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APPENDIX

ON CRITICISM OF CLASSICAL MATHEMATICS

This appendix is an extension of §0.5, in which the basic content of the
criticism of classical mathematics set forth by Brouwer, Weyl, Markov and some
other mathematicians was briefly described. The general formulation in §0.5 is
lacking in precision and concreteness. This appendix is devoted to a considera-
tion, more detailed and more concrete than in §0.5, of the situation which has
stimulated criticism with respect to the foundations of classical mathematics. Here
we shall try to present a summary of the most important aspects of the critical
analysis of classical mathematics carried out by Brouwer, Weyl, Hilbert, Markov,
and other mathematicians, and we shall also attempt a detailed presentation of

some components of this critical analysis.

L. First of all, we shall go into some aspects of the processes involved on the

formulation of mathematical concepts.

In the formulation of mathematical concepts mental acts of various kinds are

carried out. Let us note certain kinds of such mental acts.

1) Mental acts of “‘pure’’ abstraction. These mental acts consist in the
conceptual selection of certain properties out of all the properties applicable to
all the objects included at the given moment in our field of attention, and, with
respect to the existence or nonexistence of any other properties, our consciousness

remains completely indifferent.

If we associate with the chosen properties some terms not being used for

other purposes, then we obtain some general concepts.

2) Mental acts of idealization. These acts consist of the generation by our
imagination of certain ideas or concepts, considered by our consciousness as
objects of study endowed by our imagination not only with those properties which
were selected by acts of “‘pure ’’ abstraction with respect to the objects forming
the initial material for the given mental operations, but also with conceptual
properties which are completely absent from the initial objects or which reflect

properties of the initial objects in a considerably distorted form.
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306 APPENDIX

3) Multi-stage levels of various acts of “‘pure’’ abstraction and acts of ideal-
ization. At every stage of the mental processes of this kind, as inirial objects for
acts of “‘pure’’ abstraction and acts of idealization one uses not only objects
which are the initial material in thewhole chain of mental operations but also con-

cepts and ideas which have been formed at preceding stages.

. . . 1
Mental acts of the kinds mentioned above are acts of abstraction.

The presence of acts of idealization in almost all the processes of formation
of mathematical concepts is the result of the tendency of people, in studying new
objects or new connections between certain objects or, speaking more generally,
in studying new situations, to look for support from previously accumulated know-
ledge and previously developed tools relating to different initially given objects.
The complexity of the situation being studied often forces people to look for con-
ceptual support by acts of imagination which bring our presentation of the situation
under study closer to a situation which has been previously studied and for which
there exists some (sometimes only partial or remote) resemblance to the given
situation and for which a sufficiently simple apparatus has been worked out. Often
it is necessary to proceed in this way simply because no other realizable possi-
bility is found to be successful.

If in the course of studying some situation we succeed in finding an ideal-
ization which permits us to solve a certain problem with the required precision,
then this idealization may be fixed and turned into a tradition, to which people
automatically turn even in those cases where it is necessary to consider problems of
new kinds or to meet more strenuous requirements in the formulation and solution
of problems of the initial type. The attractive aspect of such traditions is the
development of and familiarity with a certain apparatus. This attractive aspect
explains the fact that many such traditions do not encounter opposition for a long

time. One of these traditional idealizations is the abstraction of actual infinity.

II. The systematic application in contemporary mathematics of the abstrac-
tion of actual infinity and of ideas generated by this abstraction can explain to a
considerable extent the tendency to rely, in various mathematical considerations,
on those methods of thought which are customary for people with academic back-
ground, and which classical logic puts at our disposal.

1) Sometimes by abstractions we mean only mental acts of *‘pure’’ abstraction. In
this appendix the term “abstraction’ will be used in a much wider sense, including the mental
acts of the kinds mentioned above. This interpretation of the term *‘abstraction’’ has many

precedents in the application of this term in the literature devoted to the foundations of
mathematics.
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It was remarked above that in acts of idealization our imagination generates
ideas and concepts in which are combined, first, properties chosen by acts of
*‘pure’’ abstraction in the study of certain objects, and, second, those conceptual
properties which distort the picture of our knowledge about the original situation
and become objects of study only as a result of a conceptual approximation of the
situation of interest to us with a situation which has already been studied, and
which are produced so that one may try to use, even partially, some previously

worked out apparatus.

After an idea or concept arising as a result of an act of idealization enters
into the fabric of mathematical theory, mathematicians usually forget the mechanism
of the origin of the given idea or concept and fail to notice the difference between
properties of the first kind and of the second kind. Properties of both kinds be-
come in equal measure the initial basis for new acts of abstraction for processes
of logical inference. As a result of new acts of idealization generated on this
basis, new ideas or concepts arise in which it is even more difficult to separate
properties which can be considered satisfactory reflections of properties of the
initial objects lying at the base of the formation of the whole chain of ideas and
concepts being considered from those properties which are only products of a
method. This indefiniteness grows still larger in the transition to higher levels
of the processes of abstraction occurring in mathematics.

An analogous situation exists when we consider processes of logical deduc-
tion. In such processes we use properties of the second kind with the same right
as properties of the first kind. In addition, in applying a rule of inference,
mathematicians proceed from the belief that the rule being applied is admissible
in the cases being considered. However, the justification for the admissibility
of rules of inference includes within itself not only acts of ‘‘pure’’ abstraction
but also acts of idealization, in many cases even multi-staged acts.

Hence every logical inference places before us a series of problems. In
what way can one interpret the proposition obtained as a result of the given logical
inference, i.e. in what way can one transform this proposition into a proposition
about the initial objects which serve as a basis of the formation of the whole
chain of ideas and concepts being considered? If a concrete condition suggests
to us some interpretation, then the problem arises: should one consider the
proposition obtained as a result of the given logical inference a satisfactory

reflection of the properties of the initial objects and the connections between
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them? Does it not happen that the essential use of various acts of idealization of
various conceptual properties and situations on the way between the initial objects
and the given result of logical inference so radically isolates the conceptual pro-
cesses in our consciousness from the initial situation that the final proposition
resulting from the given logical inference gives a substantially distorted idea of
the initial objects?

No general recipes for answering these questions exist. However, it is

necessary to note the following.

The difficulty mentioned above of returning from ideas, concepts, and argu-
ments to the initial objects which serve as a basis for the formation of the whole
chain of ideas and concepts of the given theory always arises when acts of ideali-
zation are involved in the process of forming ideas and concepts. But this dif-
ficulty of restoration can occur in essentially different ways in different cases; it
varies in dependence on the type of idealization used, on the nature of the level
of the idealization, and on those aspects of the given theory which are of interest
to us in the given case. In some cases the restoration can be realized much more
easily than in others. (Intuitively speaking, in some cases mathematical concepts
and arguments are significantly more ‘‘tangible’’ than in others.) In some cases
logical inferences, considered together with some way of interpreting statements,
give a much greater basis for recognizing their cognitive value than in other
cases. Idealizations used in mathematics turn out to be nonuniform with respect

to the point of view of interest to us now.

An important circumstance inducing criticism with respect to the foundations
of classical mathematics is the fact that the abstraction of actual infinity and
the ideas and concepts raised on its basis are very remote idealizations, i.e.
idealizations for which the connection between the ideas, concepts and arguments,
on the one hand, and the real objects forming the initial material for the whole
chain of acts of abstraction under consideration, on the other hand, in many cases
turns out to be very indirect and vague, or even do not exist at all. The difficulty
of returning from the ideas, concepts and arguments, in the formation of which the
abstraction of actual infinity has taken part, to the initial real objects and the
connections between them turns out in many cases to be very considerable.

II1. In classical mathematics a fundamental role is played by the general

concept of set. This concept is not connected with the fixing of some definite

method for individually describing those objects which are covered by this concept.
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It is well known that the general concept of set is not definable in terms of simpler
concepts (it is clarified only by means of some examples) and the methods of
working with this concept are introduced on the basis of the system of ideas
generated by the abstraction of actual infinity. The initial material for the forma-
tion of the general concept of set consists in the first place of various collections

of real objects. (When we apply the expression ‘‘collection of real objects’’

we
have in mind that the objects of which the collection consists are conceptually
chosen from the surrounding environment by means of direct exhibition or by means
of a clear characterization of their type, that the objects occurring in the collec-
tion exist simultaneously and steadily during some interval of time, and that they

clearly differ from one another.)

It is necessary to emphasize that the experimental investigation of nature has
not given any example of an infinite collection of real objects (see [10]). How-
ever, in the classical theory of sets, there occur as objects of study not only finite
sets but also concepts with which are connected ideas about collections for which
the process of counting never at any step exhausts all their elements, and with
which the term “‘infinite set’’ is connected. Therefore reference to collections of
real objects existing in nature as the source of the formation of the general con-
cept of set is insufficient as an explanation of the mechanism for forming this

concept.

Everyday experience and constructive human activity bring us together not
only with objects existing in nature at that given interval of time but also with
processes of construction of some new objects. Here we have in mind processes

of construction carried out by both people and mechanisms.

For a long time mathematicians have used certain methods of introducing
general concepts which cover not only objects existing in nature but also possible
results of processes of construction. If we choose and fix some finite sequence
of initial objects and some finite sequence of constructive operations, and we
introduce some new term (denoted by the latter T), then we obtain all the neces-
sary ingredients for a genetic definition (more concretely, for a constructive defi-
nition) of a new coxicept. Every object covered by this new concept receives the
name ‘‘object of type T’’. Objects of type T are called possible (more precisely,

potentially rea[izablel)) results of the processes of construction realized by a

1) This term will be explained below.
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sequential performance of constructive operations occurring in the fixed finite
sequence. It is assumed that, before each step of the construction process, the
next constructive operation can be chosen arbitrarily from among those construc-
tive operations which serve as a basis of the given definition and the description
of which permits their application to any results of the process obtained at pre-

ceding steps or to any initial objects.

It is possible (and in many cases also necessary) to introduce constructive
definitions of a more general form, namely definitions in which one fixes: 1)a
finite sequence of initial objects; 2)a finite sequence of constructive operations;
3)a term for the defined concept; and, in addition, 4) some condition clearly
formulated in a suitable language. As objects of the defined type we count in this
case those possible (potentially realizable) results of constructive processes,
based on the given finite sequence of constructive operations, which satisfy the
given condition.

If some general concept is introduced by means of a definition of one of the
two types just mentioned, then in constructive mathematics one connects with the
definition of this general concept (more precisely, with the text of the definition,

“‘set

along with which one assumes a definite method of interpretation) the name
of objects of such-and-such a type’”.1) In constructive mathematics the term *‘sets”’
is connected with individually given objects, each of which is a definition, written
in a suitable precise language, of constructive objects of a concrete type. Apply-
ing the term ‘‘set’’ in this sense we can state that there is no justification for
considering all elements of the given set as existing simultaneously. It can
happen that at a given moment some elements of the set have already been con-
structed. We are justified for talking about these elements as if they exist simul-
taneously. But there can be only a finite number of such elements. Therefore,
generally speaking, elements of a set are determined only as possible objects,
and we are able to investigate them only on the basis of given constructive opera-
tions and a given selecting condition. One can sat that a general concept cover-

ing not only existing but also possible objects arises only as a result of fixing a

1) We remark that the concepts ‘‘natural number’’, *Sinteger’’, *‘rational number’’ can
be introduced by definitions of the first type (§ 1). The definitions of these concepts are,
respectively, the set of natural numbers, the set of integers, and the set of rational
numbers.

As examples of concepts introduced by definitions of the second type, one can cite
the concepts of real F-number and real FR-number (§3.5) . The definitions of these con=
cepts are, respectively, the set of real Fenumbers and the set of real FR-numbers.
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finite sequence of constructive operations and a selecting condition.!) In other
words, a set of the type just considered arises only as a result of fixing a finite
sequence of constructive operations and a selecting condition. This fact underlines
the exceptional role of the individual presentation of sets in the problem of the
**tangibility >’ of mathematical concepts.

Both in classical and constructive mathematics, in considering objects
characterized by definitions of the types described above, one assumes a certain
idealization, called the abstraction of potential realizability (see [1]}. It consists
of the conceptual assumption that, in carrying out constructive .operations on con-
structive objects, there do not arise obstructions of a material nature, caused by
a limitation of the constructive possibilities of men and machines in space and
time, by limited resources, etc. Applying this idealization, we treat as objects of
study not only those objects which already exist or can be constructed in a really
possible number of steps, but also imagined objects the construction of which, on
the basis of the given constructive operations, could be realized if, in carrying out
the given operations, no obstructions of a material nature arose. As a name for
this realizability (stipulated by the indicated assumption) of construction one uses
the term ‘‘potential realizability”’ (see [1]).

Applying the abstraction of potential realizability and starting, for example,
from the definition of natural numbers, we arrive at the idea of potential infinity,
i.e. at the idea of the possibility of extending the sequence of natural numbers
endlessly. In this sense one can say that the set of natural numbers is potentially
infinite.

From what has been said it follows that, using as objects of study only col-
lections of real objects, we do not go beyond the concept of *‘finite set’’, and
using as objects of study finite sequences of constructive operations and processes
of construction realizable on their basis and applying the abstraction of potential
realizability, we do go beyond the concept of “*finite set’’ and we arrive at the
concept of potentially infinite sets, but we do not all reach that idea with which
the term “‘infinite set’’ is understood to be connected in classical mathematics.
Classical mathematics does not give any indication as to how one can connect
the idea used by it and denoted by this term with any real objects (collections

1) One can assume that a selecting condition figures in every constructive definition.
Those definitions which do not include a selecting condition can be supplemented by a con-
dition expressing the equality of an object with itself.
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of real objects and finite sequences of constructive operations are not adequate
for this purpose). In every case it is indisputable that this idea arises in the mind
of every mathematician thanks to an act of idealization which is essentially dif-

ferent from the abstraction of potential realizability.

1IV. Constructive mathematics limits itself to the consideration of sets indi-
vidually given by one of the two methods indicated above. 1) Classical mathe-
matics does not limit itself in this way and extends the sequence of ideas and con-
cepts to be studied by introducing another idealization, called the abstraction of
actual infinjty.

This idealization can be characterized in the following manner. 1) Consider-
ing any fixed finite sequence of constructive operations, we begin by imagining as
not only potentially realizable but as actually carried out all possible processes
of construction admitted by the given finite sequence of constructive operations,
and we conceive all the results of these operations as existing simultaneously.

2) We conceptually equate this imaginary picture with the situation with which we
have to deal in considering collections of real objects, and, in particular, we
begin to reason about the imaginary ‘‘collections’’ of all these results in the same
way that we reason about collections of real objects, i.e. by the methods of classi-
cal logic. 3) We begin to conceive of these imaginary collections as existing in-
dependently of the finite sequence of constructive operations. 4) After this we
give our imagination even greater scope and begin to conceive of infinite collec-
tions of simultaneously existing objects not connected with any constructive
operations even by their *‘origin’’, meeting expressions of mental processes only
in the introduction of certain axioms and the development of the process of logical
deduction on the basis of classical logic; moreover, we disregard the problem of
the possibility of a clear semantics which would permit us to connect the concepts

2)

and arguments of such a formal-deductive theory with any real or potentially

realizable objects or processes.

In classical mathematics not only the general concept of set but also the con-
cept of subset of a given set is not connected with the fixing by any definite

methods of an individual presentation of those objects which are covered by this

1) Here we have in mind suitably precise formulations of these methods (see | 3, §7]).

2) In such a formal-deductive theory the general concept of set and the concepts
based upon it figure only as terms, and the ideas (imaginary pictures) connected with
these terms in the process of forming the theory (in the choice of the axioms and the
apparatus of logical deduction) lie outside the theory itself.
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concept. The same is true when, as the set about whose subsets we are talking, a
set occurs which has a simple constructive presentation (for example, the set of
all natural numbers, the set of all rational numbers, etc.). The concept of a map-
ping of one set into another and its special case, the concept of a sequence of
elements of a given set, are also not connected with the fixing by any definite

methods of an individual presentation of the objects covered by these concepts.

The nonconstructive concepts of subset, mapping, and sequence of elements
do not contain any ‘‘tangible’’ initial objects for their contensive interpretation.l)
The difficulty, caused by this situation, of interpreting the indicated concepts
carries over also to those concepts which are defined in terms of them. In particu-
lar, these difficulties carry over to the concept of real number in the sense of
Dedekind, at the basis of which lies the nonconstructive concept of subset of the
set of rational numbers, and to the concept of real number in the sense of Meray-
Cantor, at the basis of which lies the nonconstructive concept of a sequence of

rational numbers.

V. In applying mathematics to science, engineering and other domains of
human activity the concept of real number usually figures as a means of express-
ing concrete information about physical or other quantities, determined by indica-
tion of methods for matching objects or processes of certain types with given
standards of measurement. However, there is a significant gap between these
practical assignments of the concept of real number, on the one hand, and the
content of this concept, as well as the theory of this concept, on the other hand.
(Here we have in mind the concept of real number which is used in classical

mathematics.) This gap can be described in the following way.

In mathematics there are no means for expressing concrete information about
physical quantities other than groups of symbols introduced by means of con-
structive definitions. Therefore, in mathematics, only constructive objects can
be considered as possible carriers of concrete information about physical quantities.
However, in classical machematics the theory of real numbers is constructed not
as a theory of constructive objects of a certain type, intended for the expression
of concrete information about physical quantities, but rather as a theory the
objects of which are certain ideas formed in the imagination of mathematicians as

a result of complicated processes of idealization. On the path between the

1) What has been said above about the general concept of set extends (with suitable
changes in details) to these nonconstructive concepts.
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processes of measurement of physical quantities and those ideas which are con-

nected with the term ‘‘real number’’ lies the abstraction of actual infinity.

VI. If we are to speak not about ideas originating in the imagination of mathe-
maticians but about mathematical tools, then one can state that the assumption of
the abstraction of actual infinity as a method of thought means the assumption
without any limitation of the tools of logical deduction of classical logic. However,
it is well known that among the propositions deducible by means of these logical
tools there are some which are false from the point of view of the construction
intepretation of propositions. (see below; see [3, §4.5]). In this sense the tools
of logical deduction furnished by classical logic are not suitable in those theories
in which the objects of investigation are constructive objects and the study of

these objects is carried out by taking into account their method of definition.

From what has been said it follows that theorems about real numbers deducible
in classical mathematical analysis are not statements directly concerning real or
potentially realizable objects. In particular, there is no foundation for assuming
that every theorem of the form ‘‘There exists a real number & satisfying condition
S?? permits an interpretation in the form of a statement about the existence or
potential realizability of a constructive object falling under the concept ‘‘real
number’’ and satisfying condition S.

For many theorems of the classical theory of real numbers one can find
similarly formulated assertions which are formulable and provable within the scope
of constructive mathematics. These constructive analogues of theorems of the
classical theory of real numbers give a clearer opportunity for translation into
assertions about physical or other quantities. The existence of constructive
analogues of many theorems of this theory explains the fact that in spite of every-
thing said above about the classical theory of real numbers, some theorems of this
theory make it possible to answer, with a definiteness satisfying certain practical
requirements, certain problems about physical or other quantities.

At the same time, for some theorems of the classical theory of real numbers
which play an important role in this theory, it is necessary to state that among
those assertions which are formulable within constructive mathematics and which
have formulations close to the formulations of the given theotems of classical
mathematics one cannot discover an assertion provable in constructive mathe-
matics.

From what has been said it follows that the problem of interpreting the
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theorems of the classical theory of real numbers meets considerable difficulty,
having its source in the nonconstructive concept of real number used in classical
mathematics. The difficulty of interpretation connected with the concept of real
number induces difficulties in all the superstructures based on this concept, and
are supplemented in these superstructures by new difficulties caused by the ideal-

izations which are introduced in the conceptual formation of these superstructures.
Very great difficulty of the type just considered is caused by the general con-

cept of transfinite number (not connected in classical mathematics with the fixing
of any definite methods for the individual presentation of the objects covered by
this concept) and the idea of the method of transfinite induction based upon this

concept.

Concepts with which considerable difficulty of interpretation is connected
often form the basis for entire branches of classical mathematics. One can exhibit
a large number of examples of such concepts. We shall limit ourselves to the ex-

amples cited above.

VIL. An assertion of the form ‘‘There exist an object o, of type Pl’ ceey,
and an object a; of type P, such that condition S is fulfilled’’ is customarily
called an existence assertion. In classical mathematics thete occur various kinds
of proofs of existence assertions. These include proofs which contain methods
for constructing certain constructive objects satisfying the condition which figures
in the given existence assertion. At the same time, there also occur proofs which
are strictly regulated by the rules of inference of classical logic but do not give
any means for obtaining some constructive and therefore concretely defined objects
satisfying the given condition. In classical mathematics proofs of the second kind
are considered completely acceptable. However, in spite of this, even in the pres-
ence of proofs of the second kind, considerable attention is given to searching
for proofs of the first kind. For any existence theorem, the construction of a proof
of the first kind is often considered to be a result of considerably greater value

than the construction of a proof of the second kind.

This. point of view on the relation between proofs of the first and second kinds
is expressed in a particularly clear way when one considers existence assertions
closely connected with applied mathematics. This point of view and the consider-
able attention to constructive objects connected with it are results of extensive
experience in the application of mathematics in science and engineering. This

experience testifies to the fact that constructive objects are the most ‘‘tangible”’
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and the most adaptable for the interpretation of parts of classical mathematics.

However, in classical mathematics constructive objects are considered on a
par with nonconstructive objects. Most often they are considered as concrete repre-
sentations of some general concept the definition of which is not connected with
the fixing of some definite methods for individually presenting the objects covered
by this concept and, thanks to this freedom, permits us to assume that, in addition
to constructive objects, this concept also covers some other objects. The root
property of constructive objects, consisting of the fact that they are by definition
potentially realizable results of constructive processes, is completely disregarded
in classical mathematics. This disregard shows itself, in particular, in the fact
that in all reasoning, including that in which constructive objects occur, the rules of

inference of classical logic are applied without limitation.

The original source of the apparatus of logical deduction of classical logic is
elementary logic, which has to do with the processes of thought arising under
certain ‘‘elementary” conditions. These conditions are characterized by the
following features.

1) The objects of study are invariable and form a fixed finite collection. D

2) For every given initial concept one can form a two-valued characteristic
table selecting those objects of the given collection which belong to the given

concept.

3) For evéry given initial relation one can form a two-valued characteristic
table selecting those ordered groups of objects the terms of which are in the given

relation.

For statements formulated with respect to the indicated conditions there is a
precise semantics, subconsciously applied by people in appropriate cases in
everyday practice for many thousands of years, but formulated clearly and in
systematic form only at the end of the nineteenth century. The existence of a
precise semantics gives us the opportunity of putting in a clear form and solving
in an affirmative sense the problem of justifying, under the initially given con-

ditions indicated above, the rules and methods of logical deduction of elementary

1) We have in mind, of course, not absolute invariability but invariability only in a
chosen interval of time of those aspects of the objects of study which are of interest in
the given investigation and only to that degree of precision which suffices for the stated
purpose of the given study.
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logic. D It has been established that upon fulfillment of the conditions indicated
above, every statement derivable by the methods which are placed at our disposal
by the apparatus of logical deduction of elementary logic, including in derivations
some true statements as initial statements or without inclusion of such additional
initially given statements, are true statements.?) This justification of the appa-
ratus of logical deduction reveals the cognitive meaning of the processes of logi-
cal deduction which flow from the initially given conditions indicated above on the

basis of the apparatus of elementary logic.

In the course of the historical development of the apparatus of logical deduc-
tion belonging to elementary logic, a displacement into a mathematical theory
having to do with the concept of infinite set automatically occurred. This process
of automatic displacement of the apparatus of elementary logic into a considerably
more complex condition represents an even more remote idealization. This ideali-
zation is one of the chief aspects of the abstraction of actual infinity. Applying
this idealization, we agree in the case of infinite sets of objects of study to permit
(without any justification) the methods of logical deduction worked out for
perfectly concrete initially given objects: for the case where we have a finite
domain of objects of study and where all the conditions which were called *‘ele-
mentary’” above are fulfilled. Hence we have agreed to treat every situation in the
case of an infinite domain of objects of study as completely analogous to the situ-

ation which holds under the *‘elementary’’ conditions described above.

There is no justification for asserting a priori that the apparatus of logical
deduction worked out for certain initially given objects will be suitable for other
initially given objects. This observation supports, in particular, those mathe-~
matical theories in which the objects of study are constructive objects and the
starting point for the investigation of these objects is the root property of con-

structive objects mentioned above.

VIIL It is well known that the interpretation of mathematical statements about

1) Here we have in mind the contemporary apparatus of logical deduction of ele-
mentary logic. This apparatus has been formed gradually in the course of the history of
human thought. Until the rise of ‘mathematical logic, it was formed mainly in a heuristic
way. The rise of mathematical logic was to a considerable degtee a process of making
precise, partially revising, and significantly extending the previously formed parts of this
apparatus on the basis of the precise semantics mentioned above. |

2) We remark that, upon fulfillment of the conditions indicated above, justification is
obtained, in particular, for the law of the excluded middle.
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constructive objects, based on the root property of constructive objects and on the
so-called constructive interpretation of mathematical propositions (see BV
reveals the inadmissibility of certain rules of inference of classical logic. The
rules of inference which we have in mind here can lead to false statements. Not
all mathematical propositions about constructive objects provable by means of the
rules of classical logic (i.e. by means of those rules of inference which are con-
sidered in classical mathematics to be completely admissible) can be considered
as true under the interpretation of propositions which starts from the root property
mentioned above of constructive objects. From what has been said it follows that
classical mathematics as a whole and classical mathematical analysis in particu-
lar are not adapted to the exposure of those connections between constructive

objects for which the root property mentioned above of ‘these objects is essential.

Evidence of this unsuitability is manifold. Let us go into some of this evidence.
The first manifestation is the fact that the consideration of constructive objects
and nonconstructive concepts on a par generates a situation in which it is difficult
to distinguish the theorems about constructive objects provable (even by means of
classical logic) without drawing upon nonconstructive concepts. But now we turn
out attention to another aspect of the matter, namely to the practical consequences
which are caused by the use of the complete range of logical methods of classical
logic.

Let us assume that we are given a constructive problem which presupposes
some constructive initially given objects [for example, words in some alphabet,
algorithm schemas (programs for computing machines), etc.] and consists of
finding a method of constructing, for arbitrary admissible values of the initially
given objects, some constructive objects satisfying a definite condition formulated
in terms of constructive mathematics. Let us further assume that mathematicians,
in trying to solve this problem, in their investigation subconsciously limit their
field of attention only to constructive objects, but are inclined to believe that,
for the problems of interest to them, the type of theorem provable by means of
classical logic plays a satisfactory guiding role. Let us pose the question: in

this situation what role do theorems of this type actually play?

1) One of the fundamental principles of the constructive interpretation of mathe-
matical propositions is that every assertion about the existence of a constructive object
satisfying a given condition is understood, in complete accord with the root property of
constructive objects, as an assertion about the potential realizability of the construction
of a constructive object satisfying the given condition.
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A mathematician, having before him the indicated problem and at the same
time some theorem provable by means of classical logic and asserting the existence
of the required constructive objects for arbitrary admissible initially given objects,
finds himself in essentially the same situation as when he did not have this theorem
at his disposal. Desiring to actually use this theorem for the formulation of the
required method, he is compelled to find a constructive proof, that is, he must
prove (if this is possible) some proposition of constructive-mathematics. If, not
finding a constructive proof, he nevertheless regards the theorem as an encourag-
ing stimulus for continuing his attempts to solve the problem, it can happen that
he thus directs his mind along an absolutely hopeless path —the problem can turn
out to be theoretically unsolvable, in spite of the existence of a suitable theorem

of classical mathematics.

As an example of a problem for which just this situation occurs one can cite
the problem of finding, for the concrete algorithmically given nondecreasing and
bounded above sequence S of rational numbers constructed by E. Specker and
described in §8.3.1, an algorithm (program for a computing machine with unbounded
memory ) which, for any natural number n, computes a subscript beginning with
which the terms of the sequence are separated from each other by a distance less
than 27". Such an algorithm is impossible (see Theorem 8.3.1). At the same time,
using a proof by ‘‘contradiction’’, we can deduce (for example, with the help of
the corollary of §8.3.2) a theorem of classical mathematics (about constructive

objects) which asserts that, for every n, there exists the required subscript.

One can exhibit a large number of examples of similar situations. A situation
of a similar kind may arise, for example, in connection with theorems for the
logical derivation of which one uses without any limitation proofs by *‘contradiction’
or the law of the excluded middle. However, the cited logical methods of classi-
cal logic form only part of the *‘sources of nonconstructivity’’, only part of the
obstacle on the way to the creation of a faithful picture telling us for which re-
quired constructive objects there are algorithms constructing (computing ) them in
terms of such-and-such initially given constructive objects, and for which there

are no such algorithms.
IX. An obstacle of another kind, another ‘‘source of nonconstructivity’’ in

mathematics, is connected with the widely practiced transition in classical mathe-

matics from any assertion of the form
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) “For any object @ of type P, there exists an object 3 of
*

type () which is in the relation " to @’

to the assertion

(x%) “‘There exists an operation ¢ associating with every object a
of type P an object ¢(a) of type () which is in the relation I" to o,
Here T is a binary predicate; we shall assume that this predicate is in-
variant with respect to replacement of any pair of admissible objects by an equal
pair (in the sense of equality of pairs induced by the relations of equality intro-
duced for objects of type P and objects of type Q) and that, for any admissible
value of the second argument, it is single-valued (up to equality of objects of type
Q) in the first argument. Under these conditions the transition from (x) to (¥%)
is often accompanied in classical mathematics by a transition from the predicate
variant of the theory connected with the predicate to an operator variant in which
there occurs an operation @ replacing in a certain sense (together with the equality
relation for objects of type (J) the predicate I'. For the purposes of computational
mathematics the operator variant is preferred, for obvious reasons. Mathematics

offers many examples of the preference for such operator variants of theories.

The case where the proposition (%) cannot be proved by the methods of con-
structive mathematics does not require discussion— ‘‘nonconstructivity’’ is already
present. Let us consider now the case where (*) is a proposition about con-
structive objects provable within constructive mathematics. In considering (%)
and (x*) as propositions of constructive mathematics it is necessary to think of

LR

the words ‘‘exists’’ and “‘operation’’ as being replaced by the words ‘‘is

potentially realizable’’ and “‘algorithm’’, respectively.

In many cases the constructive reformulation of proposition (%) shows that
it is an assertion about the realizability of an algorithm of a more complicated
kind than that which is spoken about in proposition (%) (see [3, §8)). Hence
the semantics of constructive logic and the corresponding apparatus of logical
deduction does not always permit the transition to (*%). In the case where the
verification of the condition characterizing the concept “‘objectof type P’’ in-
cludes within itself a non-algorithmizable search for a solution of some con-
structive task, proposition (**) can turn out to be refutable (see for example,
Theorem 3.7.3 and the accompanying remark), and then the operator variant of
the theory in the form suggested by (%%) is impossible. However, in similar cases,

one nevertheless succeeds in finding operator variants of theories of constructive
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mathematics, but they acquire a more complex form: as initially given objects for
the algorithm ® associated with the predicate I' it is necessary to consider not
individual objects of type P but rather systems of objects, each of which consists
of some object H of type P (or a transcription of such an object) and additional
objects carrying certain information about some solution of the constructive
problem arising in the justification of the assertion “H is an object of type P’’.
The introduction into constructive mathematics of real FR-numbers, FR-con-
structs of various types, complete ciphers of uniformly continuous operators,
metric spaces with a fixed algorithm for passage to the limit or with a fixed
algorithm for constructing nets, etc. (see the main text of this paper), along with
teal F-numbers, F-constructs of appropriate kinds, uniformly continuous operators,
metric spaces, etc., is dictated, in particular, by the tendency to have available,
along with predicate variants of certain theories, also (and even preferably) oper-
ator variants, even at the expense of the introduction of objects of more complex

kinds than in the corresponding theories of classical mathematics.

The transition, carried out in classical mathematics without any limitations,
from predicate variants of the construction of theories to operator variants (on the
basis of the transition from (*) to (*%*) ) often produces mathematical theories for
which the attempt to interpret the symbol for the operator @ associated with the
predicate [" as a symbol for an algorithm applicable to all objects of type P and
such that, for any object a of type P, the object @(0) is in the relation [ to
o, immediately leads to confusion, in view of the impossibility of an algorithm
with those properties. In similar cases in classical mathematics, in the transition
to the operator variant, a change takes place in the type of the objects which can
be considered as suitable initially given objects for the algorithm associated with
the predicate 1 in the transition from the predicate to the operator variant of the
theory admissible within constructive mathematics. Such a change leads to a
certain disorientation of a mathematician dealing with the corresponding theory
of classical mathematics, for example, in the light of the requirements of compu-
tational mathematics, the more so as, under the conditions of the multi-level
character of contemporary mathematics, it is not always easy to discover the type
of initially given objects for which a constructively justifiable operator variant of
the theory is possible.

What has been said above is illustrated by the following example. In the
classical theory of real numbers, one introduces a binary predicate *‘the real

number ¢ is the limit of the sequence of real numbers f’* and one proves a theorem
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of the form (#), where the roles of @, 8, P, ¢, and T" are played, respectively, by
fs g, “fundamental sequence of real numbers”’, ‘‘real number’’, and *‘is the limit
of’’. The transition to (xx) is considered as the justification for the introduction
of the operation lim of passage to the limit. Replacing in this theorem of the form
(*) the concepts of classical mathematics by the corresponding concepts of con-
structive mathematics (with the concept *‘real number’’ we associate the concept
“real F-number’’), we obtain a proposition provable by the methods of constructive
logic (see Theorem 10.5.3). However, the proposition ot the form (**) obtained
by such a replacement is refutable and therefore the attempt to interpret the symbol
lim (with the types of initially given objects borrowed from classical mathematics)
as the symbol for an algorithm leads to obvious misunderstandings. An analysis
of the proof of the constructive variant of the theorem of the form (%) just con-
sidered shows (see the proof of Theorem 10.4.5 and the remark after §10.4.6)
that, as a basis for the operator construction of the theory of limits of sequences
of real F-numbers, one can set an algorithm for which the initially given objects
are pairs of the following form: the first term of a pair is a transcription of any
fundamental sequence of real F-numbers, and the second term is the transcription
of any algorithm transforming any natural number 7 into the transcription of a
regulator of convergence in itself of the sequence of rational numbers which is
based on the nth term of the sequence of F-numbers the transcription of which is
the first term of the given pair (the terminology is explained in §3).

One can exhibit a large number of different examples of this kind from various
branches of mathematics. We note that the kinds of *‘sources of nonconstructivity’’
in mathematics are not exhausted by the types considered above.

In constructive mathematics (in contradistinction to classical mathematics)
the predicate variant and the operator variant of the construction of a theory are
precisely delineated. Moreover, it is often necessary to carry out the transition
from the first to the second variant by methods more complicated than in the corre-
sponding theory of classical mathematics, but, in return, the possibility of changes
in the types of relations between constructive objects is excluded. Thus, con-
structive mathematical analysis is a theory in which various mathematical phe-
nonema are considered with more careful and more complete regard for the re-

quirements of computational mathematics than in classical mathematical analysis.
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