram RR'R". Thus, there is undoubtedly a point of this parallelogram

in the lattice RR'R", and hence also in the parallelepiped OPQR. In any case,
there may be only a finite number of such intervening lattices (if they exist at
all). This means that there is some two-dimensional lattice RR'R" of our system
that is homologous to the lattice OP(Q and which is closest to OPQ, so that
there is no two-dimensional lattice of our system parallel to it between the planes
OPQ and RR'R". Thus the given system of points belongs to the three-dimen-
sional lattice with basic vector-triple OPQR. Moreover, there cannot be any other
points in the lattice under consideration, for otherwise, again by the property of
parallel translation, the parallelepiped OPQR would also have to contain points
of the system other than its vertices, which would contradict the assumption that
no other points of the system in the plane OPQ belong to the parallelogram OPQ
and that RR'R" is the closest homologous lattice of our system to the lattice
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OPQ. Thus the given system is identical with the three-dimensional lattice OPQR
and the theorem is proved.

6. Theorem III shows that, conversely, a lattice may be defined as a system
of points possessing the properties of discreteness (i.e., the distance between
any two points is not less than some determined finite number r) and parallel
translation. Given the property of parallel translation, we can weaken the first
condition, requiring only the existence of one point of the system such that a
sphere or circle with center at this point and a positive radius r contains no
other point of the system. From this point of view a lattice may be characterized
differently: it is a system of all the points into which a point of a plane (or of a
space) may go under some discrete group of parallel translations.

A group of parallel translations of a space, if it is not merely the identity,
is clearly infinite and abelian, but in general it may be either discrete or not dis-
crete. In other words, it may or may not contain infinitely small translations.
Clearly the set of all parallel translations of a lattice forms a discrete group of
parallel translations. Theorem III shows, conversely, that the set of all points
homologous to a given point of a space with respect to a given discrete group of
parallel translations, i.e., obtained from this point by all the translations of this
group, is a lattice. An n-dimensional lattice is a model of the most general in-
finite Abelian group with n independent generators, all the elements of which,
other than zero, are of infinite order.

7. One may make the following remark about the freedom of choice of a
basic vector-pair in the lattice E, or in the lattice Ej.

The concept of a lattice includes only a system of points, and does rot in-
clude the straight lines on which these points lie. The same lattice E2 or Eg
may be given by means of very different basic vector-pairs or vector-triples.

From the proof of the preceding theorem it is easy to see that necessary and
sufficient conditions for the vector-pair OPQ to be a basic vector-pair in a given lat-
tice E, are as follows: 1) O is an arbitrary point of the lattice E,; 2) P is
another point of EZ satisfying the one condition that there is no point of the lat-
tice £, within the segment OP; 3) Q is an arbitrary point of one of the two
sequences of points of the lattice EZ that are homologous to the sequence of
poiots OP and that are closest to it. Necessary and sufficient conditions for a
vector-triple OPQR to be a basic vector-triple of some given lattice E3 are as

follows: 1) O is an arbitrary point of Ej; 2) P is another point of E; satisfying
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the one condition that the segment OP is empty; 3) ¢ is a point of E; belong-
ing in the plane OPQ to one of the two sequences of points of the lattice E,

that lie in this plane, are homologous to the sequence of points OP, and are
closest to it; 4) R is an arbitrary point of one of the two two-dimensional lattices
of the lattice E3 that are homologous to the two-dimensional lattice OPQ and
are closest to it.

8. THEOREM IV. All the basic parallelograms of the same lattice E, have
the same area and all the basic parallelepipeds of the same lattice E3 have the
same volume.

PROOF. Since the method of proof used for the lattice E, is the same as
for the lattice E3, we will prove this theorem only for the lattice E3.

Let OPQR and Oi—’aﬁ be two different basic vector-triples of the same lat-
tice E3, and let v and v be the volumes of basic parallelograms constructed on

them. It is easy to calculate that 7 = Av, where A is the absolute value of the

p, 9 T .
determinant P,,: ql" r,'/ , whose rows (p, g, 1), (p', ¢, r') and (p", ¢, r'") are
p qgr

the coordinates of the points P, 6 and R with respect to the vector-ttiple OP(QR.
But these coordinates are integers. Thus A is a nonzero integer. Since OP QR
is in its turn a basic vector-triple, the coordinates of the points P, ¢ and R with
respect to the vector-triple OFGE are also integers, and this means that we have
analogously v = Kiz‘, where A is again a rational integer different from zero.

Hence we have

v=Av =ZAv,

from which it follows that AA = 1, i.e., A=1, and thus v =7,

Another proof of the same theorem. Let us take a large sphere of radius R,
and let it include N points of our lattice E3. Let A and B be two different
basic parallelepipeds of the lattice E3’ i.e., such that B cannot be obtained
from A by a parallel translation. To each of the N given points we assign a
parallelepiped 4, for instance that parallelepiped for which the given point is the
lower left front vertex. All these parallelepipeds are contained in a sphere of
radius R without being one inside the other. Moreover, some of them protrude
outside the sphere, while a portion of the sphere near its surface is not completely
filled. If the volume of such a parallelepiped is V 4> then the volume of the
sphere Vp is approximately equal to NV, Vp & NV 4, ie., V4 x Vi/N. Ana-
logously, we find that Vp %/N. Increasing the radius of the sphere R
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unboundedly

Figure 1

and taking the limit, we find that V = Vp.
REMARK. All the definitions, theorems and proofs given in this section are
also true for lattices of any dimension considered in n-dimensional Euclidean

space.

$2. FURTHER THEOREMS ABOUT LATTICES IN A PLANE

9. THEOREM V. If the area of a basic parallelogram of the lattice E, is
equal to s, then the distance between the point O of the lattice E, and the
closest point to it of the same lattice does not exceed the value \/2s/\[ 3.

PROOF. Let P be the point of the lattice E, closest to the point O (Fig-
ure 1). In other words, within the circle of radius a = OP described about the
point O, there is no other point of the lattice E,. The same is true for similar
circles described around all the remaining points of the sequence OP. If through
the points of intersection of these circles we now draw the straight lines MN and
M'N’, then within the band MN, M'N’ there lie no points of the lattice E, other
than points of the sequence OP, since each interior point of this band lies within
at least one of our circles. The sequence homologous and closest to the sequence
OP consequently lies at least at a distance of k= a\/3/2. Hence, the area s
of a basic parallelogram of the lattice EZ can not be less than az\/-g /2, from
which we get that a <,/ 2s/\/3 . Clearly, equality will hold if and only if the
points of the homologous sequence closest to OP coincide with the points (,

Q' ++«, i.e., when the fundamental triangle OP() is equilateral. That is, the

exact limit is obtained in this case only.

10. If we describe around each point of the lattice E, a circle of radius a/2,
where a is the least distance between two points of the lattice EZ’ then these
circles will not intersect, since no two points of the lattice E, are within a dis-
tance less than a of each other. Thus, the lattice just found with basic vector-
pair OPQ gives the closest packing of equal circles of diameter a, where no two

circles intersect and where the centers of the circles form a lattice.

11. THEOREM VL. In each lattice E, there is in genergl one and only one
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acute-angled fundamental triangle (if we do not count the triangle symmetric to it).
PROOF. Let P be one of the points of the lattice Ez that are closest to O.

If there are constructed through the points O and P perpendiculars to the seg-

ment OP, A and p (Figure 2), then either there is one point of each of the two

Figure 2

homologous sequences closest to the sequence OP within the band formed by
these perpendiculars, or there are in each of these sequences two points lying on
the perpendiculars A and p themselves. Let ¢ be one of these points. The tri-
angle OPQ will then be empty and thus will be a fundamental triangle of the lat-
tice E2' This triangle has no obtuse angles. In fact, the angle Q is in any case
acute, for the side OP of the triangle OP(Q is the shortest segment in the lattice
EZ’ and thus can certainly be no longer than the other sides of this triangle. The
angles O and P are not obtuse because the point () lies either between the per-
pendiculars A and p or on one of these perpendiculars. The triangle PQQ’' is
also a fundamental triangle without obtuse angles, but it is symmetric to the tri-
angle OPQ.

12. We must still decide the question of whether there are any other such
nonobtuse fundamental triangles in the lattice E2‘

That part of the plane of the lattice E2 in which each point lies as close to
the point O as to any other point of the lattice is called the Dirichlet region of
the point O in the lattice E,. Let OPQ be an acute fundamental triangle of the
lattice E,. We consider the six triangles OPQ, OQR, ORP’, OP'Q’, OQ'R’, and
OR'P (Figure 3). Three of these triangles are equal and the remaining three are
symmetric to them. If we construct inside any one of these triangles perpendicu-
lars at the midpoints of its sides, then they will intersect within the triangle
since it is acute, and they will divide the triangle into three quadrangles. We
construct such triangles for all the points of the lattice EZ’ for which we need
only divide into two equal parts all the basic parallelograms of the lattice E2

homologous to the basic parallelogram OP(QR, using diagonals homologous to the
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diagonal 0Q. We divide all these triangles into the small quadrangles shown in
the figure. Each point of the lattice £, will then be surrounded by six such

NN

Figure 3 Figure 4

quadrangles, forming together a hexagon homologous to the hexagon abca'b’c’.
These hexagons thus cover the whole plane without overlapping each other. The
Dirichlet region of the point O lies in any case within the hexagon abca’b’c’,
since each of its points is closer, for example, to O than P, i.e., lies on the
‘‘interior side’’ of the straight line ac', and further, is closer to O than to Q,
i.e., lies on the *‘interior side’’ of the straight line ab, and so on. The Dirichlet
regions of other points of the lattice E2 have a similar position inside their cor-
responding hexagons. But by definition, the Dirichlet regions cover the whole
plane, since for each point of the plane there is a point of the lattice E2 that the
given point is as close to as it is to any other. Hence a Dirichlet region cannot
fill only a part of a hexagon; it must identically coincide with the hexagon. Thus

the hexagon abca’b’c’ is the Dirichlet region of the point O in the lattice E,.

By its definition the Dirichlet region is uniquely determined by the lattice
E2‘ As we saw, however, the acute fundamental triangles are uniquely associated
with these **Dirichlet hexagons’’: the vertices of the triangle are the centers of
those three Dirichlet regions that have a common vertex inside the triangle. Thus
an acute fundamental triangle is uniquely determined by the lattice EZ'

13. In the limiting case, when the triangle OPQ is right-angled, the Dirichlet
region is also degenerate: it is not a hexagon, but a quadrangle (Figure 4). Two
of the sides of the hexagon, bc and b'c’, become equal to zero. In this case,
besides the previous six nonobtuse fundamental triangles, six other triangles also
meet at the point O; namely, OPQ, OKQ, OQP', OP'K’, OK'Q', 0Q'P.

14. THEOREM VIL. The sides of an acute fundamental triangle are the three
shortest parameters of the lattice E,.
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Parameters of a lattice are segments coanecting two points of the lattice but
not containing any other points of the lattice.

PROOF. Let OPQ be an acute fundamental triangle of the lattice E,, where
PQ<OP<0Q and OD is a perpendicular dropped from the point O onto the
straight sequence of points II (Figure 5). Then the angle PQO is greater than
45°. In fact, the angle POQ is less than or equal to the angle PQO and if the
angle PQO were less than 45°, then the angle OPQ would have to be greater
than 90°% but the triangle OPQ has no obtuse angles. It follows from this that
the angle OQD is greater than 90° i.e., thac OD > 00.

Figure 5 Figure 6

It is understood that OP and OQ are the two smallest parameters going from
the point O to the points of the sequence I. All the parameters going to the
points of the sequences II, III, and so on, are larger than OD, and thus larger
than OQ. Thus PQ, OP, and OQ are the three least parameters of the lattice E,.

15. In the future we will call a certain direction of rotation in the plane of
the lattice EZ right in contradistinction to rotation in the opposite direction,
which will be said to be left. Corresponding to this, we will speak of right and
left vector-pairs, meaning by the angle of a vector-pair that angle between its
vectors which is less than 180°, always considering the direction of rotation of
the angle of the vector-pair as being from its first vector to its second.

16. We will say that a vector-pair is reduced if 1) its first vector is the
smallest and the second the next smallest parameter of the lattice and 2) the
vector-pair is a right vector-pair. The three least parameters A <y <v may be
situated in two different ways with respect to the established positive direction
of rotation: either in the order A, i, v or in the order A, v, n. In the first case
the reduced vector-pair will be acute, while in the second it will be obtuse
(Figure 6).

If the vector-pair OPQ is reduced, then, in general it follows directly from
Theorems VI and VII that only the reflected vector-pair OP'Q’ will also be
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reduced (Figure 8).

17. The only exceptions are the following three cases: 1) when A =p <vy;
2) when A <p =v; 3) when A =y =v. In these cases there are respectively 4,
4, and 12 reduced vector-pairs, which are pairwise reflections of each other
(Figure 7)..

-

Figure 7 Figure 8

The case of a right-angled or square Dirichlet region is not an exception in
this sense.

18. THEOREM VIII. 4 basic vector-pair OPQ will be reduced if and only if
1) the projection of its second side OQ onto the straight line of its first side OP
is in absolute value less than or equal to half of its first side; 2) its first side
OP is less than or equal to its second side OQ; 3) it is a right vector-pair.

PROOF. In fact, if these conditions are satisfied and the angle of the vector-
pair is not obtuse, then in the fundamental triangle PQ > OQ > OP (Figure 8).
This means that its largest angle is located at the ‘ . . s e
point O, i.e., the triangle is not obtuse, from which
it follows by Theorem VII that the vector-pair OP(Q
is reduced. If the angle of the vector-pair is obtuse,
then the triangle OQP' has the indicated properties,
from which it is again clear that the vector-pair OPQ is

reduced.

19. Algorithm of reduction. Let there be given

a vector-pair OPQ. If the point Q' is symmetric to W
the point () with respect to O and if R is an arbi-
trary point of the sequence passing through P paral- Figure 9

lel to the sequence OQ, then we will say that the vector-pair OQ'R is adjacent
on the right to the vector-pair OP(Q. This vector-pair has the same direction of
rotation as the vector-pair OPQ.

The transition from an arbitrary basic vector-pair of the lattice (the direction
of rotation of which is taken to be positive) to a reduced vectot-pair may be made

(following Gauss) in the following manner (see Figure 9).
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We construct the vector-pair OPQ; adjacent on the right to the given vector-
pair OPQ so that the projection of its second vector O, onto the first vector
0P1 is less than or equal to the first vector in absolute value, i.e., so that the
point Ql lies between the perpendiculars 7 and «. There is always one such
point, or two (if they lie on the perpendiculars 7 and « themselves). Further, we
again construct a vector-pair OP,(Q), adjacent on the right to the vector-pair
OP,Q,, possessing the same property, i.e., it is such that the point Q, lies be-
tween the perpendiculars 7; and «;, and so on.

For each such vector-pair condition 1) of Theorem VII is satisfied, and it
cannot happen that condition 2) is never satisfied. In fact, it would then be true
that 0Q, > 00Q, > 0Q3 >+ «+. But only a finite number of points of the lattice
are situated in the circle of radius OQ1 with center at 0. Consequently, condi-
tion 2) must be satisfied after a finite number of such transformations. Then the

vector-pair will be reduced.

20. The Pell angle of a lattice. Every lattice coincides with itself after
rotation by 180° around its point 0. But it may occur that a lattice will coincide
with itself under rotation by a smallet angle. Since the Dirichlet region is a
rectangle or a hexagon with center of symmetry at the point Q, this may occur
only when the Dirichlet region is a square or a regular hexagon, and then this
angle is 90° or 60°. We will call this least angle of repetition the Pell angle of
the lattice.

21. The vector-pair corresponding to a given parameter of a lattice. Every
parameter OM of the lattice may be taken for the first side of some basic vector-
pair of the lattice. That one of these vector-pairs which has a right direction of
rotation and which satisfies condition 1) of Theorem VIII will be called the
vector-pair corresponding to the parameter OM, and the vector-pair itself will be
said to be semireduced.

In the general case there are in all two distinct semireduced vector-pairs,
while in the case when the Pell angle is 90° or 60°, there are always four or six
such distinct vector-pairs respectively, but there can not be more since if there
were a vector-pair equal to the given one, i.e., obtained from it by means of a
rotation around the point O, then the lattice would coincide with itself under

this rotation, since the given vector-pair is a basic one.
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$3. THEORY OF THE DISTRIBUTION OF THE POINTS OF A LATTICE
WITH RESPECT TO GIVEN ASYMPTOTES

We turn now to lattice theorems of a slightly different character, namely re-
lating to the distribution of points of the lattice EZ with respect to some infinite
straight line.

22. DEFINITION. Let there be given in the plane of some given lattice EZ
two straight lines O and On passing through the point O of the lattice and
irrational with respect to the lattice E2’ i.e., meeting no other points of the lat-
tice. We will call these lines axes or asymptotes.

Let P be an arbitrary point of the lattice EZ' In the future a coordinate par-
allelogram of a point P will be taken to mean a parallelogram which has its cen-
ter at the point O, one of its vertices at the point P, and sides parallel to the
axes O¢ and On. Since the axes are irrational, no side of the coordinate paral-
lelogram can contain two points of the lattice E,, since otherwise there would
be a point of the lattice other than the point O lying on the corresponding axis.
Hence if P is a point of the lattice EZ’ then there lies on the boundary of its
coordinate parallelogram only one more point P’ of the lattice, symmetric to P
with respect to the point O, and located at the opposite vertex of the parallelo-
gram.

A point P of the lattice E2 whose coordinate parallelogram contains within
itself no points of the system other than the point O is called a relative minimum
of the lattice Ez with respect to the asymptotes O& and On.

23. THEOREM IX. The given lattice E2 has infinitely many relative minima
with respect to the given asymptotes O&, On.

2
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Figure 10

PROOF. It is first necessary to show that there exists at least one such
relative minimum. This is clear; for example, if the point Q of the lattice E2 is
not a relative minimum, i.e., if there are other points of the lattice within its

coordinate parallelogram, then it is possible to apply the argument to one of these
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points, and so on. In the end we are led in this manner to a relative minimum,
since there are only a finite number of points of the lattice E 2 in the coordinate

parallelogram of the point (.

24. Now let P be a relative minimum, with a positive abscissa £ for example,
(Figure 10). If we extend indefinitely the sides ot the coordinate parallelogram
of the point P parallel to the axis ¢, we will obtain a band containing the axis
£, The right side of the coordinate parallelogram of the point P parallel to the
axis 7 is now allowed to slide inside this band, remaining constantly parallel to
itself, in the direction of increasing abscissa. Eventually, it will necessarily
cross some point of the lattice E,, since every sequence of points of the lattice
E, parallel to the sequence of points OP has two points within the band. In fact,
the segment of the straight line of such a sequence of points lying within the band
has length PP'= 20P, and there are no points of the lattice E, other than O on
the axis £,

Let P, be the first point through which this sliding side passes. Then only
this point lies on it, since the axis 7 also contains no points of the lattice other
than the point 0. Thus P is clearly a relative minimum. We may now repeat
this step, starting with the point P}, and so on. We thus obtain an infinite set of
relative minima P, p,, P3, *+« lying along the positive semi-axis &

25. The poiats P, p,, P3', *** symmetric to these minima with respect to
the point O are also relative minima, but they lie along the negative semi-axis &,
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Figure 11
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If, remaining in the half-plane ¢ > 0, we apply this method, starting from the
same point P and in the direction of the axis 7, we obtain a chain of relative
minima P-l’ P—Z' P_3, «+« which approach the axis 7. There are also relative
minima P'_l, P'_z, P'_3, +++ symmetric to them with respect to the point O
(Figure 11).

26. THEOREM X. The method of Theorem 1X yields all of the relative minima
of the lattice E,.

PROOF. In fact, every relative minimum that has an abscissa larger than
that of P must have an ordinate larger in absolute value than the ordinate of the
point P; in the contrary case P would lie in its coordinate parallelogram. Hence,
each such relative minimum must lie in the band considered in Theorem IX.

But P, was the first point of the lattice E, that had an abscissa larger than
that of the point P. The same is true for P, with respect to P, and so on.

Two relative minima situated with respect to each other in the same way as
the points P and P, will be said to be successive and P; will be said to be the
first successor with respect to the minimum P along the semi-axis + &. Thus for
example, P:_z and Pf_3 are successive relative minima and P'_3 is the first
successor with respect to the minimum P'_2 along the semi-axis — &.

27. THEOREM XI. 4 vector-pair constructed on two successive relative

minima is a basic vector-pair of the lattice E,.

PROOF. The triangle OPP, (Figure 12) lies in the parallelogram abcd, and
this parallelogram is empty except for the point O. The triangle OPP, is thus
empty, and hence a fundamental triangle. This means that the vector-pair OPP,
is a basic vector-pair of the lattice E,.

It follows from this theorem that Pl lies in the parallel sequence of points
of the lattice E2 that is closest to the sequence
OP.

28. THEOREM XII. Successive minima lie

on different sides of the corresponding axis.

PROOF. In fact, the two points of the se-

quence parallel to the sequence OP that are in-
cluded within the band of Theorem IX lie on dif-

ferent sides of the axis &, and both are situated

Figure 12

to the right of the right side of the coordinate

parallelogram of the point P since it is empty.
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Under the application of the method used in the proof of Theorem IX, this side
clearly first meets that one of the two points that lies on the other side of the
axis £ with respect to the point P,

29. DEFINITION. By the angle of a vector-pair we will again mean the angle
formed by the vectors that is less than 180°.

We will say that a vector-pair includes a given axis or asymptote (these terms
are synonymous) parallel to one of the two chosen axes if this asymptote passes
within the angle of the vector-pair. It is clear that there can be only three possi-

bilities: the vector-pair may include one, two, or no asymptotes.

Which of the ends of the vector-pair we will call first and which second is
arbitrary; but in the symbol for the vector-pair we will always place the letter
denoting the end of its first vector immediately after the O that designates its
vertex.

A segment drawn from the end of the first vector of the vector-pair in a direc-
tion parallel to its second vector will be_called the beak of the vector-pair. Thus
the beak always proceeds from the first side of the vector-pair. Its length may be
measured by taking the second side for unit length. If it is positive, it is directed
inside the angle of the vector-pair, while if it is negative, it goes outside this

angle. We will say that we extend the beak only when we draw it inside the frame.

A basic vector-pair of the lattice E, will be said to be reduced with respect
to some asymptote if the ends of its vectors are successive minima such that the
second is the successor with respect to the first along this asymptote.

THEOREM XIIL. 4 basic vector-pair of the lattice E, is reduced if and only
if 1) it includes one and only one asymptote and 2) the end of its second vector
lies further along this asymptote, but closer to it, than the end of its first vector.

PROOF. The necessity of these conditions follows from the constructions
of Theorem IX and Theorem XI. However, they are also sufficient.

In fact, we continue all four of the
sides of the parallelogram OPP(Q (Fig-
ure 13). Then we obtain two empty inter-
secting bands, since OPP,Q is a basic
parallelogram. As is easy to see, these

two bands cover the parallelogram abc'd’,

which means that they also cover abcd,

since the latter contains only the points

Figure 13
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O, P, and P of the lattice E,. Thus P and P, are successive minima and the
second is the successor with respect to the first. Thus conditions 1) and 2) are

also sufficient.

31. Let OPP| be areduced frame, and let P,, P3, P,, - <+ be a sequence
of relative minima following one another after the minimum Pl along the axis
included in the vector-pair. Then all the vector-pairs OP;P,, OP,P3, OP;P,.--
are also reduced basic vector-pairs. We call them successors with respect to the
reduced vector-pair OPP . The collection of all these vector-pairs will be called
a chain of the reduced vector-pair OPP . Starting with the first frame, this chain
may also proceed in the opposite direction along the same semi-axis, where the
vector-pairs OP_IP, OP-ZP-I’ OP_3P_2, +++ are predecessors of the vector-
pair OPP1 (see Figure 11).

The fundamental problem is the following: given an arbitrary basic vector-
pair of the lattice Ez, to find a method of going from it to some reduced vector-
pair (it is immaterial to us along which axis it will be reduced), and further to go
step by step to all the successive vector-pairs in its chain.

32. Preliminary transformation of the given vector-pair. If the given vector-
pair OPP| contains no asymptotes, then we go from it to the vector-pair OPPi
containing two asymptotes (Figure 14). If it is necessary at all, this preliminary
transformation will be made only once, at the very begin-. "
ning of the proposed algorithm. Thus we may confine out-
selves in the future to the consideration of vector-pairs
including at least one asymptote. For simplicity, we

will say that such vector-pairs are prepared.

33. Transformation of an arbitrary prepared vector-

pair into a chain of reduced vector-pairs, and progress

Figure 14

along this chain. Assume that we are given the vector-

pair OPP, of the lattice E, already prepared, i.e.,

such that it inciudes at least one asymptote. Then the reduction algorithm con-
sists of the following.

We extend the beak of the vector-pair OPP, to the last point P, for which
the vector-pair OPIPZ still includes at least one asymptote. We then extend the
beak of the basic vector-pair OP P, thus obtained to the last point P; for which
the vector-pair OPZP3 still includes at least one asymptote, and so on.

We will now show that by this process we always go from the given vector-pair
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to some reduced one, and then step by step to all its successors in its chain.

34. CASE 1. The prepared vector-pair is already reduced, i.e., it includes
one and only one axis, and the end of its second side lies further along this axis,
but closer to it, than the end of its first side (Figure 15).

Since the point P is further from the asymptote than P, the length of the
beak to the point of its intersection with the included asymptote is greater than
unity. This means that the last point P, on the beak which still lies on the same
side as the point P, and hence forms another vector-pair OP P, which includes

the asymptote, is different from P. The positive integer & showing how many

§

7%

2 Figure 15

times it is necessary to lay off the segment OP; from the point P to the point
P2' i.e., the length of the beak PP,, is equal to 3 in our drawing. The vector-
pair 0P1P2 is once more reduced, since again 1) it includes the asymptote 0O&
and 2) the end of its second side lies further along this asymptote, but closer to

it, than the end of its first side.

We now consider the vector-pair OP P, and extend its beak in the same way
as we did the beak of the vector-pair OPP . This second beak P;P; has length
2 in our drawing. We continue this operation with the vector-pair OP,P3, and so
on. Thus extending the beaks alternately, first on one side, and then on the other
side of the asymptote, we will obtain, one after the other, successive vector-pairs
of the chain of the vector-pair OPP,.

35. CASE II. The prepared vector-pair, although including only one asymptote,
is not reduced. Here there may be three possibilities; shown respectively in the
drawings a), B) and y) of Figure 16.

a) The end of the first side, but not of the second, lies further along the in-
cluded asymptote, but closer to it. The beak, proceeding as always from the end
of the first side, i.e., from the point P to the point of its intersection with the
included asymptote, is shorter than the second side OP; of the vector-pair. The

point P, is the point P, and & = 0. The first step in the algorithm consists
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simply in going from the vector-pair OPP to the vector-pair OP,P, = OP P, i.e.,
in the permutation of successive sides of the vector-pair. The vector-pair OP P,
will already be reduced.

1)
» R
b3
2 — &
0 s 9
r
[ Figure 16

B) The end of the second side lies within the coordinate parallelogram of the
end of the first side. The beak continued to the point of intersection from the in-
cluded asymptote is longer than OPI. Hence 0 is at least equal to unity and the
point P, is distinct from the point P. The vector-pair OP P, is already reduced.

y) The end of the first side lies within the coordinate parallelogram of the
end of the second side. The point Pz, as in case a), is the point P. The first
step of the algorithm gives & = 0 and leads only to changing the places of the
sides of the vector-pair. Then we obtain step 3, and consequently only one more
step of the algorithm is needed to give a reduced vector-pair.

Thus we see that in Case II the algorithm is applied without change, and one,
or at most two, steps make the vector-pair reduced. If we continue to repeat these
steps we will obtain one after another successive vector-pairs which follow this
reduced vector-pair and are members of its chain, since we find ourselves already
in the position of Case I.

36. CASE IIl. The prepared vector-pair includes two asymptotes. Here again

there may be three distinct possibilities.

a) The points P and P2 lie on opposite sides of the first asymptote (Figure

kA

17). Of the two asymptotes covered by the vector-pair,
we will take as the first one that which first intersects
the positive beak, extended as always from the end of

the first side of the vector-pair under consideration.

In case a) the vector-pair OP P, already includes

only one asymptote. Thus after the first step of our al-
gorithm we will obtain Case I or II. Figure 17
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B) The point P, does not coincide with the point P although it lies in
front of the first asymptote. This occurs when there are points of the lattice E2
on the positive beak between P and the first asymptote, but there are no points
of the lattice on the segment of the beak between both asymptotes (Figure 18).

In this case the point P, lies inside the parallelogram OaPb. If the follow-
ing step of our algorithm yields the same result, the point P3 lies within the
parallelogram OcPd. If the next step of the algorithm again leads to the same
situation, then the point P, lies inside the analogous parallelogram of the point
P,, and thus within the parallelogram OaPb, and so on.

But since the parallelograms OaPb and OcP d contain only a finite number
of points of the lattice EZ’ it will eventually turn out that one of the successive
points will lie between the asymptotes, and we will arrive at one of the cases
that have already been considered.

) The point P, is the point P, i.e., the first point ¢ of the lattice E, on
the positive beak lies already on that side of the second asymptote (Figure 19).

7

\MP
> & 0 — §
PZa

Figure 18 ' Figure 19

In our algorithm we again obtain 6 = 0 and the first step leads simply to an
interchange of the vectors of the vector-pair, i.e., to the transition from the
vector-pair OPP, to the vector-pair OP{P, = OPP. At the next step the beak
will no longer be equal to zero, i.e., 81;4 0, since the first point Q on this beak
wkich is extended now from the point P, still lies in front of the first asymptote.

Thus after the second step we return to one of the cases that have been considered.

Thus, by means of our algorithm we can finally arrive from an arbitrary pre-
pared vector-pair to a vector-pair covering only one asymptote. And then, repeat-
ing the algorithm without any change, we obtain a reduced vector-pair and subse-

quently, one after another, the successive vector-pairs of the chain following it.

37. REMARK. All the definitions and theorems concerning the properties of

lattices with respect to asymptotes are invariant with respect to any affine trans-
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formation. For example, a relative minimum remains a relative minimum, and so on.

38. Hyperbolic rotation. Let p be an arbitrary positive number. The transi-
tion from points (& 1) to points (pé, p—lr)) is an affine transformation which takes
the asymptotes into themselves. We will call this transformation a hyperbolic ro-

tation and the magnitude p, the parameter of the rotation. Under such a rotation

n each point slides along the hyperbola
P (with asymptotes O&, Op) on which it
lies.
9 B ~E 39. THEOREM XIV. The area of the

coordinate parallelogram of a relative
4 minimum is less then 4s, where s is
the area of a basic parallelogram of the

Figure 20 lattice under consideration.

PROOF. In fact, if the point P is a relative minimum, then the parallelogram
OP AB must be empty (Figure 20). But this may occur only if its area, which is
equal to the area of the parallelogram OBPC, is less than s.

40. THEOREM XV. If all the relative minima lie on a finite number of hyper-
bolas, then the lattice periodically coincides with itself under a hyperbolic rota-
tion.

PROOF. In fact, by a suitable hyperbolic transformation, the end of the first
side of the reduced vector-pair may
']‘ once and for all be taken on a fixed
straight line 7, parallel to the axis
5 n (Figure 21). But this straight line
has only a finite number of points of

& intersection with the possible hyper-

0 bolas. Thus there are only a finite
number of possible positions for the
end of this side. But since s is
given and does not change under hy-

Figure 21 perbolic rotation, for each such posi-
tion of the end of the first vector of
the reduced vector-pair, the end of the second vector must lie on some fixed
straight line & parallel to the first vector of the vector-pair. This straight line

has only a finite number of points of intersection with the finite number of possible
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hyperbolas on which the end of the second vector must lie.

Thus in this case there is only a finite set of such distinct normed reduced
basic vector-pairs. But since there is an infinite set of reduced basic vector-
pairs in a lattice, there is undoubtedly an infinite set of such reduced vector-pairs
that give the same normed vector-pair. In other words, there exists a hyperbolic
rotation as a result of which the lattice coincides with itself. Under further rota-

e

tions by the same ‘‘angle’’ the lattice periodically coincides with itself.

41. The Pell angle of a lattice with respect to given asymptotes. We will
call the least of the indicated angles the Pell angle. In the same way that an
arbitrary lattice coincides with itself under a usual rotation around its point O by
each 180° here the lattice coincides with itself after a hyperbolic rotation by its

Y

Pell angle.

0 -~ 5

Figure 22

Each angle between asymptotes can be divided into an infinite number of such
angles, where this division may begin with an arbitrary ray (Figure 22). Moreover,
that part of the lattice which lies in one of these angles is identical up to a hyper-
bolic rotation by a corresponding multiple of this Pell angle, to the part of the
lattice lying in each other such angle.

42. REMARK. It follows from the last two theorems that if a lattice does not
periodically coincide with itself under hyperbolic rotation, then among the hyper-
bolas whose coordinate parallelograms have an area less than 4s, there is at
least one limiting hyperbola which is a position of condensation for the hyperbolas

on which the points of the lattice lie.
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43. THEOREM XVI. Conversely, if a lattice periodically coincides with it-
self under a hyperbolic rotation, then its points, being situated under a definite
hyperbola, lie on only a finite number of hyperbolas, where each hyperbola that

contains at least one point contains an infinite number of points of the lattice.

PROOF. This follows from the fact that a part of the plane lying under a
given hyperbola in one of the Pell angles has a finite diameter. Consequently,
there are in it only a finite number of points of the lattice, which are therefore
situated on a finite number of hyperbolas. But because of the periodicity under
hyperbolic rotation, the pbints of the lattice lie on the same hyperbolas in the
other Pell angles.

Below we will see that in fact both these cases, which are so different from
one another, do actually occur: there exist lattices which repeat infinitely under
hyperbolic rotation with respect to a given asymptote, and there exist lattices
without this property.

44. The vector-pair corresponding to a given parameter of a lattice in the
hyperbolic case. Each parameter OM of a lattice may be taken for the first vec-

te

tor of some basic vector-pair. In subsection 21 we defined a ‘‘vector-pair corre-

sponding to a given parameter OM’’ of a lattice, or a ‘‘semireduced vector-pair,”’
for the usual case when the Pell angle is equal to 180°. We may further say the
following: a vector-pair will be said to correspond to the parameter OM when

1) it is a right vector-pair, 2) OM is its first vector, and 3) the orthogonal pro-
jection of its second vector onto the first vector has the least possible absolute
value.

We will call two directions hyperbolically orthogonal if they are parallel to
two diameters conjugate with respect to the given asymptotes. Then we will
again say that a vector-pair corresponds to a given parameter OM in the hyper-
bolic case when 1) it is a right vector-pair, 2) OM is its first vector, and 3) the
orthogonal projection (in the hyperbolic sense) of its second vector onto the first
vector has the least possible absolute value, i.e., the end of the second vector
of the vector-pair is chosen from the one of the two closest parallel sequences
to the sequence OM that gives a right vector-pair, and it is chosen in this se-
quence so that its projection onto the straight line OM parallel to the direction
conjugate with OM lies at a minimal distance from the point O.

45. There cannot exist two distinct points M for which the corresponding

vector-pairs are identical, up to a hyperbolic rotation by an angle less than the
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Pell angle, for it is clear that the hyperbolic angle of two such vector-pairs

would also be an angle of periodicity of the lattice (Figure 23).
$4. THE THEORY OF POSITIVE BINARY QUADRATIC FORMS

We turn now to methods that will enable us to introduce calculations into the

theory of lattices.

46. The positive binary quadratic form corresponding to a given vector-pair.
A particular lattice EZ can be defined by the length of the sides of its basic
vector-pair OP(Q) and the magnitude of the angle formed by them. However, another
method is more convenient. We are given the squares A and C of the magnitude
of the vectors of the basic vector-pair and the product B of these magnitudes by
the cosine of the angle ¢ between the vectors. By the well-known formula for
the square of the side of an oblique triangle, we
find that the square of the distance from the
point O to a point of the lattice E, that has
coordinates x and y with respect to the basic

vector-pair is

Ax? + 2Bxy + Cyz.

This connection between the quadratic
form and the vector-pair OPQ may be repre- Figure 23
sented in a different way. Let ¢ and 7 be
arbitrarily chosen rectangular coordinates and let the vector-pair OPQ lie in
their plane so that the point O coincides with the origin of coordinates. Then if
the poinipﬂxd Q have the coordinates (fl, np) and (&, 79) clearly {"1{"2 +
111, = OP + 0Q cos ¢ (i.e., is equal to the scalar product of the vectors

a’) and _0—5). Thus we have
(x€; + yE)% + (any + )’772)2
= ({:2 + 771)9‘ + 2(6162 + 7']17]2)96}’ + (52 + 7]2 = Ax? + 2Bxy + Cyz.

Among other things it follows from this that the form Ax? + 2Bxy + Cy2, which
we will also abbreviate to (4, B, C), is positive.
From the point of view of vectors the form (4, B, C) is simply the scalar

square of the linear vector expression px + 9, i.e. Ax + 2Bxy + Cy
(px + qy)2, where p and g are the vectors OP and OQ in fact
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A=§%+7I%:P2’ B=§1§2+7]1772=(pq), C=f§+7]§=q2_

47. It is not difficult to see that if the fcrm (4, B, C) undergoes a permuta-

. a . . . .
tion [ ’ B] , i.e., x and y are interchanged in the expressions ax + By and

0

yx + 8;,’where a, By ¥, and & are real numbers, we obtain the form (Z, E, E),
whose vector-pair Oﬁa has the ends of its vectors P and a at the points with
coordinates (a, y) and (B, 8) with respect to the vector-pair OPQ. If a, B, y,
and & are rational integers and ad -~ By = = 1, then the vector-pair OPQ is again
a basic vector-pair of the lattice E,. In fact, the points P and 6 are then points
of this lattice and the area of the parallelogram O?Z) is equal to the area of the
parallelogram OP(Q. In this case the forms (4, B, C) and (Z, E, 0) are said to
be equivalent; they are properly equivalent if ad — By =1, and improperly equiv-
alent if ad — By =~ 1. Properly equivalent forms correspond to basic vector-
pairs with the same direction of rotation, while improperly equivalent forms corre-

spond to vector-pairs with opposite directions of rotation.

Thus lattices E, and classes of properly equivalent binary positive quadratic
forms correspond to each other in the sense that to each such class there corre-
sponds a definite lattice E,, and to each lattice E, there correspond in general
two such classes, depending on which of the two directions of rotation is con-
sidered positive. The determinant of the form D = B% - AC is equal to
- (flnz - {"2171)2, which is equal to - sz, where s is the area of a basic paral-
lelogram of the given lattice E,.

48. The form (4, B, C) is said to be reduced (following Gauss) if its vector-
pair is reduced in the sense of §2, subsection 16. The conditions indicated in
Theorem VIII yield the following conditions of reduction expressed in terms of the
quantities 4, B, and C:

C>A4>2|B|

49. The reduction algorithm (following Gauss) presented in §2, subsection

19 is translated into the language of calculation in the following way. The form

(4', B', A") is found, which is adjacent on the right to the given form (4, B, A"):

(4', B', 4") = (4, B, 4") [_ %3
B'=—-B + A'S is between — A'/2 and A'/2. Then the form (4", B", 4") adjacent

on the right to the form (4’, B', A") is found in exactly the same way, and so on

] , where the number & is chosen so that

until finally one of the forms, for example the form (A(m), B(m)  A(n*1)y " does not

satisfy the conditions of reduction.
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50. If the form (4, B, C) is reduced and B > 0, then its vector-pair deter-

mines a nonoblique triangle; but if B < 0, then such a triangle is given by the

form (4, B, C) [?’ B (1)] = (C, - B, A). If the form (4, B, C) determines an acute

triangle, then the transformation for going from this vector-pair to itself and to the

other vector-pairs corresponding to the five remaining acute triangles surrounding

the point O are the following:
1,0 0,-1 -1,~-1 -1, 0 0, 1 1,1
0,1)’ (1, 1’[ 1, o0y’ 0,-1)° | -1,-1)" |-1,0J°

The following forms correspond to them:
(4,B,0),(C,-B+C, A~2B+C),(A-2B+C, A-B, A);
(4, B,0),(C,-B+C, A-2B+C),(A-2B+C, A- B, A).

51. Tabulation of positive binary quadratic forms with integer coefficients.
The discussion of positive forms (4, B, C) has up to now referred to the case of
completely arbitrary real coefficients 4, B, C. However, one often considers
forms whose coefficients A, B, C are ordinary rational integers. For forms with
rational integer coefficients the following fundamental theorem holds: The number
of classes of such forms with the same discriminant D is finite.

For the proof of this theorem we note that, from the conditions of reduction
for a reduced form there follow the inequalities A2 < AC, 4B2 < A2, from which
we have 4B2 < AC, or 3B2 < AC - B2 =|D|, i.e., |B| <\/|D|/3 . Thus if the
discriminant of a positive form with integer coefficients is equal to D, then B
may take on only the values 0,+1,*2, .4, A, where A is the greatest integer
[VID|/3], in \/|D|/3. If B is now given one of these values, then AC = B? +
|D|. Thus it is necessary to factor the number BZ + |D| in all possible ways into
two positive factors (in the case of a positive form 4 and C are both always posi-
tive) and take each time for A that factor which does not exceed the other, which
will be taken for C. If it turns out that 4 > 2 |B|, then the form thus obtained is
reduced and is to be recorded; in the contrary case it is omitted. By this method
we necessarily obtain all the reduced forms.

By subsection 16 of $2 we may decide whether there are equivalent forms
among them. Subsections 16 and 17 of §2 show that the only cases when two non-
identical reduced forms are properly equivalent are the cases 1) A=y and 2) A<
p=v (the case A=p =v is not an exception with respect to forms, for it also

gives only two distinct reduced forms). In case 1) one of the reduced forms is the
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form (4, B, A) and the other is the form (4, — B, A) obtained from the first by

the transformation [?’ _;]; in case 2) the forms are (4, % A, C) and

’
(4, —% A, C), where the first goes into the second under the transformation

1,-1
[071)
In $67 we present three examples of the determination of all nonequivalent

reduced forms for a given negative determinant D = - A,

52. The resolution of the question of whether two given positive binary
quadratic forms with integer coefficients are properly equivalent. If the determin-
ants are not equal the forms are not equivalent. If they are equal, we find two
reduced forms of which the first is properly equivalent to the first of the given
forms and the second to the second. It is clear that the given forms are properly
equivalent if and only if these reduced forms are identical or if one of the excep-
tional cases just indicated takes place. Let S and T be the transformations by
means of which the two forms are transformed into identical reduced forms. Then
the first form goes into the second by means of the transformation ST~1,

53. The representation of numbers by means of positive binary forms with
integer coefficients. Let m be a given positive rational integer, and let 4, B,

C also be rational integers. It is required to solve the equation Ax% + 2Bxy +
Cyz = m in rational integers x, y. Each such solution x, y is said to be a repre-
sentation of the number m in terms of the form (4, B, C) . The determination of
all these representations is the determination of all the points M of the lattice
corresponding to the forms that lie on the circle of radius ﬁ with center at the
point O.

It is sufficient to give a method for the determination of all the representa-
tions in which x and y are relatively prime. In fact, if their greatest common
divisor were p, for example, then the number m would be divisible by pz, and
the determination of all such representations reduces to the determination of the
representation of the number m/;L2 in terms of numbers x, y that have no common
divisor.

In order to find all the representations with relatively prime x and y itis
only necessary to list, as in subsections 20 and 21 of §2, all the forms (m, N, L)
with N2 —=mL =D and m > 2|N| (there will be as many such forms as there are
solutions N of the congruence D = N2 (modm) for which — m/2 <N < m/2),

since such forms correspond to all the vector-pairs with parameter OM (where
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OoM? - m). Thus for each vector-pair corresponding to each listed form it is nec-
essary to decide whether it is located in the lattice of the given form. In other
words, for each of the listed forms it is necessary to decide whether it is properly
equivalent to the given form (since by definition of the corresponding vector-pair

we always consider it to be right, i.e., with the same direction of rotation as the
xl, B
Y1 o

then %1, y1 is a representation of the number m.

given form). If

(4, B, C) [ ] —(m, N, L),

In view of what was said in subsection 20 of §2, the representation thus ob-
tained, together with the associated representations — Xy, =¥, give in the gen-
eral case all the relatively prime representations of the number m. If the Pell

angle is 90°, then there are the further representations
8 ’ P

_xlB+y1C x1A+le

o ’ o

and the ones associated with them, and in the case when it is equal to 60° the

representations
1 xB+y,C 1 %14 +y,B
2717 o 2Nt o ;
1 xB+y,C 1 x4 +y,B
_x + —-___—_—“’ _y — ————
271 o 271 o

and the representations associated with them; here o designates the greatest
common divisor of the numbers A, 2B and C.
We do not derive these formulas here, for they are easily obtained on the basis

of what was said in subsection 21 of §2.
§5. THE THEORY OF INDEFINITE BINARY QUADRATIC FORMS

54. The indefinite binary quadratic form corresponding to a given vector-pair.
A form (A, B, C) with positive determinant D is said to be indefinite. Each such
form may be interpreted in the following way. Let O&, On be arbitrarily chosen

asymptotes and let
Ax? + 2Bxy + Cy? = (1% + &5y) (nyx + 1y9)
(if D=B2- AC > 0, then fl, &5, 11, and 7, are real); then we may put in corre-

spondence to this form the vector-pair OP(Q, the ends P and ( of whose vectors

have coordinates (fl, 771) and («fz, 7;2) with respect to the chosen asymptotes.
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Thus to a given vector-pair there will correspond a unique indefinite form, and to
the given form, a continuum of such vector-pairs depending on one parameter. In
fact, if p is an arbitrary real number,
then (p&x + p&yy) (nyx/p + 1,y/p)
will also be a decomposition of the

same form, and there will be no other
decompositions.

L
Such a multiplication by p, where ~——"—10

p is positive, is a hyperbolic rotation.

Under this rotation the end P of the Figure 24

first vector of the vector-pair OP(Q of the form will slide along the hyperbola
& = A, and the end Q of the second vector, along the hyperbola &y = C, while
the square of the area of the parallelogram constructed on this vector-pair will
remain equal to (51712 - §27]1)2 = 4(B2 - AC) = 4D. But if p is negative, the
reflected vector-pair will be obtained.

As was already mentioned, 4 = ¢n, 2B = &9y + &y, C= &;my. If the
square root of the parameter of the hyperbola on which the point lies is now
called the hyperbolic distance from this point to the point O, then 4 and C will
be the squares of the hyperbolic lengths of the vectors OP and OQ of the vector-
pair. The geometric meaning of B is the following. This B is the product of the
hyperbolic length of the first vector OP by the hyperbolic length of the orthogonal
projection (in the hyperbolic sense) OR of the second vector onto the first vector
(Figure 24). Here again, as in subsection 44 of $3, the straight line QR is said
to be hyperbolically orthogonal to the straight line OP if it is parallel to the
direction of OP* conjugate with the direction of OP with respect to the asymp-
totes O&, On (where OP" is the diameter conjugate with OP, or, in other words,
LM = MN, where LN is the chord parallel to OP). In fact, direct calculation
gives for the coordinates of the point R the values ktfl, kn,, where
k=& m, + &n,/26 0. From this the product of the hyperbolic lengths of OP

and OR is equal to /&9, \/kfllml = k€, = B.

When translated into the language of vectors this means that the indefinite
form Ax? + 2Bxy + Cy? = (px + qy)?, where the expression (px + gy)? is the
scalar square in the ordinary sense, the length of a vector is understood to be its
hyperbolic length, and the length of an orthogonal projection of one vector onto
another is understood to be the hyperbolic length of the hyperbolically orthogonal
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projection.

The point with coordinates x, y with respect to the frame OPQ has coordi-
nates &2+ &,y, ;% + 7,y with respect to the asymptotes 0¢, Oy, i.e., it lies
on the hyperbola &y = Ax? + 2Bxy + Cyz with respect to these asymptotes, or on

the hyperbola whose parameter is equal to the value of

Y the form for the pair x, y. Hence this value is equal to
4 the square of the hyperbolic distance from the point
S l %, y to the point O.
7 ¢ 55. If we want to obtain a form corresponding to
Q the vector-pair for which the ends of the sides have the

coordinates a, y and B, & with respect to the vector-
pair OPQ of a given indefinite form (A, B, C) then in
exactly the same way as for positive forms we must transform this form by the

a, B
Y, 0

Figure 25

transformation ] If a, B, y, and 8 are integers and ad — By =% 1, then

the second form is also said to be equivalent to the first, properly, if ad - By =
1, and improperly, if ad - By =—1. To distinct basic vector-pairs of the same
lattice E2 with respect to the same asymptotes there correspond equivalent
forms, i.e., there corresponds to the lattice E2 with fixed asymptotes and a
right direction in its plane a class of forms, whereby a class we mean a collec-
tion of properly equivalent forms.

56. Reduced indefinite binary quadratic forms. We will call such a form re-
duced if its vector-pair is reduced with respect to one of the asymptotes in the
sense of subsection 29 of §3, i.e., by Theorem XIII of §3, if it covers one asymp-
tote and the end of its second vector lies further along but closer to it than the
end of the first vector. In order to obtain reduction conditions and methods of
calculation for the case under consideration it is convenient to consider the geo-
metrical significance of the roots of the equation A + 2Bt + Ct? = 0, which we
will call the roots of the form (4, B, C).

If the length of the beak is ¢, then the coordinates of its end with respect to
the vector-pair are (1, t). The parameter of the hyperbola on which this point
lies is equal to A + 2Bt + Ct2. Thus the roots t; and ¢, of the form are numbers
showing how many times it is necessary to lay out the second vector OQ of the
form on the beak, starting from the end of its first side R, in order to reach the
asymptote (Figure 25). From this we see directly that the vector-pair of the form
will include two, one, or no asymptotes depending on whether the form has two,
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one or no positive roots. The vector-pair includes one and only one asymptote if
its roots have opposite signs, i.e., if AC <0. It is easy to see that the form will
be reduced if and only if the positive root ¢; > 1, while the negative root ¢, is
in absolute value less than unity, “2 | <1. The reduction conditions are conse-

quently the following:
0<B+yD<C<-B+yD for C>o0,
0<-B+yD <|C|<B+/D for C<o.

The number C can not be equal to zero, for then the point () would lie on the

asymptote, while the asymptotes are assumed to be irrational.

57- In order to pass from an arbitrary indefinite form to the form equivalent
to it (properly or improperly) and then to carry out the calculation of a chain of
reduced forms following it, we need only to translate the algorithm of subsections
32 and 33 of §3 into the language of calculation.

If the form covers no asymptotes so that both its roots are negative, i.e.,

AC > 0 and BC > 0, then by subsection 32 of §3 it is necessary to use the trans-
0
-1

. 1

formation [ 0’
?

totes. This is the preparatory transformation. The further transformations of the

] to pass to the form (4, — B, C) that already covers two asymp-
algorithm of subsection 33 of $3 clearly consist in transformations of the type
[(1)’ }5} , where O is the greatest positive integer which is less than the greatest
pos:itive root of the form. Hence, if C> 0, then & = [(- B + \/5)/6'], and for
C<o0, 8=[(B+ \[5)/|C|], where [ ], as always, designates the greatest inte-
ger less than or equal to the expression enclosed in the brackets.

These calculations are most simply carried out in the following way. If
(4, B, A') is the prepared form and (4', B, A") is the transformed form, then
B'= B + A'S, where & has the indicated value. Thus B’ satisfies the inequal-
ities \/D - 4'<B'<\/D, if A'>0, and /D <B'<-D - 4" for A' <0;
or assuming A =[\/D ], we obtain for B' the inequalities

A+1-A4A"<B' < if A'>o,} *)
-A<B'<-x-1-4", if A'<o0.

Consequently, it is necessary to look for a B'= B + A'§ satisfying the corre-
sponding one of the inequalities (*), but this can be at once determined by a

glance at the form. Clearly there is always one and only one such B'. We obtain
8 in the same way. To obtain A" we note that B'2 — 4’4" = B2 — AA'; setting
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hete B'= B + A'S, we find
A" = A+(B+ B **)

EXAMPLE. Let (4, B, A") = </>0 =(3, 1, — 4). Here A_C_< 0, i.e., the form
@ is already prepared. We have D = B2-AC=13,2=[{/13 ]1=3. Since 4'=
- 4 <0, it is necessary to use the second of the inequalities of (*). We obtain
-3<B'<-4+4=0, and B' =1 - 45, from which it follows that § =1, B'=
- 3; this means, in view of formula (**), that 4" =3 + (1 — 3)8 = 1. Thus the
transformed form (A’, B', A") is the form ¢,=(-4,-3,1.

To obtain the next transformed form (4", B”, 4") = $,, we use the first of the
inequalities of (*), since 4" = 1> 0. We obtain 4-1<B"<3 and B"=-3 +
1.8, from which it follows that 8 = 6 and B”= 3. Consequently, on the basis of
formula (**), 4" = - 4 + (= 3 + 3)6 = - 4, and hence ¢>2 = (1, 3, — 4). Further
calculations give the forms ¢3 =(-4,-1,3), Py = (3,2,-3), qSS =(-3,-1,4),
b =1(4,3,-1), p,=(-1,-3,4), pg=(4,1,-3), ¢y =(~3,-2,3) and
®10 = (3, 1, — 4), i.e., again b

58. The tabulation of indefinite binary quadratic forms with integer coeffi-

cients. Up to now no special assumptions have been made concerning the coeffi-

n cients of indefinite forms. Now let 4, B and C be ra-
Q' P tional integers, i.e., we are considering indefinite forms
\ with integer coefficients. It turns out that the following

) —— & fundamental theorem is also true for them: the number of
/\'\0 distinct classes of forms with the same discriminant D
is finite.

Figure 26 This quickly follows from the fact that each class
contains reduced forms. In fact, if one of the reduced
forms is improperly equivalent to a given one, then the form following it will be
properly equivalent to the given form since two successive forms have opposite
directions of rotation. If the form is reduced, then its coefficients 4 and C are
of opposite sign, i.e., AC <0. But D= B2 - AC > 0, i.e., B2 <D, and conse-
quently there are only a finite number of possible values that may be taken on by
the coefficient B in the reduced form with given determinant D; and for each
such B there are only a finite number of values for A and C since |4|.|C]|

must be equal to D — B2,

If (4, B, C) is a reduced form of a class and OPQ is its vector-pair, then

the vector-pair OQ'P is also reduced and has the same direction of rotation as
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the vector-pair OPQ (Figure 26). This means that the form (C, — B, 4) corre -
sponding to it will again be a reduced form of the same class. Thus in each class
there will be reduced forms for which B > 0. B cannot be zero, for then we would
obtain from the reduction inequalities that \/_5 = C, and the asymptotes would
not be irrational. We see from the reduction inequalities that if B > 0 for the re-

duced form, then A > 0 and C < 0. Hence for such a reduced form we have

,_D-82_(/D+B (D -B)

el | C| ’
0<:—§I—E|JZ—E— <1 and 1<B—|+Z§|ﬁz.

Consequently, for such a reduced form with B > 0 we have
VD -B<A4<yD +B and /D - B<|C|<{/D+B.

Thus, in order to obtain all possible forms with integer coefficients for a
positive determinant D and B > 0, for each value of B from the sequence 1, 2,
3, +++, A, where A= [\/—D—], it is necessary to factor D — B2 in all possible ways
into two positive factors lying between A— B +1 and A + B inclusive. Then one
of these factors is taken for 4, while the other, taken with a negative sign, is
set equal to C.

EXAMPLE.
D =13, A=[/13] =3,
B=1, 2, 3,
D - B2=12, 9, 4,
[ (1-12), (1-9), [1-4),
(2-6) 3.3],
A-|C| = @_, (9.1), I_T___i-.[’

[4:3],

(6-2),
L(12-1),

The factorizations enclosed in brackets do not satisfy the inequalities for
A and |C|. Thus we obtain for D = 13 six reduced forms with the coefficient
B> o0:
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(37 17 - 4)y (4, - 19 3)7 (39 21 - 3)7 (17 37 - 4)7 (27 37 - 2)1 (4, 31 - 1)'

However, it is impossible to conclude from this that there are six classes of
forms with integer coefficients and determinant D = 13, since in the case of an
indefinite form some of the reduced forms with B > 0 may be equivalent to one

another.

59. The periodicity of a chain of reduced forms in the case of a form with
integer coefficients. This periodicity follows directly from Theorems XIV and XV
(subsections 39 and 40 of §3), since a form with integer coefficients for integer
x and y is itself an integer. This means that the parameters of all the hyperbé)las
containing the points of the lattice E2 that correspond to the form are integers.
Thus, by Theorem XIV all the relative minima lie on a finite number of hyperbolas.

This also follows from the fact just proven, that there are in general only a
finite number of reduced forms with integer coefficients and the same determinant
D.

If the period consists of k members and OPP, is a reduced vector-pair, then

under the transformation [al’ Bl] that takes the vector-pair. OPP; into the
Y1, 01
vector-pair OP P, .| the form (4, B, C) corresponding to the vector-pair OPP,

goes into itself. All the remaining transformations which take the form into itself
a1, B1

v1, 01
s. These tranformations are called automorphisms of the form.

S
are clearly of the form * [ ] with positive and negative integer exponents

60. The resolution of the question of whether there are two properly equiva-
lent indefinite binary quadratic forms with integer coefficients. If the determin-
ants of the forms under consideration are different the forms will not be equivalent.
If the determinants are equal, then by means of the reduction algorithm we find a
reduced form properly equivalent to the first of the given forms. It is necessary to
note that all the transformations of this algorithm, including the preparatory one
if it is necessary, are improper transformations. Thus if we pass to a reduced
form by means of an odd number of transformations, it is necessary to calculate
the next reduced form in order to obtain a reduced form properly equivalent to the
given one.

Then we turn to the second form and calculate for it the whole period of re-
duced forms. If the reduced form (4, B, C) properly equivalent to the first form,
or the reduced form (C, — B, A) properly equivalent to the form (4, B, C), occurs
in the indicated period and is therefore obtained from the second form by an even
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number of transformations, then the two given forms are properly equivalent; in
the contrary case they are improperly equivalent.

In fact, each form possesses reduced forms equivalent to it, and all reduced
forms properly equivalent to some form are located either in the chain of its re-
duced forms or in a chain along another asymptote. But the form of the second
chain can be obtained by interchanging the outermost coefficients of the form and

changing the sign of the middle coefficient.

61. The representation of numbers by an indeterminate binary quadratic form
with integer coefficients. Let m be a given rational integer and let 4, B, and C
also be rational integers. It is required to find all the representations of the num-
ber m in terms of the form (4, B, C). The determination of all such representa-
tions is exactly the same problem as the determination of all the points M of the
lattice corresponding to the form (A, B, C) that lie on the hyperbola &) = m. As
in the case of positive forms it is sufficient again to indicate the method for the

determination of all representations with relatively prime values x, y.

In view of subsections 44 and 45 of §3, we will in any case find all the rela-
tively prime representations x, y, the points M of which lie on one branch of the
hyperbola & = m, if we find all the distinct vector-pairs corresponding to the
parameter OM and then rotate each of these by all the angles which are multiples
of the Pell angle of the given form. Other than these representations x, y, there
exist only the relatively prime representations — x, —~ ¥y corresponding to the
points symmetric to the points M with respect to the point O and lying on the -
other branch of the hyperbola &) = m.

The middle coefficient N of the form (m, N, L) corresponding to one of the
vector-pairs set into correspondence with the parameter OM satisfies, in view of
its geometric interpretation and of the property of the corresponding vector-pair,
the inequality ~ m/2 <N < m/2 (in general, there are a finite number of such
forms with integer coefficients and with determinant D, namely, as many as the
number of roots N of the congruence D = - N2 (mod m) satisfying the condition
-m/2 <N <m/2).

Thus in order to find all the representations of the number m with relatively
prime values of x and ¥, it is necessary to write out all such forms (m, N, L),
and then to decide for each of these whether or not it is properly equivalent to
the fiven form (4, B, C). Those of them for which this is true give the fundamen-

tal solutions of the equation (4, B, C) = m, since if (4, B, C) [xl’ B] = (m,N, L),
Y1,
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then x,, y; is a solution, namely that one which corresponds to the end of the
first side of the form (m, N, L). In order to obtain all the solutions, it is neces-
sary to find for each such solution the solutions x_, y  ‘‘homologous’’ to it in
all the remaining Pell angles. For this it is necessary to transform the solution

%y, ¥, by all the automorphisms of the forms (4, B, C), i.e., by all the powers
[al, B1
1, 81
If [al» Bl]s - {as- Bs

1, 91 Ys» Os

formation of a basic representation %1, ¥1 have the form x = a x; + ﬁsyl, Ys =

J of the basic automorphism.

] , then all these representations obtained by trans-

Y%y + Bsyl. Besides these representations homologous to the representation
%), y; With respect to the periodicity of the hyperbolic rotation, there are associated
with the representation x;, y; the further representations — x_, — y_ symmetric
with them with respect to the point O.

62. Connection with the Pell equation. All the automorphic transformations
[aS) Bs

y.So 85
%y, y; may be calculated much more conveniently if we turn to the parameter p

J and all the representations x_, y, homologous to the representation

of the Pell angle of the given form.

We consider an arbitrary nonzero point Q on the asymptote and let its coor-
dinates with respect to the vector-pair OPP, be x, y. Then with respect to the
vector-pair OP P, ., (bere we again assume that the period consists of k mem-
bers) it has coordinates x' = x/p, y' = ¥/p, where p is the parameter of the Pell
angle. From this we obtain x/y =(a;x + By (y,x+ 8;y) or ylxz + (51 -ap)xy -
Blyz = 0. But since the point Q lies on the asymptote we have the further
relation Ax2 + 2Bxy + Cy? = 0. Hence A:2B:C = y1:8; - o= By

Among other things we here obtain the converse to the theorem about the
periodicity of a lattice of a form with integer coefficients.

THEOREM XVII. If a chain of reduced forms is periodic, then the coefficients
A, B and C of the form are proportional to rational integers.

In other words, if a lattice periodically repeats under hyperbolic rotation with
respect to a given asymptote, then its form is proportional to a form with integer
coefficients.

Let o be the greatest common divisor of the numbers A4, 2B, and C. Then

Y11= Aul/a, 8, -a;= ZBul/o; and - f3; =Cu1/o, where u; is a rational integer.
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If we have a; + 31 = 2t1/o, then we get a, = (tl - Bul)/a, Bl =~ Cul/a,
v1 = Auy/o, and 8 = (¢ + Bu;)/o. Or, since a;8; = Byy; =1 (namely +1,
since the two vector-pairs OPP; and OP P, ,, are identically oriented), we
have t% - Du% =02, i.e., we obtain the Pell equation. If (fl, n1) and (fz, 772)
are the coordinates of the poiats P and P, while (£}, n;) and (£, n,) are the
coordinates of the points P, and P, ,,, then & = 0,& +y&, and &) = B¢, +
8,&,. Moreover, we have ‘fll = p¢; and le = p&,; thus we obtain

(al - p) 61 + )/162 = 0, ,8161 + (8 - p)fz = 0,
from which it follows that

p?=(ay +8)p+ (a8, - Byyy) = 0.

If we substitute here the expressions just obtained for ay, [31, Y1 and 51 the
equation will take the form p? - 2t,p/o + (t% - Du%)/cr2 =0 o p=(t; £y/Du)/o.
The transition from the vector-pair OPP, to the vector-pair OP ;P , .,

corresponds to the parameter p° which is associated with the magnitudes of

ag, 'Bs’ Ysr and 83 in the same way that the parameter p is associated with the
magnitudes of o, 3;, y; and §;. From this we obtain first, that in the relation
t1+\/Du1 s _ L +VDug
o o
tg and u  are integers, and secondly, that
t.— Bu - Cu, Aug t, + Bug

- s .S - = —— =
ag = p , Bg = ,ys—o,as p.

o
Hence all the solutions homologous to the solution x;, y; are obtained in the fol-
lowing form:

X =(l7 (22, = (2B + 5,0 u],

1
Yo =5yt + (x4 +y Bu].
63. The case of a form with integer coefficients whose determinant is a per-
fect square. This case is not covered by the above theorem since the asymptotes

are rational. It is possible to show that all the different classes of such forms

for which D = d? have as their representatives the forms
(0,d,~d+1), (0,d,-d+2),-+,(0,4,0),-,(0,d, d-1), (0, d, d).

Since

Ax? + 2Bxy + Cy? = [:—Bc+d x—y] (-B—d x—y} C,
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the representation of the number m in terms of such a form leads simply to the

solution of the determinate system of equations
(—B+d)x—Cy=ml, (—B—d);\:—C}/:m2

in integers x, y for all factorizations of the number mC into integer factors
m 1° m2.



SUPPLEMENT TWO

INVESTIGATIONS IN THE GEOMETRY OF GALOIS THEORY !

B. N. DELONE and D. K. FADDEEV

$1. THE THEORY OF R-ALGEBRAS

1. The space K  as an algebra. Let there be given a completely arbitrary
(commutative) field K and an n-dimensional vector space over it. We choose in
the field a basis En and besides the operations of vector addition and subtrac-
tion and multiplication by scalars (elements of K), we introduce the operation of
multiplication of vectors (points). The product of two vectors will be the vector
whose coordinates with respect to the chosen basis (the initial basis) are equal
to the products of the corresponding coordinates of the vectors being multiplied.
Under the introduction of this operation the vector space becomes a commutative
algebra, which we will denote by K . Among the K-linear subspaces of K we
note the coordinate subspaces spanned by a subset of the vectors of the initial
basis, and the bisectrices, namely the sets of all points having equal coordinates
with respect to complexes of vectors into which all the vectors of the initial
basis can be decomposed. By the initial basis of a bisectrix we mean the collec-
tion of all vectors, each of whose coordinates is equal to 1 in one of the com-
plexes of vectors of the initial coordinate basis En characterizing the bisectrix,
and is equal to zero in the remaining axes. Correspondingly, the initial basis of
a coordinate subspace will be the collection of vectors from the initial basis En
by which the subspace is spanned. Bisectrices and coordinate subspaces are
subalgebras of Kn, while multiplication of points of a bisectrix (coordinate sub-
space) with respect to the initial basis of the whole Kn coincides with multipli-
cation defined for the bisectrix (coordinate subspace) with respect to its initial

basis.

LEMMA 1. Any K-subalgebra Q of the algebra K is either a coordinate

1) This Supplement is a translation of the first four sections of the article in Mat. Sb.

(N.S.) 15(57) (1944), 244254,
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subspace, a bisectrix of E , or a bisectrix of a coordinate subspace.

PROOF. We choose a numbering of the axes so that points with nonzero
first coordinates are located in (). Among these points we choose a point w, with
the least number of nonzero coordinates. Then all the nonzero coordinates of the
point w are equal. In fact, if we assume that ® has a coordinate w? different
from the first coordinate w(!) and different from zero, then the point ' = w? -
w0®. ®, belonging to (), would have a nonzero first coordinate and a smaller num-
ber of nonzero coordinates then w. Together with the point w, ( contains the
point ¢; = w1 ‘@, whose coordinates with the given numbering of axes are
(1,1,+++,1,0,0, -++, 0). Moreover, the first ny coordinates of any point 7 in
T
@ are equal, for if there were a coordinate #2) of the point 7, taken from among
the first n; coordinates and not equal to the first coordinate A1), then the point
r'=r. 6 — A2). ¢; would have a nonzero first coordinate and would have fewer
nonzero coordinates than w. Applying the same argument to each coordinate axis
for which there exist points of () with the corresponding coordinate different
from zero, we see that all the points of () have coordinates
(D, «ov, 0D, ci, 0™ i oM 0,000 0)
ny N n'

where the points

e =(1,+ 00, 1,0, 44,0, v+, 6, =(0,+4+,0,1,:4+,1,0, 41,0
N St L
ny noy n'

belong to ¢, and therefore w(l), vor, o™ are arbitrary elements of K. If
ny=++v=n, =1, then Q is a coordinate subspace, and if n’ = 0 then Q is a
bisectrix of K ; in the remaining cases Q is the bisectrix of a coordinate sub-
space. The lemma is proved.

2. R-algebras of the space Kn. Decomposition into a direct sum. Let there
be given some field R contained in K, and let a basis 5n be selected in K,
which is, in general, not the initial one. By an R-module we will mean a collec-
tion of all points of Kn having elements of the field R as coordinates with re-
spect to 5,1. An R-module whose points are reproduced under multiplication will
be called an R-algebra. An example of an R-algebra is an R-module constructed

on the initial basis En.

A linear subspace of K  that is a K-linear envelope of some collection of

vectors of an R-algebra A will be called an A-complete subspace, and the collec-
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tion of points of A included in it will be called its A-completion. In particular,
allof K is A-complete. The dimension of an A-complete subspace is equal to
the dimension (with respect to R) of its A-completion for, as it is easy to see,
vectors of any R-module which are linearly independent with respect to R remain
linearly independent with respect to K. Clearly, the vector sum of two A-complete
subspaces is A-complete. It is also easy to see that the intersection of two
A-complete subspaces is A-complete, since the dimension (with respect to K) of
this intersection and the dimension of the completions contained in it are equal
to the same number, namely, to the amount by which the sum of the dimensions of
the given subspaces exceeds the dimension of their vector sum. A linear trans-
formation of K~ which takes all the points of an R-algebra A into points of A
will be said to be rational with respect to A. Clearly, linear transformations
rational with respect to A, singular or nonsingular take any A-complete sub-
space of K (in particular all of K) into an A-complete subspace.

LEMMA 1'. Subalgebras (over R) of an R-algebra A are A-completions of
A-complete subalgebras of K, i.e., they are bisectrices, coordinate subspaces,

or bisectrices of coordinate subspaces.

In fact, if B is a subalgebra of A, then its K-linear envelope B is a sub-
algebra of K . Any m-dimensional subalgebra of the R-algebra A may be con-
sidered as an R-algebra of the space K,., put into the corresponding coordinate
subspace or bisectrix, i.e., as an R-algebra of this subspace with respect to its
initial basis.

A zero divisor will be any point that has both zero and nonzero coordinates.
It is easy to see that in any R-algebra it is possible to divide by any of the
points that are not zero or zero divisors. In fact, multiplication of Kn by such a
point A is a nonsingular linear transformation rational with respect to A which
takes all of A into all of A. Hence, for each point p in A there is a point p'
in A such that p'A =y, i.e., p’ = p/A. It further follows from this that any R-
algebra that contains at least one point that is not a zero-divisor and is not equal

to zero will contain the identity (1,1, .-+, 1).

If the R-algebra A can be represented in the form of a direct sum of two
R-algebras, i.e., in the form of the vector sum of two algebras completing the
complementary coordinate subspaces, then A is said to be a reducible algebra,
while if such a representation is impossible, A is said to be irreducible. Any
reducible R-algebra contains zero-divisors; for example, all the points of the

algebras which are being added. The very important converse also holds.
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LEMMA 2. If an R-algebra contains a zero-divisor w, then it is reducible and de-
composes into the direct sum of two R-algebras, one of which is in the coordinate sub-
space K, which includes those axes for which the- coordinates of w are different from
zero, while the other R-algebra is in the complementary coordinate subspace.

PROOF. We multiply K by the point w. When this is done, K goes into
K, . Since multiplication by a point w € A is a rational transformation with re-
spect to A, therefore K, will be A-complete. The completion of K,,1 is clearly
an algebra and will be denoted by A;. The point @ belongs to it and is not a
zero-divisor in it; hence Al includes a unit ¢; of the space K"l' Further, the
transformation @’ = a — e, is rational with respect to A and takes K into the
space K,,2 that is complementary to K”I' This subspace is also A-complete. Its
completion forms in its turn an algebra A2' Since for any a € A, it is true that
a=ae +(a-ae), ag €A, a—a €A, and K,,1 n K,l2 =0, the algebra A
is the direct sum of Al and A,.

It is now easy to prove the following important theorem:

THEOREM 1. Each R-algebra A is either irreducible or uniquely decompos-

able into the direct sum of irreducible algebras.

PROOF. If A is reducible we decompose it into the direct sum of two alge-
bras; if one or both of these is reducible we continue the decomposition, and so
on. The process of decomposition must terminate, since the number of direct sum-
mands of A cannot exceed its dimension. Thus A is decomposed into the direct
sum of irreducible R-algebras A;, A,, ..+, A,. Since an irreducible algebra can
not contain a zero-divisor, the complexes of vectors of the initial basis pertaining
to the subspaces containing A, A, ..\, A, may be characterized by the fact
that the coordinates of all of the points of A that correspond to each separate
complex either vanish or do not vanish simultaneously. This holds for every com-
plex of coordinate vectors of each subspace containing an irreducible summand of
the algebra A, and hence such a summand must coincide with one of the Al’

A,, -«+, A,. The theorem is proved.

We note that it follows from this theorem that any R-algebra contains a unit
of Kn. In fact, each irreducible R-algebra contains a unit because of the possi-
bility of division by any one of its points other than zero, while the sum of units
of all the subspaces containing irreducible summands of the algebra is clearly a
unit of the whole K .

3. The direct product of algebras. Let there be given points a and 8
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in the spaces: Km and K, with coordinates (o), a(@) ..., alm) apnd (,3(1),
B, ..\, B™). We associate with them a point of the space K, , with coordi-
nates (+++, a(i)-ﬁ(j), ven),i=1, 00, m j=1, «++, n. The point constructed in
such a manner will be called the composite point of o and B and will be denoted
by a* . It is easy to convince oneself of the validity of the following rules for
operations:

1) ax (B + By =(axB)) + (axBy),

12 (a, + ay)* B = (o *B) + (a, *B),

(13) ax(aB) = (ac)*B = ala * B),
where a denotes any scalar;

(2) ajay* BB, = (ag*By) (ay*By).

The composite of two point collections A and B will be the collection of
the composites of all the points of A with the points of B. Finally, the direct
product A%B of the collections A and B (which are assumed to be additive and
subtractive) will be the collection of all points obtained from the composites of
A and B by addition and subtraction.

THEOREM 2. The direct product of two R-algebras is an algebra.

PROOF. From the definition of the direct product and from properties (11),
(12), and (13) for composites of points, it follows that the direct product of linear
envelopes (with respect to the field K or to one of its subfields) of two collec-

mn’
for the composite of the initial basis of K and K is the initial basis of K .

tions is the linear envelope of their composites. In particular, K *K =K

Further, the composite of any coordinate systems gm and 5n of the spaces Km

and K is always the basis of K, , since its K-linear envelope is equal to

K *xK =K
m n mn

the direct product of R-algebras is an R-module based on the composites of its

mn?
and it consists of exactly mn vectors. From this it follows that

bases. This R-module, in view of rule (2), is reproduced by multiplication, i.e.,

is an R-algebra, which is what we wanted to show.

$2. THE GALOIS GROUP OF AN R-ALGEBRA

By axial-superpositions we will mean linear transformations of Kn by which
the vectors of the initial coordinate basis are only permuted among themselves.
An axial-superposition into itself of an R-algebra will be an axial-superposition
that takes the R-algebra into itself. Axial-superpositions of an R-algebra into

itself are automorphisms of the R-algebra and clearly form a group. There exist
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R-algebras admitting all n! possible axial-superpositions; an example is an
R-algebra constructed on the initial basis. The other extreme case is also pos-
sible, when the R-algebra does not have any axial-superpositions into itself other
than the identity. For an irreducible R-algebra the number of axial-superpositions

into itself cannot exceed its dimension; namely, the following assertion is true.

LEMMA 1. Among the axial-superpositions of an irreducible R-algebra into
itself there exists not more than one taking some vector of the initial basis into
a particular other vector of the initial basis, i.e., there are no more than n axial-
superpositions.

PROOF. Let us assume the contrary, namely, that two distinct axial-super-
positions into itself 0y and 0, of an R-algebra A take a vector e; of the initial
basis into the same vector e,. Then the axial-superposition o3 = 0201_1 # 1 takes
e, into itself. Here there exists a point a of A such that o3 = B # a, since
g3 # 1. The first coordinates of the points a and 8 are equal, since e?’ =€
and hence the point 8- @ of A turns out to be a zero-divisor, which is impos-

sible in view of the irreducibility of A. The lemma is proved.

We will say that an R-algebra of the space K is normal if it is irreducible

and has n axial-superpositions into itself.
THEOREM 1. Every irreducible R-algebra of A is a subalgebra of some

normal algebra.

PROOF. We take n copies of the algebta A, denoting them by Al’ A, .
Ceey An and we form their direct product D. It is an R-algebra in a space of
dimension n". We will number the vectors of the initial coordinate system of this
space with sets of indices (jl’ Jor tvty jn), where we lay out on the axes

°j1j2---i the products of the j;th coordinates of the points of Al’ the j,th coor-
vin
dinates of the points of Az, and so on to the j th coordinates of the points of

An and the sums of such products. We consider now the n! axes whose ‘‘num-

bers’’ do not include identical indices, and we show that D has a direct summand
C which is contained in the coordinate subspace Kn, based on these axes. We

introduce into the algebra A the basis Wy, v, @ We denote by w; ;,+¢0, @
’

n’ n,i

the corresponding bases of the algebras Ai’ and we construct the point 3,

represented symbolically in the form of the determinant
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@] Pz 0 @,

Wpy Wzt Wy,

B= | ...

(4)"1 @p **° Opp

In the calculation of this determinant it is necessary to consider its individ-
ual elements as composites of points of the algebras Al’ ey, An, while addition
must be understood as addition in the algebra D. Clearly, the coordinate of the

point 8 that corresponds to the axis is equal to the determinant whose

e. . .
J1j2°**In

columns are composed respectively of the j,, j,, +«+, Jnth coordinates of the

points @, @2, "'y Wpe Hence all the coordinates of the point 8 that correspond

to axes whose ‘‘numbers’’

contain equal indices are equal to zero, while the coor-
dinates corresponding to axes without equal indices are equal, up to the sign, to
the determinant consisting of all the coordinates of the points Wy, Wy, * 1, Wy,
and are thus different from zero. Hence, in view of Lemma 2, the algebra D act-
ually has a direct summand C that is contained in the coordinate subspace K"!.
We now rearrange in some manner Al’ AZ’ eee, An' Then their direct products will
not change while the axis with the number (jl, I7TRERY /n) will go into the axis
with the number in which the indices j,, j,, +++, j undergo the corresponding
permutation. The algebra C is transformed into itself and any axis of its initial
basis may be taken into any other axis of the same basis by means of the appro-
priate choice of the permutation of Al’ A,, -++, A . The algebra C may turn out
to be reducible; clearly, in this case it is the direct sum of identical normal alge-
bras. In fact, let ¢ be an axial-superposition into itself of the algebra C (induced
by some permutation of Al’ Ay eee, An), which takes some axis of the subspace
containing an irreducible summand of B into another axis of the same subspace.
This axial-superposition takes B into some irreducible summand of the algebra

D which must coincide with B, for coordinate subspaces containing distinct
irreducible summands of algebras intersect only in zero. Hence, such an axial-
superposition of C induces an axial-superposition of B into itself, where any
axis of the initial basis of the algebra B may be taken into any other axis of its
initial basis, i.e., B is normal. Having considered an axial-superposition taking
some axis of an irreducible summand B into an axis of another irreducible sum-
mand B’, we see that it takes B into B'. Thus we see that all the direct summands
of C are normal and may be obtained from one of the B by axial-superpositions,

i.e., they are equal to each other.
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Further, the algebra D contains the composite Al*l ¥oaa k] = 'Kl, which
is nothing other than the algebra A based on some bisectrix; namely, the first
coordinates of points of A are laid out on the complex of axes, the first index of
which is equal to 1, the second on the complex of axes, the first index of which
is equal to 2, and so on. Let e be a unit of the space Kn!. Then clearly e € C
and xie C C is again an algebra A put into the corresponding bisectrix of K .
Thus, A is a subalgebra of C, based on the bisectrix of all of Kn!. But, in any
case, A is also a subalgebra for B, which follows from the following lemma:

LEMMA 2. If an irreducible R-algebra A is a subalgebra of an R-algebra
C and is located on the bisectrix of all of its space, then A is a subalgebra of

each irreducible summand of C.

PROOF. Let C= Bl +oaadt Bk be the decomposition into itreducible sum-
mands, let K"l’ caay, K"k be the subspaces containing Bl’ oo, By, let Knll, can
v, K, "
of the algebras Bl’ +++, B,. Then clearly the collection ejA is a subalgebra of

be the subspaces complementary to them, and let ¢, -+, ¢, be units

B j the coordinate points of which coincide with the coordinates of the correspond-
ing points of A, where all the coordinates will be represented unless multiplica-
tion by € annihilates some vector of the initial coordinate system of the bisec-
trix containing A. But this situation would be possible only if the bisectrix con-
taining A had an intersection with the space K, other than zero, which is im-
possible. In fact, if there were a bisectrix containing A with a nonzero inter-
section with K, , then this intersection, being the intersection of C-complete
subspaces, would be C-complete, and points of this intersection would be zero-
divisors and would be included in A, which is impossible, in view of the irreduc-
ibility of A. Thus each algebra EI.A is equal to A based on some bisectrix
K, . in a corresponding way, i.e., A is a subalgebra of each Bi' Lemma 2 and
Theorem 1 are now proved in full.

We note that, starting with the reducible algebra A, by the same construc-
tion we could have constructed a normal algebra B. Having generalized Lemma
4 in a corresponding manner, it is easy to see that the normal algebra so con-
structed contains all the irreducible summands of A as subalgebras. Further, it
is possible to show that the normal algebra B thus constructed is minimal among

all the normal algebras that contain all the irreducible summands.
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$3. BASIC THEOREMS OF GALOIS FOR R-ALGEBRAS

Let @ be the group of axial-superpositions of a normal algebra A and let §
be one of its subgroups. We decompose all the axes of the initial coordinate sys-
tem into complexes, putting into one complex all the axes that can be obtained
from one another by means of axial-superpositions from the group 9. It is easy to
see that such complexes do not have common axes, that the number of axes in -
each complex is equal to the order of §, and hence that the number of complexes
is equal to the index of . The bisectrix of the space Kn determined by such a
decomposition of the initial coordinate system will be called the bisectrix belong-
ing to the subgroup §. Its points may be characterized by the fact that they and
only they remain fixed under all the axial-superpositions from @.

THEOREM 1. Any R-subalgebra of a normal R-algebra A is the completion
of a bisectrix belonging to some subgroups of the group of axial-superpositions
@ of the algebra A into itself. Conversely, a bisectrix belonging to some sub-
groups of the group @ is A-complete and its completion is a subalgebra of A.

PROOF. Let there be given a subalgebra B of a normal algebra A. It com-
pletes some bisectrix B of the whole Kn. Let this bisectrix be characterized by

the equality of coordinates in the complexes of axes
(el,-\!,em), (em+l,-l\),-n‘q,

We consider the collection 351 of all axial-superpositions taking the axis e; into
the axes of the first complex. These axial-superpositions do not change all the
points of B, for if one of these axial-superpositions w € B went into a different
point ', then, in view of the normality of ' € A, A would contain the zero
divisor ® — w'. Each axial-superposition taking e, into the axis e, of another
complex changes at least one point of the subalgebra B, since there exist in it
points that have unequal coordinates in the axes e, and e,. Thus the collection
551 coincides with the collection § of all the axial-superpositions that do not
change all the points of the subalgebra B. From these considerations we conclude
that the collection of all axial-superpositions taking any axis into all the axes of
the complex containing it coincides with the collection . Clearly & is a group,
and the bisectrix containing B belongs to this group.

Let there now be given some subgroup § of the group @ of axial-superposi-
tions into itself of the normal algebra A. We associate with each point a € Kn
the sum of all the points obtained from a by axial-superpositions from the group

9. This determines a linear transformation of Kn which is rational with respect
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to A because of its normality, and which takes all of K into a bisectrix belong-
ing to 9. Hence this bisectrix is A-complete and its completion is clearly a sub-
algebra of the algebra A. The theorem is proved in full.

THEOREM 2. If § is a normal divisor of the group @ of axial-superpositions
of a normal R-algebra A, then the subalgebra B belonging to © is normal and
its group of axial-superpositions is isomorphic to &/9.

PROOF. Let 8=9 + 0235 + vt akg and let e; be one of the vectors of
the initial coordinate system of Kn. ‘Then the vectors of the initial coordinate
system belonging to § are e, = 3 e. It is easy to see that if § is a normal

€0, 9
divisor of @, then each axial-superposition of @ takes into itself the initial basis
of the bisectrix belonging to $ and consequently the whole bisectrix. In fact
ef= 3 €= X e§l= 3 eil-
€09 7'€01. 90 7'€0109

Axial-superpositions induced in the bisectrix form a group homomorphic to
@ with the kernel of the homomorphism being . Hence this group is isomorphic
to @/9. Its order is equal to the dimension of the bisectrix. Under all these

superpositions B goes into itself, and hence, being irreducible since it is a sub-

algebra of an irreducible algebra A, it is normal. The theorem is proved.

$4. CONNECTION WITH THE PRESENT-DAY PRESENTATION OF GALOIS THEORY

1. On generic points. A generic point of the space Kn is a point whose coor-
dinates are distinct and different from zero.

LEMMA 1. Any irreducible R-algebra A contains a generic point.

PROOF. Let us consider separately the cases when R consists of a finite
and of an infinite number of elements.

Let the field R be finite. Then any irreducible R-algebra A will also be a
finite field. As is well known, all the nonzero elements of a finite field form a
cyclic group with respect to multiplication. Let a be a generator of this group.
Then o is a generic point, for if two of its coordinates were equal, i.e., if a lay
in some bisectrix, then all the elements of A would lie in the same bisectrix and,
except for zero, would all be powers of a, which is impossible.

Now let R be infinite. We find first of all in the R-algebra A points
Oy, Qg sav, @y such that the ith coordinate a?) of the point a; is different
from its first coordinate a(‘.l ), Such points may be found, for otherwise A would
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be in some bisectrix. We now construct successively the points f3,, ,83, B,
such that all the coordinates from the second to the ith of the points 8 ; are dif-
ferent from its first coordinate. As B, we take a,, constructing the successive
points inductively. Let Bi be already constructed. We look for 8;,; in the form
,3“1 = Bi +xa;,,, where x €ER. For our purpose we must choose x so that

none of the following equalities are fulfilled:

1 1
BP  +xa®) =B 4 xall),

BY  +xald; = B(,'l) + xas.l)l,
j+1 j+1 1 1
B(é )+xa(§:1)=/3(i) +xa(i+)l.

None of these equalities is an identity (the last in view of the choice a;,,,
the remaining in view of the construction of the point Bi)' Hence each of these
equalities can be satisfied for not more than one value of x. Taking x different
from this finite number of excluded values, we construct the point Bi+l = ﬁi +
xQ;,, satisfying the given requirement. The last point 3 , which we denote by
y1, has the property that its first coordinate is different from all the remaining
coordinates.

In the same way we construct points y,, +++, y_ so that the ith coordinate
of the point y; is different from all the remaining coordinates of that point. Then
we pass to the inductive construction of the points 82, 83, can, 5n such that the
first i coordinates of the point ; are distinct. As §, we take y,. Let §; be
already constructed. We look for the point §;,, in the form 8, + xy,,, for x €R.
We must choose x so that none of the following equalities is satisfied:

() () — §(k) (k) . .

- & +ayl) 8i +ay o J» k<,
() (7) = sli+l) (i+1) = can, i
Si +xv _81' +xy T J=1 2,0,

The equalities in the first set are not satisfied identically because of the
choice of §;, while the last are not satisfied identically because of the choice
of y;,1. Hence we may again take for x any member of R other than a finite
number of values.

The last of the points 3n thus constructed will not have equal coordinates,
and in view of the irreducibility of A all of its coordinates will be different from

0, i.e., 8n is a generic point. The lemma is proved.
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REMARK. If R is infinite the requirement of the irreducibility of A is not
essential. It is used only to check that no coordinate of the point Sn is equal to
zero, which may be avoided by adding, when necessary, a properly chosen sca-
lar multiple of the unit. If R is finite the requirement of irreducibility is essen-
tial, for in this case it is easy to construct an example of a reducible algebra that
does not have any generic points.

2. Content of the theory thus constructed. We have the following theorem:

THEOREM. Any irreducible R-algebra is a separable finite algebraic exten-
sion of the field R. Conversely, any separable finite algebraic extension of

degree n of the field R may be represented in the form of an irreducible R-alge-
bra in the field K for a suitably chosen field K.

PROOF. Let o be a generic point of an irreducible R-algebra A of the
space Kn. Then the points 1, a, + 1+, a1 are linearly independent with respect
to K, i.e., they form a coordinate system for the space Kn. In fact, if they were
linearly dependent, that is if we had cla”_l + a4 ¢ =0 with coefficients
from K, then the polynomial ¢ (x) = clx”-1 + s+ ¢ would have n distinct
roots, namely the coordinates of the point a, which is impossible. The basis
1, a, «1, ar~1 belongs to A, and hence all the points of A are representable
in terms of the basis with coordinates in R. In particular, there exist ap, @y, et

"=a; ar"lioios a,. The roots of the polynomial

*++, @ € R such that a
f(x) = 2™ - alxn-l = s+ ~a, are the coordinates of the point a; they are all dis-
tinct. The polynomial f(x) is irreducible in R. In fact, if we had f(x) = ¢, (x) -
¢2 (x), where ¢, ¢, are nonconstant polynomials with coefficients from R,
then the point ¢, (a), being different from zero, would have zero coordi-
nates corresponding to those coordinates of a which are roots of ¢, (x) .
Thus A = R(a), where a is a root of a polynomial that is irreducible in
R and which does not have multiple roots, i.e., it is a separable finite algebraic

extension of R.
~o

Conversely, let there be given a field A, which is a finite separable alge-
braic extension of R, let % bea primitive element of it, and let f(x) be an
irreducible polynomial determining d. We take for K a field in which f(x) may
be decomposed into linear factors, for example, an algebraically closed field
containing R. In K let f(x) = (x - a1) (x = (@) ..\ (x - (™). In view of the
separability of X, all the a(l), a(z), ey, a{®) will be distinct. We associate
with the element O the point a of the space Kn with coordinates a(l), a(z), cas

«+v, o{®, Since a is a generic point in K., the points 1, a, « v, a”"1 forma
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coordinate system in Kn. Clearly, an R-modul'\e’ based on this coordinate system
is an R-algebra A, isomorphic with the field A. It will be irreducible, since, in
view of the isomorphism with the field x, it will contain no zero-divisors. The
theorem is proved.
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