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PREFACE

The present book is devoted to the analytic theory of elimination of nuisance
parameters in the testing of statistical hypotheses and to the theory of unbiased
estimates. Our attention is concentrated on the analytic properties of tests and
estimates and on the mathematical foundations for obtaining a test or unbiased
estimate that is optimal in some sense or other. It does not, however, include
either computational algorithms (which in many cases reduce to certain forms of
linear programming) or tables. Thus the book does not contain individual statis-
tical recipes for problems with nuisance parameters, but rather attempts to point

out procedured for constructing such recipes.

In the introduction and later, we recall certain standard theorems on o-alge-
bras, probabilistic measures, and statistics. In Chapter I, we treat multiple La-
place transforms and describe the simpler properties and applications of analytic
sheaves along the lines developed by H. Cartan. In later chapters these proper-
ties will be applied to the theory of exponential families. Chapter II gives the
fundamentals of the theory of sufficient statistics for distributions in Euclidean
spaces and exponential families associated with them (for repeated samples).
Chapter III presents some of the problems themselves with nuisance parameters.
Chapter 1V treats the theory of similarity following J. Neyman, E. Lehmann, and
H. Scheffé. Chapters V and VII-X discuss the recent researches of statisticians
at Leningrad University in the theory of similar tests and unbiased estimates,
particularly in connection with the Behrens-Fisher problem. In Chapter VI, an
exposition is given of the remarkable method of R. A. Wijsman; however, this
method does not yield all desirable tests. The role of the theory of sheaves of
ideals of functions as an analytic foundation of the theory of similar tests and
unbiased estimates for imcomplete exponential families is clarified in Chapters V
and VII. Here exponential families are considered not only for repeated samples
but for other cases as well.

In Chapter XI, an exposition is given of the problem of many small samples,
and, in particular, of the researches of A. A. Petrov.
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iv PREFACE

At the end of the book are several unsolved problems, which constitute only a
small portion of the esthetically pleasing and varied problems that arise in analy-
tical statistics. Our purpose of the present book is to draw the attention of per-

sons interested in mathematical statistics to its analytical aspects.

A. M. Kagan, I. L. Romanovskaja, and V. N. Sudakov had a share in the
writing of this book. Sections 2 and 3 of Chapter VII were written by the author
in collaboration with A. M. Kagan, and section 4 of Chapter VIII with I. L. Roma-
novskaja. Section 2 of Chapter X was written by V. N. Sudakov. A considerable
amount of help in the writing of Chapter I was provided by N. M. Mitrofanova and
V. L. Eidlin.

I wish to express my gratitude to O. I. Rumjanceva and S. I. Cirkunova for

their great help in the preparation of the manuscript.

Ju. V. Linnik



PREFACE TO THE AMERICAN EDITION

The American translation of this book takes account of several corrections of
misprints and author’s errors that were noticed by readers or by the author. It also
contains a supplement to the book written by A. M. Kagan and V. P. Palamodov,
expounding their important contributions published recently in ‘*Teorija Verojat-
nostei i ee Primenenija’. The answers to several questions raised at the end of
the book are provided by the supplement. This new material includes a consider-
able advance in the theory of nonsequentially verifiable functions, the construc-
tion of all randomized similar tests for the Behrens-Fisher problem, and important
progress in the estimation theory for incomplete exponential families, based on
the introduction into statistics of the elements of homological algebra (in particu-

lar, flat modules).

The analytical sheaf theorems on which a large part of the book is based are
replaced in the supplement by the Hormander-Malgrange theory of linear differen-
tial operators with constant coefficients. This theory enables us to solve problems
involving convex supports, rather than merely the polygonal ones discussed in the
book. Thus we can now construct all similar tests for a linear hypothesis with
unknown variances (least square method with unknown observation weights) and
for many other problems of testing hypotheses and unbiased estimation. The opti-

mization problems are thus reduced to purely analytic (variational) ones.

I am very grateful to the American Mathematical Society for publishing a
translation of my book with the supplement. It is my pleasant duty to thank S. H.
Gould and G. L. Walker for their interest in my book.

Ju. V. Linnik
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APPENDIX

UNSOLYED QUESTIONS

In the analytical formulation of certain problems presented in this book deal-
ing with the elimination of nuisance parameters in statistical problems, certain
questions and unsolved problems arise rather naturally. Here we arrange these

according to the chapters dealing with the topic in question.

Chapter II. 1. Continuation of the work of Koopman, Dynkin and Brown on
the classification of distributions admitting sufficient statistics of finite rank
for the case in which the distribution densities can vanish. Weakening of the
condition for existence of exponential families in the case when the densities do
not vanish on the sample space.

2. Investigation of exponential families with ‘‘sliding carrier’’, i.e. families

whose carrier depends on the parameters.

Chapter III. 1. Consider a repeated normal sample xy,---, x,, where x; €
N (aq, o%). Let us partition all almost-everywhere-continuous functions y(a, o)
into two classes:

I. “Verifiable functions’ for which the hypothesis H: y(a, 0) = y, admits
an invariant verification.

II. The remaining functions.

How can one describe the class I?

2. The same question for an infinite sample x;, x,,-., and the application
of sequential analysis, where the mean number of steps is bounded up to the final
solution.

3. Generalization of question 1. Suppose that we have an exponential family
of the form (5.2.3). Let us partition the collection of functions y(el, e, 03)
into ‘‘verifiable’’ and ‘‘unverifiable’’ classes, just as in question 1. How can

we describe the class of the form 1?

213



214 UNSOLVED QUESTIONS

Chapter IV. 1. How can we describe all the similar zones of distribution
families of the form (4.3.5)?

2. Let xg,-++, %, (x; € N (0, 1)) denote a repeated normal sample. Let
Pi(xgyee+, xn) and P,(xy,---, xn) denote two independent polynomial statistics.
Is it always possible to “‘uncouple’ them by means of an orthogonal transforma-
tion, i.e. to reduce them to two statistics depending on the completeness of the
different variables? (For a given sample size n and given degrees m; and m,
of the polynomials the question can be solved in a finite number of steps for all

such polynomials (see [41]).)

Chapter V. 1. Is it possible to weaken the condition for complexification of
the relations (condition (¥|) in $8)?

2. Is it possible to weaken the condition on the Jacobians (Yu)?

3. How can one describe in terms of generalized Laplace transformations
(in the sense of the theory of generalized functions) the construction of nonsmooth
cotests?

These questions are related to the following question in the theory of ana-
lytic functions.

4. Let Z denote a simply-connected complex polycylinder. Let O denote
a ring of functions that are holomorphic and that have a holomorphic continuation
from the polycylinder to the Cartesian product of the half-planes containing Z.
How can we describe the structure of the ideals of the ring O'? Under what con-
ditions will the basis of the ideals be finite?

5. How can we construct cotests for the case in which the function % van-
ishes in a given region?

Formula (5.8.6) leads to the following analytic problem: Let A,’(Tl’ <oy T,
j=1,2,-++,1;r<s, denote sufficiently smooth functions defined in the Euclidean
space E_ of the arguments Ty,.-., T .. Let U denote a simply-connected re-
gion contained in E‘s and bounded by smooth surfaces. How can we describe the
system of all functions Hy,-- «, H_for which the sum of the convolutions

A1 * H1+...+Ar * H_r
exists and vanishes on U?

6. Is it possible to describe smooth cotests for exponential families with

*sliding carrier’’ (cf. question 2 to Chapter II)?

7. The development of computational methods, in particular linear programming
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methods, for finding optimal similar tests.

Chapter VI. 1. Generalization of Wijsman's results on the construction of all
similar tests of the hypothesis H: a/o =y, for a repeated normal sample x;,---
«++, x, where x; € N(a, 02). In what problems associated with tests of hypotheses
on normal samples do parabolic differential equations appear? What can we do in

other cases?

Chapter VII. 1. Questions of unbiased estimates of zero (UEZ’s) analogous
to the questions in Chapter V on cotests, i.e. questions 1-5 of Chapter V with
the word “‘cotest’’ replaced by the expression ‘‘unbiased estimate of zero’’.

2. Generalization of the results of $2 dealing with inadmissible unbiased
estimates. Ways of obtaining more general forms of inadmissible unbiased esti-
mates for incomplete exponential families on a compact set of values of the para-
meters. Cases of inadmissibility for noncompact sets of values of the parameters.

3. Replacement of the variance as a function of the loss of an unbiased esti-
mate with other sufficiently smooth functions. Conditions for inadmissibility of
unbiased estimates.

4. Classification of the best unbiased estimates for incomplete exponential
families from a standpoint of variance. From an analytic point of view this prob-
lem is connected with the following question from functional algebra. Let O
denote the ring of all holomorphic functions defined on a compact simply-connected
polycylinder and let / denote an ideal contained in O. Find the ring K of all
linear differential operators L with constant coefficients such that LI C I.

5. Problems analogous to the preceding ones for the case in which we are
using not the variance but other sufficiently smooth functions of the loss.

6. Construction of an analogue to Theorem 7.3.1 dealing with inadmissibility
of a sample mean for scale parameters. Extension of Theorem 7.3.1 to observa-

tions connected with a homogeneous Markov chain.

Chapter VIII. 1. Investigation of the question of nonexistence, in general,
for incomplete exponential families of similar zones that depend on sufficient
statistics with sufficiently smooth boundaries.

2. Weakening of the conditions of Theorem 8.3.1. Does there exist a similar
Fisher-Welch-Wald test if we require only continuity of the test boundary or only

satisfaction of a Lipschitz condition for it?



216 UNSOLVED QUESTIONS

Chapter IX. 1. Can we construct a test analogous to the simple randomized
test in §3 for the case of nonidentical sample sizes?

2. Generalization of Theorem 9.4.1 on the characterization of the Bartlett-
Scheffé test. Weakening of the conditions on the basic space of linear forms.
Construction of an analogue of this theorem to characterize the simplest tests of
the method of least squares with unknown weights.

Chapter X. 1. How can one construct a homogeneous unrandomized similar
test for the Behrens-Fisher problem in the case of like parity of the sizes of the

samples?

Chapter XI. 1. Investigations analogous to thos e made by Petrov for the
scheme of many small samples from complete exponential families referred to
in S1.



SUPPLEMENT

NEW RESULTS IN THE THEORY OF ESTIMATION AND
TESTING HYPOTHESES FOR PROBLEMS
WITH NUISANCE PARAMETERS

A. M. KAGAN AND V. P. PALAMODOV!)

The results expounded in this Supplement are mostly answers to questions
put at the end of the book (see queries: 1 to Chapter III, 3 and S to Chapter V,
4 and 6 to Chapter VII). But §5 is an exception; there the problem of estimating

te

a location parameter is considered when the ‘‘nuisance parameter’’ is the form

of the function F(x - @) itself, for which only several first distribution moments

for 6 = 0 are known.

The results of $$1 and 2 are due to V. P. Palamodov [ 7]s2) of $3 to
A. M. Kagan and V. P. Palamodov [% 3], of $4 to A. M. Kagan [4,12], of §5 t0
A. M. Kagan and A. L. Ruhin [5].

§1. INVARIANT VERIFICATION OF FUNCTIONS
WHICH ARE POLYNOMIALS IN a AND 1/

FOR NORMAL SAMPLES

This section gives the description of all polynomials P(a, 1/0?) admitting
invariant verification in the sense of $2, Chapter III (strictly speaking, that
sense will be modified a little), on the evidence of a repeated sample(x, «-+, %)
from a normal population N(a, 0%). The method of this section is purely analytical,
in contrast, for instance, to that of E. Lehmann [13] establishing the non-
verifiability of certain functions as a consequence of the indistinguishability of
the corresponding families of distributions.

1) Editor’s note. The translation of the Supplement was provided by the authors.

2) Authors’ note. These refer to the Bibliography at the end of this Supplement, not

to the main Bibliography.

217



218 SUPPLEMENT

Let xy»+++»x, € N(a, ¢2) be independent normal variables. In studying
the question of the invariant verification we can restrict ourselves, without loss
of generality, to those tests ¢(x, s) depending only upon the sufficient statis-

tics

T = 2

n M;

lse o2
n; i

1

S

n

x5 s
i=1 1
We have

E, ,6&,s)=dla, 0% = §(a, &)

=C, }o Tf"/zexp[— Els + (-aPNs(* ™3 2¢(x, s)dx ds.  (S.1.1)
- 00 0

Here we denoted &= 1/0%; C, is a constant.

Note that the integral (S.1.1) can be continued as an analytic function of
two complex variables to the product of the complex plane C of the values of ¢
and the complex halfplane C" of the values of ¢ with Re ¢ > 0. This enables
us to introduce the following definition.

Definition. A function f(a, £) defined in C x C" is called C-verifiable if

there exists a test ¢ such that
$a, &) =y(fa, £); a€C, (€Ct
for some ¥ # const.

Any real C-verifiable function is obviously verifiable in the sense of §2,
Chapter IIl. The converse is not true; in [€] we give sufficient conditions for
the C-verifiability of functions which are verifiable in the sense of §2, Chapter
III.

Lemma S.1.1. For any test ¢(x, s)
~ n 2
\$la, ) < Co |2 [ exp[l'{_félg ma IZ] (5.1.2)

Re ¢

for a€C, £€ ct (Co, Cl’ -+« in what follows are positive constants).

Proof.

| §la, €)] = Colé1"/2 x



ESTIMATION AND TESTING HYPOTHESES 219

xexp(—Re(faz)) ofo Texp[-rf(8+ 72) + 2£ax]s(773)/2 ¢ (X, s) ds dx
- OO 0
<Colé1”2exp(~Reéa?) T T expl-Re&(s+%?) + 2Re (£a)E1s" 32 4 g%
- 00 O

(S.1.3)
because 0 < (X, s) <1. The quantity

C()lRe {:ln/Z

2 00 00
.exp[__M] [ [ expl-Re&(s + T2) + 2 Re (a7 )32 45 gx
Ref —o0

is the power function of the trivial test ¢ =1 at the point (Re £, Re (£a)/Re £).

Taking this into account, we can write the right side of (S.1.3) in the form

£ |n/2 Re (£a)?
Co R exp{—%e—ffi— — Re (&)
Putting a =a +if8, £={+in we get
Re (£0) 2
-—R—e_—f— -Refu
- L lag-Bp?-¢ea?BD —2na Pl = 2(¢2 + 4282 167 mal?,
4 ¢ Re ¢

which leads to (S.1.2).
We shall say that r(a, £) € R if
pla, &) PR{&)a™ + - ev 4 po(£)

gla, £) _qk(f)ak +eee 4 g0 (&)

where p;, 9; (i=0,1,-++,m; j=0, .-+, k) belong to the ring A of the func-
tions holomorphic in c' and P, q; # 0. Without loss of generality we suppose
that either m >k or m =k but p,(£)/q,(£) £ const. Moreover, we can

r(a, &) =

(S.1.4)

suppose that the number m is the least possible and the functions p; and g;

do not vanish simultaneously.
Theorem S.1.1. 1° If a function r € R with m >0 is C-verifiable, then
k =0 in (S.1.4), and the function qo(£) £0 on C*. Moreover, the power

function of the test i (r(a, £)) is an entire function of order not exceeding 2/m.
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2°. If, moreover, the functions qg Pgys ** > P, @nd py/q, are analytic in
the vicinity of zero, the function is of the form

r(a, §) = rz(f)a2 +r(Ea+ry(£); r; = qfi €4
0

times a constant; also, rz(O) = rl(O) =0; r’2(0) =1 and the image of the mapping
Ty C* = C belongs to C*. The function ¢ is bounded in any closed angle
belonging to c’.

In what follows we shall denote by C’ the complex plane compactified in
the usual way.

Lemma S.1.2. Let p: © — Cc’ bea function meromorphic in a domain
© CC and not a constant; let Q be the range of its values. If ¢ (p({)),

{ € w is analytic in w, then y is analytic in Q.

Proof. Let zy € Q be an arbitrary point distinct from e, and let {; € w
be a point at which p({,) = z. If p'({y) #0, then in the neighborhood of the
point z, we have z = pw(z)) where w(z) is holomorphic in zy. Hence
Y (2) = Y (p(w (2))) which implies that ¢ is holomorphic in z.

Since p # const, the zeros of its derivative are isolated. Let {0 be one
of the zeros of p' and U Cw a closed bounded neighborhood of the point (0,
containing no other zeros of p' and no poles of p. Its image V =p(U) isa
bounded neighborhood of the point zg = P(Co)'

In the domain V\{z()} the function i/ is bounded and was proved to be
analytic. Hence it is analytic at the point z; also.

Now let Co be a pole of the function p. Choose a bounded closed neighbor-
hood U Cw of the point - Its image V is a neighborhood of e, and in the
domain V\\{zol the function ¥ is bounded and analytic. Hence it is analytic
at the point z( also. The lemma is proved.

We pass now to the proof of Theorem S.1.1. We suppose that i # const.

It is easy to see that the range of values of the function r: C x ct-c’
always contains C; hence by Lemma S.1.2 the function ¥ is entire.

If k> 0, then for a suitable fo the image of the mapping r(a, rfo): c-c’
contains the point «. Hence by Lemma S. 1.2 the function ¥ is analytic at that
point. Since it is entire it must be a constant, which contradicts our assumptions.

. +
Hence k =0. In a similar way we prove that g, has no zeros in C". Hence
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we get
(0, &) =1 (£)a™ @; r-ies
r(a, &) =r (£)a™ + « o +1(£); rizzl_o_e .
We fix the point & so that 7, (£) £0. Then rla, &) ~r (£)a™ for @ — <. The

inequality (S.1.2) implies for certain values of the constants A and B that
Y (r(a, €))] < €, exp(4|Imal?) < C; exp (B r(a, £)|2/™);
hence we deduce that the order of the entire function iy does not exceed 2/m.
The first assertion of Theorem S. 1.1 is proved.
We pass to the proof of the second assertion. The functions r

0’ pl, e
*+s P> 9o are analytic in the vicinity of zero. Hence the functions

r;= pi/q0 are analytic in the vicinity of zero, except perhaps at zero itself,
where the only possible singularity is a pole. We shall show that in fact the
coefficients r; (=1, .-+, m) are analytic in the vicinity of zero and r;(0) = 0.

Foreach i=1, .-, m we have in the vicinity of zero
a, +1

(@) =g €T e,

with certain p; # 0 and a;. Ifall a;> 0 our assertion is proved. Suppose
that a; <0 for a certain i; consider the quantity
%
a = max [-— |.
iZl[ i ]
Let k be the largest number for which - a,/k = a. For A € C put
A 1/k
a)(§) = |—= , €>0
A [fm(‘f)J ¢£>0,

where the branch of the root can be chosen arbitrarily. Since aj <0, the quan-
tity a)‘(f) is bounded for £ — 0 for any A € C. Since £> 0, we get from
(S.1.2):

[¢(rlay (&), EN] < € exp (B(A) €). (S.1.5)
On the other hand,
J J
COBER UL GRS UL (S.1.6)

In the first sum on the right-hand side of (S.1.6)
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Ir(OM } L

r(£)al(&)] =
Ir ()af(&)] (\r,,(fn‘"‘

~ C ¢(/i -ar/k) _, o
for £ — 0, in view of the choice of k. In the second sum
' (a;/j=a,/k) _
lri(f)a&(.fﬂ < CENTIT TR ik < oA kDR L )

for 0<£<1, since aj/j >a,/k for j<k and the function ry(£) is bounded
for £ —» 0. We choose ¢ so small that the first sum in (S.1.6) is smaller than 1.
Then

Ir(ap(£), &) = Al < CUA|E D7k ), (S.1.7)

We take now a sufficiently large R. If the point A ruas over the circumference
with the radius R, (S.1.7) implies that the point r(a)\(f), &), which depends

continuously on A, runs over a curve homeomorphic to that circumference and

containing the circle
|z] <R'= R=C(RU~D/k 1),

On the other hand, from (S.1.5) it follows that on this curve the function ¥ is
bounded by the constant Cexp(B(A) £). Since £ can be chosen as small as we
please, ¢ is bounded by the constant C, which does not depend upon A on the
curve described above and hence in the circle of radius R'. As R — = so
does R’; hence ¢ is bounded on the whole plane; hence i = const. Since we
assumed that ¢ # const we see thatall a;> 0.

Lemma S.1.3. For each £€ C* there exists an €> 0 such that the func-

tion  is bounded inside the angle
larc z ~ arcr (£)] < e
and, for odd m, also inside the angle
larc z - arc (—rm(fm <e (S.1.8)

Proof. Take an arbitrary { € c*. Since r,(0) = 0, it follows that rm(f)#
const. Therefore in the vicinity of the point ¢ we can find points &, and &_
such that



ESTIMATION AND TESTING HYPOTHESES 223

arcr (£) > arcr, (§) > arcr (),

arc rm(f+) - arc rm({:_) =6<n/2. (S.1.9)
We shall show now that the function y is bounded inside the angle
arcr,(£,) - 8/3 2 arc z y arcr (£) + 8/3. (S.1.10)
Consider the curves
0,()=rla, £,), E€0, ). (S.1.11)

We have
0,(a) -1 (£,)a™ = 0@™™D); £ o w.

This implies that the domain between the curves £ ,(a), taken together with a
sufficiently large circle, contains the angle (S.1.10). By the inequality (S.1.2)
the function ¢ (r(a, £,)) is bounded for real values of a. Hence the function ¥
is bounded on the curves (S.1.11). But by (S.1.9) these curves are contained
inside an angle less than 7/2, while i/ was shown above to be an entire function
of order not exceeding 2/m < 2. Hence by the Phragmén-Lindelsf principle, the
function ¥ is bounded in the domain lying between the curves (S.1.11), as was
to be proved. The case of odd m is dealt with by analogy with the preceding

one.” To complete the proof of Theorem S. 1.1, consider the set
farcr (£), £€C™Y. (S.1.12)
Since
. ' +%m +1
rAé)=p & +p,€ 4e0e; a >0
for sufficiently small £’s, we have
arcrm(f)"‘amarcf+ arc p,. for £ - 0. (S.1.13)

Therefore if a, > 1, the set (S.1.12) contains an interval of length 27. By
Lemma S. 1.3 it then follows that the function ¥ is bounded inside the angle

27 —¢ forany €>0. As ¢ is an entire function of a finite order, we have by
the Phragmén-Lindelsf principle: ¢ = const. Hence a_=1. Multiplying
r(a, €) into 1/p,,, we get r, (0) = 1.

*With £ replaced by - £.
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In this case it follows from (S. 1.13) that the set (S. 1.2) contains the interval
(- 7/2, @/2). Then by Lemma S.1.3 the function { is bounded inside the angle
larc z| < #/2 — € for any € > 0. Hence  is a function of order at least 1 and of
finite type. On the other hand, we have proved that its order does not exceed
2/m. Hence, m <2. The case m =1 is excluded because for m =1 Lemma
S.1.3 would imply the boundedness of the function 1/ also in the angle
|arc z -7l < 7/2 — ¢ for any €> 0, which is impossible for nonconstant functions
of finite order.

It remains only to verify that the image of the mapping r: C* — C belongs
o C*. Suppose it is not so, and that for a certain € C+, larc ry ) > n/2.
By Lemma S. 1.3 the function { is bounded inside the angle |arc z - arcr,(£)|<e.
Since this function is of the first order and bounded inside any angle of the form
larc z| < #/2 - ¢, again the Phragmén-Lindelsf principle implies that it vanishes
identically. Theorem S. 1.1 is proved.

Theorem S.1.2. Let a polynomial pla, £) which is not a function of & only
be C-verifiable. To be so, it is necessary and sufficient for pla, &) to be rep-

resentable as a linear form of
£(a® 4+ Aa+B) (S.1.14)
where A and B are real and A% - 4B < 0.

Proof. Necessity. Let p(a, {) be a C-verifiable polynomial, and let the
test ¢ be such that ¢(a, &) = Y (p(a, £)) where ¢ # const. By Theorem S.1.1
the function { is an entire one and p(a, {), after multiplication by a suitable

constant, is of the form

pla, &) = p(&)a? + p (E)a+py(8),
where

p,0) =p,(0) =0; p50) =1. (S.1.15)
By the conditions of the theorem p,(£), p,(£), po(£) are polynomials. We

shall show that their order does not exceed 1. Suppose this is not true; then

for a certain a = a the polynomial p(ao, £€) is of order k> 1 as a polynomial
in . Hence

plag, &) =CEF L O(EFY); € o, (S.1.16)
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Let the point ¢ move inside the angle larc £| <7/2 — €. Then from (S.1.2) it
follows that ¢ (p(ag, £)) is bounded. On the other hand, the first term in
(S.1.16) runs over all the values of the angle |arc | < 7 - 2¢. Hence the func-
tion p(ao, &) runs over all the values of the complex plane, except perhaps in a
certain circle and in the angle larc z —7| <3 ¢. Hence the entire function  is
bounded on the whole plane except perhaps in an angle larc z ~ 7| <3¢, which
is as small as we please. Since this function is of finite order, the Phragmén
Lindelof principle implies that it is bounded on the whole plane and therefore is
a constant. This contradiction proves that pz(f), pl(tf) and po(f) are linear
functions of ¢.

From (S.1.15) we get that pz(f) =¢; P, (&) =A¢£, where A is a constant.
Subtracting a suitable constant from p(a, £) we can also annul the constant term
of po{&). Then pla, &) takes the form (S.1.14).

Consider now the function arc (a2 + 4a + B) for real values of a. Suppose
it to be nonconstant and let ¢1 and ¢, be two distinct values of it. In that
case, if £ runs over the angle |arc £| < 7/2 —¢, and the point @ runs over
the real axis, the point cf(a2 + Aa + B) will take on all the values inside the

angles

larc z = ¢, | <7/2 - ¢ and |arc z -, | <n/2 -€.

From the inequality (S.1.2) it follows that  is bounded inside these

angles for any ¢>0. Since ¢; # ®, and Y is an entire function of the first
order, this is impossible in view of the Phragmén-Lindelsf principle. Hence
arc (a® + Aa + B) = const. On the other hand, arc(a? +Aa +B) =0 for a — oo.
Hence arc(a?+ Aa + B) = 0, A and B are real numbers and a’®+A4a +B is
nonnegative for all real a, so that A% - 4B £0.

Sufficiency. Consider the test

= o {(1 G232, 5 5y z2
¢x, s)=

H s<tx?

for a given ¢t > 0. It can be shown that for a certain pair of numbers (y, so)
with s3>0 we have

E, ed@ -y, s -s53)=C, exp (- r&2(a? + Aa + B))
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where 7 € (0, 1), so that £(a? + Aa + B) is verifiable. We omit the details;
they can be found in (61.

§2. THE DESCRIPTION OF ALL COTESTS FOR A CLASS
OF EXPONENTIAL FAMILIES WITH POLYNOMIAL RELATIONS

This is closely related to 38, Chapter V, and we use here the notation and

terminology of that chapter.
Consider the exponential family of densities with respect to Lebesgue
measure

P(T’ 0)=C(9)h(T)exp (01T1+"'+05T‘§) (5.2.1)

with 6, T € R®. Before stating the conditions imposed upon h(T) and the para-
metric set, we introduce the set o C R® determined in the following way. Con-
struct the set of § € R® for which for a certain C = C(6) the condition

{6, N <Ci>Supph=T
holds.

This set is a cone whose interior we denote by . It is important to remark

that if 0 € w we can choose a constant B such that for a suitable ¢> 0
0, V<-€|T|+B; TeT. (S.2.2)

We shall suppose that the family (S. 2.1) satisfies the following requirements.
1.1. T =Supp % is a convex set.
1.2. w is nonvoid.

1.3. Forany ¢>0

|| A(T) exp (~¢ ]TI)HLZ < oo. (S.2.3)

(Note that from (S.2.2) and (S. 2.3) it follows that for any 6 € w, p(T, 6) can be
considered as a probability density.)

2.1. The parameter € takes on values in an everywhere dense subvariety
of a real algebraic variety I w.

2.2. The polynomial ideal | formed by the real polynomials of 6 vanishing

on [N is a principal one, i.e. it consists of all polynomials of the form

G()P(6)
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for a suitable P().

Denote by N the variety of complex roots of P(6) and by w x R; the set
(6 €C®; Ref € w).

3.1. Each connected component of the intersection N N (w x R;) has at
least one real point where grad P(6) # 0.

Theorem S.2.1. Under Conditions 1.1-3.1 each cotest can be represented

uniquely by the formula

o) =1 P_DWD); D=2, ..., 9 ] (S.2.4)
K(T) lar, aT

where W(T) is an (ordinary) function such that

Supp ¥ CSupph }

||‘I’exp(—c|TmlL2<co forany ¢> 0 (8.2.5)

The function ¥ is uniquely determined.

Conversely, each function of the type (S. 2.4) with W(T) satisfying the re-
quirements (S. 2.5) and lying between o and 1 - a for a value of a € (0, 1), is
a cotest.

Proof. 1. Take a point a € w. Then for certain constants C >0 and B

the condition

(@, TY<-C|T| +B (S.2.6)

is fulfilled on the set Supph.
2. Set

Il = 1@ Dexpel Tl .

By a theorem of Hormander [11], for any differential operator with constant

coefficients there is a fundamental solution (in general, a generalized function)
E(T) under the condition:

£ * @||_ < Cl2|, (S.2.7)
for any ®(T) for which the right-hand side of the formula is finite. Let E(T) be

such a solution for P(- 9 + a).
Let ¢(T) be a given cotest, put ¢ = b and
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W(r) = E(T) exp [~ (a, 1] * ;S(T)
= [E(T) exp [~ (a, D (r~T)dT
= exp [~ (a, 1)) [E(T) exp (a, r = T) $(r - T) dT.

In view of the inequality (S.2.6), the function exp(a, T)¢(T) belongs to the
space L, with the weight exp (e|T|) for a certain €> 0. Therefore the property
(S. 2.7) of the function E implies the inequality

"exp (a, T)‘P(T)" -€
= |1 * expla, ) (D] _, < Cllexp (a, T $(T)],
<C'l$ll, for all small ¢> 0. (S.2.8)

Let us check the equality (S. 2.1). Tc this end we shall establish first that

the function E(T) exp [~ (a, T)] is the fundamental solution for the operator
p(= D). By the Leibnitz differentiation formula we have

P(- D {E(T) exp(-(a, T}
- exp(~(a, TN %l_p(i) (-DE
=exp(-(a, THP(-D + 2)E = exp - (a, ). 8=5,

from which we easily obtain

v

P(~ DY = P(= DY(E(T) exp(~(a, T* $) =8+ ¢ = .

3. We must prove now that Supp ¥ CSupph. Let 7 € Supph; then from the
convexity of Suppk it follows that for a certain A we have (A, T)> (A, 7)
for T € Supph. The construction of E(T) leads to the relation

P(D; +a)E(r~T) =0 in the half-space (A, - T) <0.

By a theorem of V. P. Palamadov [8; 9] we have the representation

EG-T)= f exp (6, T) u(d6), (S.2.9)
P(6+a)=0
|Re 6] <2¢

where the condition |Re @] <2¢ is secured by the special choice of the funda-

mental solution E(T) for which ||E x ¢|_, <C H(;b“E (the property (S.2.7)). The

measure p in (8. 2.9) is such that the integral (S. 2. 9) converges absolutely
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as a generalized function in the half-space (A, 7 = T) <0.

We now have
Y(r) = [E(r-T) exp(~(a, 7= T) ¢(T) dT

- [ E(-T exp(-(a,7- TN(T)dT
Supp b =

cexpl=(a, 7)) [ (exp(6+a, T), (THu(d).  (S.2.10)
P(6+a)=0

|Re 6] <2¢
Here we have set

(exp(6 +a, T), qZ(T)) = [exp(6 + a, T)%(T) dT.
J

The interchanging of the order of integration is permissible because for a
sufficiently small ¢ > 0, in view of |Ref| <2¢, we have:

exp(@ +a, T) = Olexp(-¢' |T)])) for T€J.
We shall now show that
(exp(0g + a, T), $(T) = 0 for p(fy+a) = 0, |Re B,| <2¢.

For sufficiently small a we have 6+ a € o x R;. Let N’ be a connected
component of the intersection N (w x R;), containing the point 6 + a. By

the conditions of the theorem N’ has at least one real point ¢ at which
grad P({) £0. Since P(0) is a polynomial with real coefficients, the condition

grad P({) £ 0 implies that the set N' contains an open (s - 1)-dimensional

part v of the set of the real zeros of P(6). Now the cotest condition
Egp=0, 0€ENNw
implies that
(exp(0, 1), ¢(T)) =0 for 6 € v. (S.2.11)

Since (exp (6, T), d‘;(T)) is analytic in  x R;, the relation (S.2.11) holds by

the principle of analytic continuation for the whole N', i.e.
(exp(8g + a> 1), (1) = 0
for p(f + a) = 0. Hence
Supp¥ C J.
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4. We shall show that for any ¢> 0
Pl ¢ < oo

(S. 2.8) implies that
llexp (a, T)¥||_ < ee.

First we shall prove that ¥ does not depend upon the choice of the point a € w.
Take

‘pa = ‘y aﬂd ‘Ila, = W’.

We have |¥ exp(a, T)|_, < and |¥ exp (a’, T)"—e < o. From this and from

the convexity of the cone w we deduce that the integrals
V- [¥ exp(6, T)dT and [ ¥ exp(6, T)dT
converge absolutely for 6 =b +c +a'; b€ w. But
P(-D¥ =P(-DV

implies that

PO ~¥') =0 for 0 €w+ a +a"
Hence ¥ =¥ and ¥ = V', and therefore

|¥ exp(a, T)|| -, <o for any ¢ €w.
Since |a| in @ can be made as small as we need, we have

]l <o

The argument of this section also shows that the function ¥ in (S.2.1) is
uniquely determined by the conditions (S. 2.5).
5. Application to the Behrens-Fisher problem. For the Behrens-Fisher

problem we have
p(T, 6) = C() k(T) exp(G1 Tl +oeee 4 64 T4);
w =(0,<0, 6, < 0);
2y(n=3)/2 2\(m =3)/2
WT) = (T, - TH=3/2(T, - THm =3)/2,

The corresponding ideal is a principal one and is generated by the polynomial

P(6) - 6,0, - 6,0,
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Thus the Conditions 1.1-2.2 obviously hold. Let us check the requirement
3.1. We take an arbitrary point 6 € NN (v x R;) and let it move into the real
subspace while remaining during the whole motion in one and the same connected

component.
1) Suppose that 6 # 0. Consider the path formed by the points:

6
1
9t=(01’ 629 t03’ t64); t € []w ?;]’

Clearly all points 6, belong to the same component of N. Consider now the
path

6, = (Re 6, +itlm6;, Red, +itIm0,, Re 6, +itIm6,, Re 0, +itIm 02);
t € (0, 1).
This path takes 0, into the point (Re 6,> Red,, Re 03 » Re 04) belonging to
the real subspace.
2) If 63 =0 but 6, #0 the argument must be changed in an obvious way.
3) If 6;=0, 6,=0, the path

6,=(Ref, +itlmf,, Red, +itImb,, 0,0); ¢E€(l,0)

takes the point (01, 02, 0, 0) into (Re 01, Re 6,, 0, 0). It remains only to re-
mark that for P(6) = 6,6, -6, 63> we have grad P(6) = 0 only at the origin,
which does not belong to w.

Hence for the Behrens-Fisher problem all cotests are of the form

1 2 2
-1 57T - a7 )
h\3T, 9T, oT,aT,

6. We can describe all the cotests for exponential families with an arbi-
trary number of polynomial relations. In that case the ideal / is not neces-
sarily a principal one. Each cotest can be written in the form

1
== 2P (- .
$=7 ;2. (=D,
where P]- (6) are the generators of the ideal I and ‘l’j(T) are in general, gen-

eralized functions with supports in J.
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§3. CONDITIONS OF OPTIMAL UNBIASED ESTIMATION
FOR INCOMPLETE EXPONENTIAL FAMILIES
WITH POLYNOMIAL RELATIONS

We consider the problem of unbiased estimation of parametric functions of
n independent observations of a random variable with the density with respect

to Lebesgue measure:
flx; a) = expieylx) + cl(a)tl(x) +o0e e (a)e (2) + co(a)}; (S.3.1)
here s < n; the abstract parameter a € 4. Introduce the natural parameters
61 = Cl(a)

and suppose that for @ € 4 the point 6 = (91, -++, 0;) runs over an everywhere
dense subset of an algebraic subvariety of the domain @ C R°. This subvariety
we shall write in the form Q N II, where II is an algebraic variety in R® given

by the polynomial relations
.................. (S.3.2)

with r <s.

The distribution of the repeated sample (x;, -+, xn) =% from the set
(S.3.1) is given in R" by the density with respect to Lebesgue measure

FMG; 6) = (CON" exp ﬁ:to(xi) . Gl%tl(xi)+-..+95%zs(xi)} (S.3.3)

where C(0) is determined by the norming condition. The sufficient statistics

for the family (S. 3.3) are

n
T1=§t1(xl); coe ;Ts=

—~M3

ts(xi).

We shall suppose that Tl’ ceey Ts are functionally independent; then the dis-
tribution of the vector T =(T;,-+-, T_) is givenin R® by the density with

respect to Lebesgue measure
p(T; 6) = C(OMTD exp(6; Ty ++--+0,T), (S.3.4)

where A(T)>0; 6 € QN Tl. We denote by Supph the support of the function
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R(T), i.e. Supph ={T: A(T) > 0}; let J = int Supph. Our condition for A(T)

consists in the following requirements:

h(T) is infinitely differentiable on J }

S.3.
mes Supph = mes J. (5.3.5)

Let g(T) be an unbiased estimate for a certain function y(6) depending only
upon the vector of sufficient statistics T and having a finite variance for all
values of 6 € QN II. We shall investigate the conditions which are implied for
the variety Il and the estimate itself by the optimality property of the estimate
forall 6 € QN1 in the class of unbiased estimates of the function y(6) with
finite variances. Throughout this section we take the variance for the quality
measure of the estimate. It is clear that the behavior of the function g(T) out-
side J is of no importance for its properties as an estimate of y(O); therefore
we shall suppose g(T) to be defined only on J. Denote by N the least
(complex) algebraic variety in C° containing IIN Q. Since II is itself an
algebraic variety, INQ =N Q.

Theorem S. 3.1. In order for the function g(T), T € I for which Eeg2<°°;
6 € QN1 to be the best unbiased estimate of the function E zg = y(0) for the
exponential family (S.3.5), 6 € QN 11, under condition (S. 3.5) it is necessary
and sufficient that:

1) In the space C° of variables 6., .-+, 0  there exists a linear system of
coordinates 6'1, cey 0; in which N is a cylinder of type L x v, where L is
the coordinate space 6'1 =eee= G;n =0 and v is a certain set in the space:

. =0's=0; 0<m<s.

1

om +15°°
2) In the corresponding system of coordinates Tiy een, Ts' in the space

R® of values (T, .-+, T ) the function g(T) depends only on Trln+1’ T

Proof. Let x(T) be an arbitrary unbiased estimate of zero with a finite

variance, i.e.
Ep () =0; Eexz <eo; fEQNTL
Lemma S.3.1. For g(T) to be the optimal unbiased estimate of y(6),

0 € QN 1, itis necessary and sufficient that for each unbiased estimate of

zero with a finite variance

Efgx)=0; 6€QnIlL
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In fact, let g(T) be the best unbiased estimate of y(6) and y(T) an arbitrary

unbiased estimate of zero. Then for an arbitrary constant ¢
Dg+ex) = D) +2¢ E flgx) +c 2D () (S.3.6)
As for all values of ¢
Dfg+ecx) 2D e)-

then it is easy to deduce from (S.3.6) that E fgx) =0, 6 € QN Il. Conversely,
let £ {gx) =0, 6€ QNI for any unbiased estimate of zero y(T). If the
estimate g,(7) is such that

then y = g, - g willbe an unbiased estimate of zero. We have:
Dyg)) = E fg-y(0)+ ¥)? = D)+ Dx) 2 D),

which proves Lemma S. 3.1.
We can now prove the sufficiency of the conditions of the theorem. Without
loss of generality, we can assume that in the initial system itself the subspace

L is given by the equations 6; =--- =6, =0, and v is a subset of the subspace

Opn+y ="+ =0,=0, and that the function g(T) depends only upon

Tm+1’ ceey Ts. Let x(T) be an arbitrary unbiased estimate of zero with
Eg(xz) <o, §€NNQ. Take any point 6, = (910, o0y 0,0 €ENNQ, denote
by w the section of { by the surface 6y =604 +++, 6, =6, , and put

WT) =T, oeeaT,) = [xADRT) exp(@yoTy+ « -+ + 6,07, )Ty «-- dT,.

The relation N = L x v implies that, together with the point 6, the set N con-
tains the points (60, **+» 0,0) 0, 41> +++» 0;) for all values of 6, i, -+, 0.
Hence and from the condition E (x)=0; 6 € QNN we deduce that

JUT) exp(6, , T, g+ +0,T )AL, oo dT =0

for all (emﬂ’ cee, 68) € w- By the uniqueness theorem for Laplace transforms,
¥(T) = 0. We have further for 6, € QN N:
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Eeo(gx) = C(0) fg(T 4ps oo+ TOAT oy oo dT

m

X fx(T)k(T) . exp(GlO Tl +eee+ 0,0 Tm)dT1 eoo dT
= C(Go)fg(Tm+l,..., Ts)exp(em,rl’()Tm+1 PR GS’OTS)dTm+l oo dT
X fx(T)h(T)exp(@lo Tl e+ 00 Tm)dTl ces dTm

= C(Go)fg(T)‘P(T)exp(Gmﬂ,OT qteer+0,T)dT - dT =0.

m

By Lemma S. 3.1, g(T) is the best unbiased estimate of the function y(@).

The proof of the necessity of the conditions of Theorem S. 3.1 is more com-
plicated and the following lemmas are required. Denote by D =D the space
of infinitely differentiable functions of T with compact supports lying in J.
For any function ¢(7T) € D the Laplace transform

36 = [ exp (6, ) (T) dT

is an entire function in CS,
Directly from Lemma S. 3.1 it follows that if g(T) is the best unbiased
estimate of the function y(0), 0 € AN 1 and x(T) € D is such that
X =0 6€anT,
then
gx@®=0 €N (S.3.7)
Lemma S.3.2. If an entire function $(6) is equal to zero on QN 11, then
it is equal to zero on the whole set N.

Proof. Let M be an irreducible algebraic variety in C°. By a theorem of
Whitney [17] there exists a proper subvariety M. with the following property:
the set (M\M.) N R® in the vicinity of each of its points 6 is a real analytic

subvariety of dimension d, and the vectors grad f(0) (where f(6) is an
arbitrary real polynomial vanishing on M) form an (s - d)-dimensional space.
Now represent the variety N as the sum of irreducible subvarieties
N=Nly... N

Applying to each N* the theorem of Whitney, we separate in it the exclusive
subvariety M%. We remark that each of the sets NA\Né has a nonvoid intersection
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with Q, since otherwise Il would be a part of Ups ANVAU NA, and N
would not be the least algebraic variety containing Q  II. We now fix the A and
choose a point 6 € (N'\\Né) N €. By the theorem of Whitney, in the vicinity of
the point G the set NA NQ is a real analytic variety of dimension d; moreover
there exist real polynomials f}, «++ f _;, vanishing on NAﬂ Q, whose
gradients are linearly independent at the point 6. The polynomials fl’ oo

-+, fs-q vanishon N?, since otherwise N would not be the least variety
containing QN II. Hence there exists a complex neighborhood U of the point @
such that N* AU is a complex analytic variety of dimension d. Since ¢(6) =0
for 6 € QN N2, it follows that ¢(6) =0 for 6EUN NA. But any complex

irreducible variety is a connected analytic variety with the exception of a
nowhere dense set. Hence ¢(0)=0, 6 € NA- Since A is any of the numbers
1, -+, l,6=00n N. Lemma S.3.2 is proved.

From (S.3.7) and Lemma S. 3.2 it follows that for any y € D, if )?(9) =0,
0€ QN then g¥(@) =0, 6EN.

Let 4 be the ring of all polynomials of 6 € C° with complex coefficients.
If § is an ideal in 4, and ¢ € C°, we shall denote by g; the ideal formed by
the polynomials p(6 + ¢), where p(f) € . Consider the set A CA of poly-
nomials p(6) for which g(T) is the best unbiased estimate of the function

y(6) and is also a generalized solution in J of the equation

3 3
Dg=0 D= |, .., = 1.
pE [aq an]

It is easy to see that U is an ideal. Denote by I the ideal in A formed by all
polynomials vanishing on N.

Lemma S.3.3. If (€N, then I, C q.

Proof. Let p(0) €1, i.e. p(6 - () €l. Considering g(T) as a generalized

function in J, we have for an arbitrary function ¢ € D
(p(D)g, pexp(¢, T = (g, p(- D) pexp({, T))
= (g, exp (¢, Mp(=D-DPD= [g(Nexp (¢, Np(=D = HH(T) dT.

Since p(6 - {) €1, the function m)¢ =pl6-90) ;(6) vanishes on
QN 1. But then we have

fg(M exp (&, Np(-D - dT = 0; 6€QNT
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because the expression to the left is equal to g}(e), where y =p(~ D- )¢ sat-
isfies the condition ;(0) =0, 6€ QN1l. Now from (S. 3.8) we deduce that the

generalized function p(fD)g vanishes on the functions of the form
¢ exp (£, T).

As any function from D can be represented in this form, p(.(D)g =0in Ji.e.
p(6) € A. Lemma S.3.3 is thus proved.

Consider the ideal § = {I§}§€N' By Lemma S. 3.3, each summand IC belongs
to ¥; hence §CU. Moreover, each polynomial from § vanishes on the set
L=;en® =0 Butif 6€L, then for a certain (€N, 6 € (N - {). Hence
we can find a polynomial f € ICCQ such that f(6) # 0. Thus L is the set of

common roots of polynomials from § and therefore is an algebraic variety.

Lemma S.3.4. Theset L = (¢ NN =) is alinear subspace, and for
each point (€L

gy =4 (S.3.9)
Proof. Let (€EL; if 6 EN, then 6 + (EN because {EN - 6. Hence
§p =Wy, dcllygi =9, (S.3.10)

6E€N 6EN

i.e. gg C 9. But the set of all roots of the polynomials from 9{ is L - ¢ and
so from (S. 3.10) it follows that L = (DL i.e. LDL +{ forall {€ L. Hence
L is a semigroup with respect to the operation of vector addition in C°. We
shall now show that L is a linear subspace in C°. Let A be the largest
linear subspace contained in L (we remark that L contains at least the origin
of coordinates). If A £ L, there exists a point { € L\A. Now take an arbitrary
point 6 € A. Since L is a semigroup, it must contain the points 6 + k{;
k=1,2,---.

Let p(6) be an arbitrary polynomial vanishing on L; since p(6 + £k{) =0,
k=1,2,+-+, p(0+k¢) =0 forall X\ € Cl. The set of all straight lines 6 +
Az, A€ c! forms a linear subspace A’ spreadon A and ¢. Since L is an
algebraic variety, AN CL; i.e. A is not the largest linear subspace contained
in L. This contradiction proves that L = A.

Since L is a linear subspace, it follows from (€ L that - { € L. Hence
for any points § €N and {€ L, we have 6 ~ { € N. Hence in (S.3.10) we

have an inverted inclusion and (S. 3.9) is proved.
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Lemma S.3.5. The set of vectors
grad p(0), p €4 (S.3.11)

coincides with the space L orthogonal to L.

1
Proof. It is obvious that all the vectors (S. 3.11) belong to L and that they
form a linear space. We shall show that this linear space contains all the vectors

from L_L. Suppose this is not so; then there exists a vector a € L—L which is
orthogonal to all the vectors (S.3.11). Let ¢ be an arbitrary polynomial from I.
For each point { € N the polynomial ¢(6 + {) belongs to 4 and so the vector
grad ¢({) is orthogonal to a. Hence q; (Q)=0o0n N i.e. q:, € 1. Applying
this argument to the polynomial g, we see that q'; =0 on N, as was to be
proved. Hence at each point { € N all derivatives of the polynomial ¢ in the
direction of the vector a are equal to zero. This means that ¢ vanishes on the
whole line ¢+ Aa, A€ C!, On the other hand, N is the set of the roots of all
polynomials from /. Hence the set N, together with each of its points {, con-
tains the whole straight line {{+ Aa}. Hence the set L € Ny¢ NW =) con-
tains the straight line {Aa}, in contradiction to the orthogonality of a to L.

This contradiction proves the lemma.
Lemma S.3.6. Each polynomial p(6) vanishing on L belongs to §.

Proof. Select the polynomials p;s *++, p, € 4 in sucha v;vLay that the
vectors grad pi(O); i=1,++.,m form a basis in the space L . Construct a
regular system of coordinates (wy> ++-, wm) in the vicinity of the origin so that
wy=Pys» > W, =p,. Since the polynomial p vanishes on the coordinate

subspace w)=+++=w, =0 (i.e. on L), it can be written in the form
m m
p= %wifi = %Pifi

where f; are certain functions holomorphic at the origin. By (S. 3.9) we can

also obtain the representation
’ ’
p=2pif;p; €4, (S.3.12)

where f; are certain functions holomorphic at an arbitrary point ¢ of L. Such

a representation can obviously be obtained for each point { € L, since we can

always find a polynomial p' € § that does not vanish at <.
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We fix now an arbitrary point { € C°. Denote by RC the ring of all rational
functions in C° whose denominators do not vanish at the point {; by }(g we

denote the ring of all functions holomorphic in {. As is well known, the pair
(Rg, }(;) is flat (see [15]). This means that HC is a flat Rc-module [15] and
that for each R -module E the natural operation £ — E ®R§H§ is injective.

We now take for E the factor-ring RngC where gR; is the ideal in R; formed
by all the functions of the form

qu.r].; 9; €d; T € R;.
Since Hg is a flat Rc-module, we have

E x }(ggﬂglg}(c

where g}{i is an analogous ideal in }(g. Hence we can assert that the natural
mapping
Relgy, - Helgx,

is injective. By (S. 3.12) the polynomial p belongs to gHC and hence belongs to

gyg, in view of the injectivity of this mapping. Hence

g,p €1 (S.3.13)
where 9r is a certain polynomial distinct from zero in the point {. Consider
an ideal in A generated by the polynomials gy- By the Hilbert Nullstellensatz
(see for instance [1]) the unity of the ring A belongs to that ideal i.e.
E’{hiqc' =1 with certain h; € A. Putting { = {; in (S.3.13), multiplying by

i

h; and adding, we finally obtain p € 4, which proves the lemma.

We can now complete the proof of the theorem. In the space C® choose a

. ’ ' .
rectangular system of coordinates ), -, 0 in such a way as to make L

S
coincide with the coordinate subspace in which 9'1 =eee= 6"”. In that case
0'1, cees 9:,! vanish on L and by Lemma S. 3.6 belong to the ideal J. Since
§c¥, in the corresponding system of coordinates in R°® we have in the domain

9 the equations
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These equations in the space of generalized functions mean that the function g,
up to its values on a set of measure zero, is constant with respect to the variables
Tiseees T:n in the domain J. The representation N = L x v is obvious, be-
cause it follows from L CN - { that together with the point { the set N con-
tains the whole variety L + (.

Theorem S. 3.1 is proved.

It is interesting to compare the situation with respect to optimal unbiased

estimation of parametric functions for complete and incomplete exponential families.
For the former, by the Rao-Blackwell-Kolmogorov theorem, every statistic

g(T) depending only upon sufficient statistics is an optimal estimate of its
mathematical expectation Egg. For the incomplete exponential families, in view
of Theorem S. 3.1, the optimality of g(T) as an estimate of E g means,
roughly speaking, a kind of quasi-completeness with respect to some of parameters
(the representation N = L x v is analogous to the completeness). As regards
the optimal estimate.itself, it depends on sufficient statistics, having the same

indices as the parameters with the ‘‘quasi-completeness’’ property.

§4. THE SAMPLE MEAN AS THE ESTIMATE
OF SCALE PARAMETERS

In this section we study the families of distribution functions of the form
F(x/0) on the half-line (0, =) depending upon the scale parameter o € (0, =).
Our purpose is to study the unbiased estimation of o on the evidence of the
sample (x> **+> xn) from the population characterized by F(x/0). As usual,
we take the quadratic loss function.

Suppose the condition

;foxzdF (¥) =a, <e (S. 4.1)

holds. If we set

xdF (x),

al=

csg

-1

the statistics a;" X will be an unbiased estimate of the parameter with a finite

variance by (S. 4.1).

We remark first of all that in the class of all (not only unbiased) estimates
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of o, the al-lf are always inadmissible except in the case of a degenerate dis-

tribution F(x). In fact, we have
E (c;% - 0)? = ozEl(cl:?—l)z
and minc1 El(c 19? -1 is attained, as is easily verified, for

|
Cl = 2——-—-_2—— .
ay+ (az—al)/n

Since a,> a% and, moreover, the equality sign holds for only the degenerate
ones in the class of all estimates (except in the degenerate case), a;ln_: is
always inadmissible.

When is a;lf admissible in the class of unbiased estimates of the scale
parameter 0? To answer this question we shall first prove Lemma S. 4.1,
where we use the notation y = (xz/xl, ceey xn/xl).

Lemma S.4.1. Let

_E=Z1y)
s =c¢ X —
n n -
El(x 21)’)

where the constant ¢ is determined from the condition
E (z|y)?
CnEl{——l-—:?——— = 1. (S- 4.3)
E (z°y)

E s =0;E (s, - 0)? SEU(CLIIE - 0)?

(S.4.2)

Then

and equality holds in (S. 4.4) if and only if, with probability 1,
E\(z|y) I
=21 n’ bn=a1 Cn -
E &2y
Proof. Put y=y(y) = El(i'\y)/El(?c'zl y). We have
E, (x| y)?
Ea_(sn)=CnEo_(E'y)=Cn0’E1('yEl(Ely))=0'CnE1 ———3—' =0
E/(z°]y)
by (S. 4.3);

E, @'z -)2=E (0] % =5 )24 E (s, - 0% + 2B {a]'T=s,) (s ~0)}.
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Further,
EU((GIIE -s,) (s, -0)

= azEl((a;l -c,y) (cnyEl(A—:zly) -E,&|yM

E (% |y)?
=02(cn— 1) al—lEl(El(;b'))-anl lx‘_y_-
El(fz\y)
E (7]|y)?
=02(cn—1) l—anl‘[—lf-l—}-,— =0,
lEl(EZIy)

by (S.4.3). Thus
Ejal'® ~0)?=E (a]'% =5 )2+ E (s, -0)2 3 E(s_ - 0)2  (S.4.5)

and the equality sign in (S. 4.5) holds for all 0 € (0, =) simultaneously if and
only if with probability 1

_E&Fy
n* E (—21 );

1y

i.e. if

E,®|y)=b,E,&%|y), b =ajle’l

1 “n
This proves Lemma S. 4.1.

From now on we shall suppose that all the moments of F(x)
[*dF(x), k=1,2,.--, (S.4.6)
0

are finite.

Theorem S. 4.1. Let the function F(x) satisfy the condition (S. 4.6). In

1% to be an admissible estimate of o in the class of

order for the statistic a]
the unbiased estimates in the sample sizes n=n, n = n, ("1’ n, are any
numbers with n,>n; >3) from the population given by F(x/0), it is necessary

and sufficient for F(x) to be either degenerate:
0, x < xg

F(x) = for some x> 0,
1, xg <x <o

or a gamma-distribution:
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0, x<0

F(x) =
(ym/r(m))fgxm-l eV ¥dx; 0<x<o

for some m >0, y.

Theorem S. 4.2. If F(x) satisfies the condition (S. 4.6) and a;la'c' is optimal
in the class of the unbiased estimates of the parameter o for a sample size
n >3, then F(x) is either degenerate or a gamma-distribution.

We omit the proofs, which proceed by means of functional equations. They
are given in detail in [5].

§5. NONPARAMETRIC APPROACH TO THE ESTIMATION
OF LOCATION PARAMETERS

Let x, .-+, x, be a repeated sample from the population with the distribu-
tion function F (x - §) satisfying the conditions

[xdF =0, [2x%dF < . (S.5.1)

In this case the parameter 6 € R! to be estimated on the evidence of the sample
(xl, ceey, xn) means the mathematical expectation. For the well-known type of
distribution function F(x) E. Pitman [14] introduced, as early as 1938, the
following estimate for 6:

tn=5c'—E0(?c'|x2—x1,---,xn-xl). (S.5.2)

For an absolutely continuous F(x), F(x) = [* f(u)du the Pitman estimate,

as mentioned in $3, Chapter VII, can be written in the form

[ ENfx, - &) de

ty =" : (S.5.3)
[ M, - &) de
-00 ]

C. Stein proved [16] that under the condition

flxp dF (x) < oo
the Pitman estimate is absolutely admissible.

The loss function is assumed to be quadratic throughout this section. We
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shall now consider in detail the situation when the form of the function F(x) is
unknown. If we suppose that F(x) is allowed to be arbitrary, satisfying only
the condition (S.5.1), it is easy to see that there is no better estimate for 6 than
Z. However, in the case when for some integer % > 1 the first 2k moments of

the distribution function F (x) are known:
p = fxldFG@),  1=1,2,..., 2 (S.5.5)
and

oy = [#*F dF <o (S.5/5)

the information about F(x) contained in the moments (S. 5.4) can be used more

efficiently than X for construction of the estimates of the parameter 6.

Under condition (S. 5.5) the set of all polynomials Q(xl, ey xn) of Xyseee
-++, x, of degree not exceeding k forms a Hilbert space Lscz) if the scalar

product of the elements ¢, and @, is defined by:
(@, Q) = E((Q,Q,)-
The subspace formed by the polynomials @ € Lgcz) of the form
Q=0G, -2, -+, x, -%)
will be denoted by A, .

Consider the estimate

(B ey, ene, x) =tk ® 2 E (A (S.5.6)

n n

where E(.|A)) is the operator of projection on the subspace A, . Note that
for the construction of the estimate (S.5.6) we need to know only the first 2k

moments of the distribution function, not the whole function.

Theorem S.5.1. Forall 6 € R}

Egtk =0, E (tF - 02 < Ey(z - 0)%, (8.5.7)

uhere the equality or the inequality in (S.5.7) are realized simultaneously for
all € R and the equality holds if and only if E,z|A)=o0.

Proof. Since ¢ =1€ A,, we have
& -E,&|AD, 1) =0.
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Hence
E,& ~Eq&@|AD) =Eyx ~EyEy@ | A= 0-Ey(E)F|A)) =o.
Moreover,
Eg® -02=E & -Ey&|A) -6+ Ey&|A)?
SE (k- 021 2B, (- OE & |AD) + EEy & |A)?
But
Bk~ OE & |A)) = EqUEE | AD) = 0

as t¥-x - E,(x|A}) is orthogonal to each function from A, . Hence

n
E (% -0 =E k- 0)?
= EgGk — 02 L E(E @A 3 Ey(ik - 6)2
and the equality sign (for all 6 € R! simultaneously) holds under the condition
E,Z|A,) = 0.

In connection with Theorem S. 5.1 it is natural to raise the question: for
what functions F(x) is the estimate tﬁ better than ¥? In other words, when
does the knowledge of the first 2k moments of F(x) enable us to improve upon
the standard estimate x.

Theorem S.5.2. If F(x) satisfies condition (S.5.5), then for n >3 the
k

n
tion parameter in all cases except when the first (k + 1) moments of the distribu-

estimate t" will be better than the sample mean X as an estimate of the loca-

tion function F(x), p, coincide with the corresponding moments of a normal
law, so that

0, ! odd
By = 1<i<k+1
U=-D"e!, 1 even

for a certain o?.

Theorem S. 5.2 is an obvious consequence of the Theorem S. 5.1 and the

following lemma.

Lemma S.5.1. If n >3 then E’O(f |A,) = 0 if and only if the first (k+1)
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moments of F(x) coincide with the corresponding moments of a normal law.
Proof of Lemma S.5.1. We proceed by induction. For k =1 the lemma
holds trivially. Since A, > A, ., it follows from E x| AL) =0 that

E (x|A,,)) = 0. We can assume now that the first k moments of F(x) coincide
with corresponding normal moments and we shall prove that then the moment

By +1 coincides with the (k + 1)st normal moment.

The condition

Ey®|A,) =0 (S.5.8)

is equivalent to the set of conditions
Eo®|A,_)=0 S.5.9)
Eo(x (le —xl)---(xl.k—xl))=0, (S.5.10)

where (S. 5.10) must hold for all the sets (]l s oo, jk) of integers 2, «++, n.
The equivalence of the conditions (S.5.8) and (S. 5.9)—(S.5.10) follows from
the fact that A, _; and the functions (le —x) e (xjk - %,) generate the

whole Ak .
Let

a a
(le —xq)eee (x].k ""1)=(xi1 -x;) 1---(xis—x1) s, (S.5.11)
where 7, -+, i, are mutually distinct and a; +---+Qa = k. We have

a a
1 s
(le—xl) "'(xis‘xl)

d.l’nc,a,s l + +l l l a o s
- s (-n! sC 1...C:x11 ceex; x k- Z 1. (S.5.12)
Lyseeesl =0 “1 s s i=1
i) ’s

Put 251.=1; then from (S.5.12) we get
17

al a's 3
Eo(z—:(xll—xl) “oe (xls_xl) )
a a
1 s 1 1
1
= - 2 eee 2(—1)1Ca1... Cas p_l -..p_l y'k+1"l ?
=0 I_=0 1 s 1 s
1 s
a a
1S ! 4 l ll ls
- .o -nctrt...C m ceep .
+"q§111}£o 2o N L AN
: s

(S.5.13)
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We shall consider the cases of odd and even values of (k — 1) separately.

1) £ -1 odd. By the induction assumption, all odd moments up to the order
(k - 1) are equal to zero. Hence from (S.5.13) we get
a a
nE'O(ar,"'(aci1 -x;) ... (xis -x)) %)
l l
* lpfl
-Tnled ey

1 "’I‘lsi‘k +1-1

l l
s -nicl...Ccsy, ...
7 ay as"ll #lq-l Ky

+

n Mo

tHy Bl

1 g+l

q
(S.5.14)

where the summation in 3" is taken over all even ll’ ey ls and in 2; over
even Uy, .-+, lq_1 , lq+l o+, Ll and odd lq’ the limits being indicated by
(S.5.13). In the sum 3" the number [ is always even and therefore (k+1-1) is
odd. Moreover, if k+1~1<k-1, then Br+1 -1 =0 by the induction assump-
tion. In the sum E;, the number ! is always odd; hence (k - 1) is also odd;
since k-1<k-1 we have p;_;=0. Hence the condition (S.5.10) is
equivalent to the relation

g ap=0. (S.5.15)

2) (k-1) is even. Consider again the relation (S.5.14). We break b and

2;___12; into subsums

I = Sy+Sy4eeetS, s
where S is the part of the sum 2* corresponding to all the values [,, .+
2m P P g 1
>l 0<li<ag, 00, 0<l <a for which I) 4.+ 4+l =2m, and

*

A I
q

n Mo

q=1

where SZm +1 is the part of the double sum corresponding to the values I, -
«y Iy forwhich l;+.-c4+ 1l =2m+ 1.

Consider first the conditions
0<a; <k,---, 0<as<k. (S.5.16)

We shall show that SZm + SZm +1=0 for 0<2m < k - 1. Note that in view of
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the condition (S. 5.16) in the sum 2;___1 2; we have lq + 1< h; hence by the

induction assumption
2
#l + =l K - g
g 1 q lq 1

for a certain o’ > 0. Then

(8.5.17)

(S.5.18)

N 1 l
S == 3% s CleiClp vy Wy oy ok
S B T A T I
= - s* Cll Cls o2
Iy beee 4l =2m %1 aghly * T L Fm1-m
c1'! s
X ll (ll+1)+..-+__Ts__.(ls+1),
1 s
Cal C,
s
But
1, +1 I +1
1 s
Cd.l Cd,s S
7 (l1+1)+...+ 7 (ls+1)= E(aq-—lq):k-Zm.
Cl Cs q=1
al %s
Since

Mem1-2m 0" = 2m) = 4y o
(recall that m > 0), we get from (S.5.18)
Som+Som 41 =0

In view of (S.5.19) the condition (8. 5.10) is equivalent to

SO + Sl = 0.
But

So=Fr+1

Sp==(aj+ et adppy g==ko?p, -

Hence (S. 5.10) is equivalent to the equality

(S.5.19)

(8.5.20)



ESTIMATION AND TESTING HYPOTHESES 249

[lk+1 = kazp.k_l. (S- 5-21)
The induction assumption together with (S. 5.21) gives

k+1
}lk+l= k!!O’ .

Now let one of the numbers a,, -+, a  be equal to k; then all the other num-

bers vanish. Without loss of generality we can assume that

a. =k, a;, =.o=0, =0. (S.5.22)
2

11 s
In this case (S. 5.14) reduces to
k-1 k
"Eo(’ﬂ"i1 2" = Eo Chtibhsr -1~ 151 Chbysytp -1+
lc;en l odd

In the second sum we put ' =k —1; then

k k-1 ! k-1 'L
”Eo("(xil - %)) = z-zo Chrirk e1-1 = ,§ Ch mesr-vm =0
! even ' even

so that under condition (S. 5.22), the condition (S. 5.14) is always satisfied.

We remark that for n > 3 the subspace Ak always contains the function

a a
(xil - xl) 1., (xi - xl) S under condition (S.5.16).
S

Hence we have established that for n > 3 the condition (S. 5.8) is equiva-
lent to the coincidence of the first (k + 1) moments of the distribution function
F (x) with the moments of a normal law. This completes the proof of Lemma
S. 5.1 and Theorem S. 5.2.
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