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PREFACE

The theory of differential equations with deviating arguments is a
relatively new and rapidly developing branch of the theory of ordinary
differential equations. Numerous research papers have been devoted to
this theory. There are also a few monographs which in part or entirely
are concerned with various aspects of differential equations with deviating
arguments; these monographs are by A. D. Myskis [4], L. E. El'sgol’c
(3], [5], N. N. Krasovskii [1], E. Pinney [1], and R. Bellman and
K. Cooke [1].

Among these monographs the one most closely related to the present
treatise is that of Myskis [4].

However, as opposed to Myskis’ book, where the entire exposition
is devoted to the very general case of a ‘“distributed” delay, we in the
present book are only concerned with the simpler case of equations with
a ‘“concentrated” delay. The results presented here may most of the
time be generalized to equations depending on a distributed delay;
nevertheless, in order to facilitate reading of the book, we have found
it advisable to limit ourselves to the case of a concentrated delay.

For ease of reading, proofs are given nearly everywhere. If a certain
result already has appeared in a monograph, a reference is given. For the
reader of this book a knowledge of mathematical analysis and elementary
ordinary differential equations is required. Only in special places do
we use elementary facts of the theory of functions of a real variable and
functional analysis.

The author hopes that the present book will be of interest both for
mathematicians working in the theory of ordinary differential equations
and also for a significantly wider circle of readers, physicists and re-
search engineers dealing with systems with retardations.

The author takes this opportunity to express his deep gratitude
to A. D. Myskis and L. E. El'sgol’c for their interest and their many
valuable comments about the author’s work on which this book is based.



iv PREFACE

In this book we present and discuss several results presented in the
seminar on differential equations with deviating arguments conducted
by L. E. El'sgol’c. The author wishes to thank his many colleagues in
the seminar, in particular A. M. Zverkin, G. A. Kamenskii, and A. B.
Nersesjan for several discussions and many valuable remarks. The
author is grateful to the editor of the book, I. A. Oziganov, for a number
of remarks which have improved the exposition.

The Author
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APPENDIX

NUMERICAL INTEGRATION METHODS
FOR DIFFERENTIAL EQUATIONS WITH RETARDED ARGUMENT

§1. Numerical integration methods
for differential equations with deviating arguments

Differential equations with deviating arguments can be integrated
in closed form only in a few exceptional cases. The step method is
applicable for direct computation only under the hypotheses that the
number of steps on the whole interval on which the solution is to be
computed is not too large, not to mention the fact that the corresponding
differential equation without delay obtained on each interval must also
be integrable in closed form. Hence numerical methods of integration
of equations with deviating argument are very important.

In this section we give a short survey of the work devoted to numerical
integration methods for differential equations with deviating arguments,
not limited to the types of equations considered in the basic text.

1. Euler’'s method and parabolic methods. Parabolic methods are
methods for numerical integration of differential equations, based on
approximation of the unknown function by a parabolic arc of order
n = 2. The Adams-Stomer methods, Milne’s method, and so forth
belong to this class. A qualitative basis for applications of Euler’s
method and parabolic methods for numerical integration of differential
equations with deviating arguments was considered by L. E. El’sgol’c
(see his books [3], [5]).

Calculations by means of these methods are carried out by the same
schemes as for equations without deviating argument; however, since
it is necessary to compute, along with x(¢,), the values x(¢, — A(t,))
in case of a variable delay, it is required to use variable steps or inter-
polation.

The application of parabolic methods to equations with deviating
argument is complicated by the fact that, with these methods, functions
can be well approximated only if they are differentiable a sufficient
number of times. Hence, parabolic methods give good results only
beginning with those values of the argument for which the solution

264
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turns out to be already sufficiently smooth (in general, solutions of
differential equations with retarded argument become smoother with
increasing ¢, while for solutions of equations of neutral type the smoothing
is absent, and for equations with advanced argument smoothness is
lost). We note that since terms involving x'(t — A(f)) are absent, the
equations considered in the text have solutions which are continuous
together with their first and second derivatives on all regions of variation
of the independent variable ¢.

An attempt to improve parabolic methods has been made in the
articles of T. S. Zverkina [1], [2]. Suppose that a piecewise smooth
function f({) defined on [A,B] has, on its intervals of smoothness,
derivatives up to the nth order, while at the points ¢, (A <t <&, < ---
<t < B) the derivatives have jumps

61::f(”(tk+ 0) _f(r)(tk - 0) (r: 172a s, k = 1’29 : ",m).
Then the generalized Taylor’s formula is deduced:
n (r) A n 6r
o =20y be-wt R0,

r=0 tp<t =1

in which the summation on k is over those & for which ¢, < t. An estimate
is obtained for the remainder term, analogous to the estimate in the
ordinary Taylor’s formula. By means of formula (1), formulas are
constructed for integration of differential equations, generalizing the
well-known formulas of Adams, Milne, and so on.

The articles of B. M. Budak and A. D. Gorbunov [1] and N. V.
Sarkova [1]-[3] also belong to the realm of questions under consideration.

2. Expansion in powers of the delay. In applied work, in order to
approximate solutions, and sometimes also to investigate stability of
solutions of differential equations with retarded argument with small
delay, the method of expansion in powers of the retardation is widely
applied. In connection with the equation

(2) (@) =Ft,x@t),x(t—17) (ASt<BE= o, x(t) =¢() on Ey)

this method is based on the fact that equation (2) is replaced by the
equation

(= D"
m!

(3) x(t) = F<t,x(t),x(t) —7x' () + -+ x‘"”(t)).

Usually such a substitution is carried out without any justification of
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its admissibility. In the article of Ja. Z. Cypkin [1], it is, for the first
time, shown by examples that this method may lead to invalid results.
Conditions for applicability of this method were investigated by L.
E. Els’gol’c (see his monograph [3]) by considering the theory of differ-
ential equations with small parameters in the highest derivative. After
solving equation (3) for the derivative x"(f), one finds that equation
(2) is contained in equation (3) provided one discards the term

(m+1)
m 1 X (t —07).

The theory of differential equations with small parameter in the
highest derivative leads to the assertion that for m > 1 this term has
order 1/7, i.e. the discarded term for small 7 is very large. For m =1,
the discarded term actually turns out to be small and the method under
consideration gives good results.

We note that the method of expansion in powers of the small parameter
until now has been recommended without any reservations in many
quite serious texts. We mention, for example, the recently published
book of W. J. Cunningham [1].

3. Asymptotic methods. We consider solutions of the equation

(4) (@) =ft,x@®),x(t—1) (=t< )
with initial condition
(5) x@t) =¢@) (0=t=1).

In the article of A. D. Myskis [1] it was shown that if 7 =0 in (4) then
the solution of the equation without retardation

() =ftx@),x() 0=t< )

with initial condition x(0) = ¢(0), under sufficiently general assumptions,
at the endpoint of the interval of variation of ¢ will be near to the
solution of the initial value problem (4), (5) if r is sufficiently small,
and hence may be considered as the zero term of the asymptotic expansion
for the latter solution.

The method of expansion in powers of the retardation considered
in the preceding subsection yields an asymptotic formula of first order
(in 7), and only in isolated cases of second order.

We shall find a method of obtaining an asymptotic formula of
arbitrary order for solutions of the initial value problem (4), (5), the
idea of which is due to A. B. Vasil’eva and A. M. Rodionov.
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We denote the right side of (4) by f(¢,x,y), and, assuming that the
solution of the initial value problem is sufficiently smooth (under
evident assumptions on f and ¢ the derivative x*(t) will be continuous
in ¢t and uniformly bounded with respect to 7 (r < 7;) on the segment
kr <t < T), we expand the right side of (4) in powers of r:

2

() = f(t,x(t),x(t) 0+ X0~ )

— f(t,x(0), x(0) — % £, x(0), x(0) - ¥ (0

T 2
_F_z_.g}?f(t,x(t),x(t)) - x'%(8)
2

T 6 4 oo
+2_.@f(t,x(t),x(t)) cx (@) + -

and we shall seek a formal solution of this equation in the form of an
expansion in powers of 7:
2

x(t) = x(t) 4 72,(2) +12—x2(t) 4 e

by equating coefficients of corresponding powers of r.

It is essential that for the definition of x;(¢) (i = 1) we obtain a first
order linear equation withou* delay. For obtaining a kth order asymptotic
approximation (accuracy of r*'!) the initial values for x;(t) are given
at the point ¢ = (k + 2)7 (this guarantees the necessary smoothness
of the solution). For this purpose, on the interval [r,(k+ 2)7] one
must calculate the solution of the problem (4), (5), for example, by the
method of steps.

It has been shown that a solution x(f) of equation (4), satisfying
the initial conditions (5), has the asymptotic expansion

k

x(t) = %) + 72, (&) + -+ + ;—'xk(t) + 0>+,

uniformly in ¢t and 7 for 71(k+2) <t =T, 7 <.

This method is explained in the articles of A. B. Vasil’eva and A. M.
Rodionov [1] and A. B. Vasil’eva [1]. A. B. Vasil’eva in [1— 3] generalizes
this method to the case of equations of neutral type

x/(t) = f(t’x(t)yx(t - T)yx/(t - T))
For this see also the article of V. I. Rozkov [1].



268 APPENDIX. NUMERICAL INTEGRATION

Similar problems are studied in the articles of Ju. A. Rjabov [1—4].
These articles are of interest since they not only treat asymptotic
decompositions, but also prove convergence of the series obtained for
7 < 79 and obtain a method of bounding 7, and the remainder term of
the series.

4. Iterative methods. We shall find first of all a method of successive
approximations of Picard type. In connection with the differential
equation with retarded argument

(6) x'() = f(t, x(8), x(t — A())), x(t) = ¢(t) on Ejg,

or with the equivalent integral equation
t
20 = 9(4) + [ fir,2G),x(r = 3G ds

with the same initial conditions, the method of successive approxi-
mations implies that, starting from an arbitrary continuous function
x(¢) = xy(t) which satisfies the initial condition, one constructs the
sequence of approximations

x(8) = 6(A) + Lf(r,xn_lm,xn,l(r —A@Ndr (R=1,2,--4).

If f and ¢ are continuous and f satisfies a Lipschitz condition in its
second and third arguments, then the sequence of approximations
{x,(f)} converges uniformly to the unique solution of equation (6)
which satisfies these conditions.

As also for equations without retardation, the method of successive
approximations may be applied as an independent numerical method.
Often it is combined with some method of interpolation.

The articles of E. I. Kljamko [1] and G. M. Zdanov [1] consider
hypotheses for the applicability of the Caplygin method to approximate
a solution of an equation with retarded argument. G. M. Zdanov [1]
considers the system of differential delay equations

xll(t) = fi(t’xl(t); . ')xn(t)’xl(t - Al(t))> .t ',xn(t - An(t)))

(i=1,2,---,n; ty, <t <t; Ai(t) 20), where the right sides are con-
tinuous in all arguments and have continuous nonnegative partial
derivatives with respect to all arguments beginning with the second.
The fundamental initial value problem is considered with initial function
continuous on the initial set. This article gives an algorithm for the
construction of two-sided approximations.
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A. D. Myskis [6] showed that the results of Zdanov, under certain
hypotheses, are valid for a significantly broader class of equations,
including an arbitrary number of concentrated and distributed delays,
which in turn may depend on the unknown functions, and so on.

In the following sections we shall set forth one more iterative method,
the method of moments, and we shall find conditions under which this
method may be employed to compute eigenvalues and eigenfunctions
of some of the boundary-value problems considered in this text.

We note that for solutions of boundary-value problems with delay
it is also possible to apply other methods. For example, in the articles
of S. S. Gaisarjan [1,2] a foundation is laid for application of Galerkin’s
method for solution of boundary-value problems for differential delay
equations.

§2. The method of moments

The monograph of Ju. V. Vorob’ev [1] gives an account of the theory
of the method of moments as applied to the approximate computation
of eigenvalues and eigenfunctions of a nonselfadjoint completely con-
tinuous linear operator and solutions of nonhomogeneous operator
equations.

Let A be a bounded linear operator defined on a Hilbert space H,
and let z, be an arbitrary element of H. We construct the series of
iterations

20,20 = Az, 20 = A%, - -+, 2, = A2, -+ -.
The problem of moments arises in the following way: it is required to

construct a sequence of operators A,, determined on H,, the linear
hull of the elements z,,2;, ---,2,_;, such that

2 =Alzy (k=0,1,---,n—1)
(7

En = Ar’ZZO

where 2, is the projection of z, into H,. As was shown in the monograph

of Vorob’ev, the relation (7) completely determines the sequence of

operators A,, i.e. it gives the solution of the problem of moments.
The eigenvalues of the operator A, are the roots of the equation

8 P,A) =N4a N 4o 4, =0,
whose coefficients are defined by the system of linear equations

C) Giotn + Gnatn 1+ o+ + Ay + 8 =0 (@=0,1,---,n—1),
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Where a;, = (zi) z}z) (ly k = 0, 1’ e, — 1)7 and Qi = (Zi, Z_n) = (Z,:, zn)-l)
Now let u, be an eigenvector of the operator A, corresponding to
the eigenvalue ;. Since u, € H,, we have u, = £20 + £21 + -+« + £_12,_,.
The coefficients ¢, are defined by the system of equations
- aognfl = A1220:

gi*l_aign—lzxkgi (l: 152"")n‘~ 1)3
whose determinant D(\) = P,(\). By virtue of (8), D(\;) = 0.

If the elements z,,2;,---,2,_; are linearly independent, then the
determinant of the system (9) differs from 0. But if in the sequence
of elements 2,2, ---,2,, ---, some are linearly dependent, for example,

Zn = D i 0 CuZ, then z,=z,E H,, ie. the subspace H, reduces A
and the operator A, simply coincides with A.

In the general case, for increasing values of n, the sequence of operators
A, converges strongly to A. Hence, in many problems one may replace
A by A,. If in this connection A is completely continuous, then the
sequence of operators A, converges uniformly to A and the eigenvalues
and eigenvectors of the operators A, converge correspondingly to the
eigenvalues and eigenvectors of A.

Finally, let x4 be a solution of the linear nonhomogeneous equation

(10) x=Ax+f,

where A is a linear operator with norm less than unity. Then, as was
shown in the monograph of Vorob’ev [1], the sequence” x, = (E — A,) 'f
of solutions of the approximate equations x = A,x + f converges strongly
to the solution xx of equation (10) which is sought.

We consider the boundary-value problem for the equation

(11) x” () + Mx(t) + M@)x(t — A1) =0
with the boundary conditions

x(0) = x(x) =0,
(12)

x(t—A@®))=0if t — A@) <O.

Here M () and A(f) = 0 are continuous on [0,7]; A is a parameter, in
general complex. The BVP (VIII1.2.18), (VIII.2.19) is a problem of the
form (11), (12).

= (zi, 2¢) 1s the scalar product of z; and z.

? Here E is the identity operator.
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Integrating equation (11) twice, we obtain, after using the boundary
conditions (12),

1 ™ s
(13) X x(t) = ﬁ K@t nx(r)dr + ﬁ K@) M(r)x(r — A(r))d7

(it is evident that the number A = 0 cannot be an eigenvalue of the
BVP (11), (12)), where

7(m — 1)

t(r — 1)

™

, 0=71=4¢,
(14) K, ) =

, t<7=m.

The kernel K(t,7) is evidently continuous.

Let D4(0,r) be the linear manifold whose elements are twice differ-
entiable functions x(f) on [0, satisfying the boundary conditions
(12). We consider on D,(0,7)” the linear operators A, P and Q defined
by the relations

(15) Ax = Q(E + P)x,
(16) Px=M@®)x(t — A®)),
(17) Qx = j;nK(t, T)x(r) dr.

By virtue of (13) and (15) the boundary-value problem (11), (12) is
equivalent to the operator equation Ax=pux. The eigenvalue )\, of the
boundary-value problem (11), (12) is defined by the equality A\, = 1/us,
where u; is an eigenvalue of the operator A. The eigenfunction of the
boundary-value problem (11), (12) is an eigenvector of the operator A.

Corresponding to what was considered in the initial section, for
applying the method of moments for computation of eigenvalues and
eigenfunctions of the boundary-value problem (11), (12) it is sufficient
that the operator A be completely continuous. We shall find conditions
for complete continuity of A.

From the continuity of the kernel K(¢,7) follows the complete
continuity of the operator €, and, by virtue of (15), for the complete
continuity of A it is sufficient that the operator P be bounded. By
virtue of (16),

3 D4 (0, ) is the closure of D4(0, ).
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" 1/2
18) 12et = ([ 1Mt~ st 1ar )

We let M, = maxp,|M()].
Case 1. A(t) is piecewise differentiable and

(19) [iglg(l —A'(®) =m>0.

We take t — A(t) = s; then dt =ds/(1 — A’ (x(s))), where «(s) is the
inverse function of F(t) =t — A(¢). From this, by virtue of (18),

M0 <J~WA(7.') 2d >L2<—M2 .
e gpds ([ lolds) =Rl
Consequently,
(21) | Pl <= Mo/~/m,

and the boundedness of the operator P is proved in the case under
consideration.

The hypothesis (19) excludes the case where on some interval («,p3)
C[0,x], t — A(#) is constant. If the operator P is defined on L*(0, )
then, as was shown in the article of A. M. Zverkin [3], the presence of
such intervals implies the unboundedness of the operator P.

For the problems considered in Chapters VII and VIII, it is of
interest to find conditions under which, in spite of the presence of
intervals on which ¢ — A(f) is constant, the operator remains bounded

on l—)A(O,ﬂ').
Case I1. Let
(22) NI O=t=a,
B {A*(t), a<t=<n,

where the piecewise differentiable function A«(f) is continuous on
a<t=m Ax(@) =a and inf,, (1 — A%(#)) = ms> 0.

Recalling that, by virtue of (12), for an arbitrary function x(f)
€D,(0,7) we have x(t—A(@) =x20)=0 (0=t=<a),” by virtue
of (18) we obtain, analogous to (20),

1Pl = <LWIM(T)x(T—A(T))l“d)w

T —A(r) 1/2
< Mo (f |x(s)|2ds) < Moy,
m* 0 \/m*

* For the construction of the closure D4(0,7) we require that the limit elements
satisfy (12).
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from which it follows that

(23) I Pl < Mo/~/m.
We now consider the boundary-value problem for the equation
(24) x” () +rx(t) + M) x(t — A@) =0

with the boundary conditions (12). Here M(f) and A(t) = 0 are con-

tinuous functions on [0,], and X is a parameter, in general complex.

A boundary-value problem of this type was studied in Chapter III.
Along with equation (24) we shall consider the equation

(25) x" () + M@®)x(t — A@) +f(&) =0,

where f(f) is a function integrable on [0, r].

We shall show that if it is possible to find an exact solution of equation
(25) (for example, if it is possible to make use of the step method), then
to calculate eigenvalues and eigenfunctions of the boundary-value
problem (24), (12), it is possible to apply the method of moments dis-
cussed at the beginning of this section.

We consider, on D4(0,r), defined above, the linear operator A de-
fined by the relation

(26) Ax= —x"(t) — M@)x(t — A()).

The eigenvalues and eigenvectors of A coincide with the eigenvalues
and eigenfunctions of the boundary-value problems (24), (12).

The operator A is unbounded. However, if A = 0 is not an eigenvalue
of A, then there exists a bounded inverse operator A~'. By virtue of
Theorem I1I.4.1 and its Corollary, for this it is sufficient, for example,
that on the interval [0,7] one of the following conditions is fulfilled:

2
@27) 0= M@ < T2HEVD (L (g008..
or
(28) M() <0.

It will be shown below that under these hypotheses the operator A~!
is completely continuous.

We apply the method of moments to determine eigenvalues and
eigenvectors of the operator A™' (evidently its eigenvalues are the
reciprocals of the eigenvalues of A, while the eigenvectors of A and
A™! coincide).

Starting with an arbitrary element z, & D,(0,7), we construct the
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set of iterates
(29) 20,21 = A7120’22 = (Ail)QZOy cr 2y = (Aél)nZO’ ct .

Since we do not know the operator A~!, to construct the sequence (29)
we need to find solutions of the equation of the form (25) satisfying
the boundary conditions (12):

x” () + M) x(t — A1) + 2() =0,
x”(t) + M) x(t — A(t)) + z(t) =0,

where z,(¢) is the solution of equation (30) which has been found, and
so on. In what follows, all will be done according to the scheme set out
at the beginning of the section (for details see the monograph of
Vorob’ev [1]).

However, in many important cases, the step method or any other
method for obtaining an exact solution of an equation of the form (25)
cannot be applied. In the following section a generalized method of
moments is set forth, applicable also in this case, to construct a sequence
of the form (29) and determine eigenvalues and eigenvectors of the
operator A~! in the scheme presented above.

(30)

§3. A generalization of the method of moments

Suppose that on the entire linear manifold D, dense in H there is
defined an unbounded linear operator A having a bounded inverse
A~! (which we do not know). We assume that in the space H it is
possible to construct completely continuous linear operators B (|| B|| < 1)
and B, such that on D,

(31) A = ByY(E — B).

Beginning with an arbitrary element zy & H, we construct the sequence
of iterates

(32) 20,50 =A"2,20= (A )2, -+, 2, = (A1) "%, - - -.

Since we do not know the operator A™', to define z; by means of z, it
is required to solve the equation Ax = z,, or, by virtue of (31), x = Bx
+ 201, where z;; = Byz, & H. Analogously, if the element 2z, has already
been determined by the sequence (32), the element z;,, is defined from
the equation

(33) x = Bx 4 2z,
where 2z,; = Byz, & H. We note that by virtue of the hypothesis that
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| Bl <1, solutions of the equations of the form (33) exist and are
determined uniquely for each z, € H.
We construct the sequence of iterates

~ ~ ~ 9 ~
(34) 2= 20,21 = B2),Z, = B2, -+ +,2, = B"%, - - -

and let 17,,, be the linear hull of the elements 2,2, - +,2,_1, wWhich
belong to the sequence (34). Analogous to (7), we define the operator
B,, on H,, by the relations

{Ek:Bﬁle (k=091"")m—1)7
E—sz:I':ZO,

where Z, is the projection of Z, on H,. As was shown in the monograph
of Vorob’ev [1], for arbitrary m

(35) IBal =|BIl <1

and, by virtue of the complete continuity of the operator B, the sequence
of operator B, converges uniformly to B.

Equations (33) are of the form of equation (10), and, as was shown
at the beginning of §2, for these the method of moments can be applied
to approximate the solution. In correspondence with this we construct
the sequence of elements

(36) z(;k=20’21*722*1"',z:"'
where 2z (k=1,2,.--) is a solution of the equation
(37 x=Bnx+ 2411, 24— = Boz1.

Let H} be the linear hull of the elements z§,z{, ---,2F;, which
belong to the sequence (36). On H;} we construct the operator A,’,

satisfying the relations

z};k= (Al:l)kz() (kzoyly"')n— 1)’
(38) i "

2y = (A, ") "2,

where z* is the projection of z¥ on H}. It is easy to show that the
operator A, ' is determined by (38) and gives a solution to the problem
of moments for the sequence of iterates by the operator equation

(39) A,'= (E— B,) 'B,.

We consider the subspace H,, the closure of the linear manifold
L, of elements of the form x = Q(A,')z,, where Q(\) is an arbitrary
polynomial. By virtue of (39) the operator A,' is completely continuous
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on H,, and hence the sequence of operators A,' converges uniformly
to A,'. Recalling that also the sequence of operators B, converges
uniformly to B, for each ¢ > 0 there exist numbers m, and n, such that
if m > m, and n > n, it follows that simultaneously

(1 —IIBIIVe
2| By

Then, by virtue of (31), (39), and (35),
A7 =AM =A™ = ALY + 1AL — A

€

IB~ Ba| < |4a - A7 <3

<|Boll |(E—B)"'—(E— B, +;

__IBJlIB- B
“TE=BITE - B,

I Boll | B — Bl
1 —|BJ)?

+

< + fce

2 - 2

Thus, the operator A~' is uniformly approximated by the sequence of
operators A, ! and hence the eigenvalues and eigenvectors of the
operators A, ' converge to the eigenvalues and eigenvectors of A~'
respectively.

We now consider conditions which permit the application of such a
“doubled” method of moments in order to compute the eigenvalues
and eigenvectors of the boundary-value problem (24), (12).

We shall show that on D4(0, r) it is possible to construct completely
continuous operators B (|| B|| < 1) and By, which satisfy the condition (31).

We consider the equation
(40) Ax =,
where fE€ D,(0,7) and the operator A is determined by (26). The
equation (40) is equivalent to the boundary-value problem
(257) x” () + M@ x(t — A() + f(t) =0,
x(0) = x(x) =0,
x(t—A@) =0 if t — A(t) <O.
We shall assume that one of the hypotheses (27) or (28) holds. Then
A =0 is not an eigenvalue of the operator A and equation (40) (and
hence also the boquary-value problem (25’), (12)) has a unique solution
for arbitrary f& D4(0, ).

Integrating the equation x”(f) = — M(@t)x(t — A(t)) — f(t) twice,
and employing the boundary conditions (12), we obtain

(12)
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(41) x(t) = f Kt "M@ x(r — A(r)dT + J; K(t,7)f(r)dr,
0
where the continuous_ kernel K(t,7) is defined by (14).
For arbitrary x & D4(0,x), we set
Byx = Qx,
Bx = QPx,

where the operators @ and P are defined by (17) and (16). In this
connection, (17) and (14) imply that

T T 1/2 2
(43) "QH <J; j; K-(t, T)d‘fdt> AT
It then follows from (40) and (41) that for arbitrary f& DA(0,7),

x=A"f=QPx+@Qf,

where x is a solution of (40). From this, by virtue of (40), A~'f
= (QPA' 4 @)f and hence,

(44) A'=Q(E—-QP)'=By(E—-B),

i.e. the operators B, and B defined by (42) satisfy (31).
We shall find conditions under which the inequality

(45) I|B|| <1

holds.
We again consider the cases I and II set forth in §2. For case I, by
virtue of (42), (43) and (21),

(42)

71'2 MO
3WV10 vVm’
and for (45) to hold it is sufficient that the inequality

M, < 3\ 10
Vm <

IBI <lQIIPI =

(=0.9612---)

be fulfilled.
Analogously, in case II, inequality (45), by virtue of (42), (43) and
(23), is guaranteed by the inequality

M, 3V 10
2

<

\Vmy T
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It remains to be shown that the operators B,, B and A ™' are completely
continuous. Indeed, the complete continuity of B, follows from the
continuity of the kernel K(¢,7). In cases I and II, by virtue of the
boundedness of the operator P, the complete continuity of B follows
from the equality B = B,P.

In order that the operator (E — B) ™' be bounded, it is sufficient
that the number A = 0 not be an eigenvalue of the operator E — B.
Suppose the contrary; but then the equation (E — B)x =0 has a non-
zero solution x(¢) € D,(0,7), or, equivalently, the equation

x”(t) + M(@)x(t — A(t)) =0

has nontrivial solutions which satisfy the boundary conditions (12).
But then the number A =0 is an eigenvalue of the boundary-value
problem (24), (12), which is excluded by the hypothesis (27) or (28).
The complete continuity of A~! now follows from (44).
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