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NOTES ON THE LITERATURE
Chapter 1

The proof of all theorems cited in §§1—4 may be found in Kolmogorov [1]}, Halmos
[1], and Kolmorogov and Fomin [1]. The martingale and supermartingale concepts are due
to Doob. Theorems 5.1 and 5.1’ and their proofs are taken from Doob [1].

Chapter 2

§1. For more details about properties of Markov processes and their transition func-
tions, see Feller [1], Dynkin [1], Loéve [1], and others.

§2. Theorem 2.1 is essentially a special case of Doob’s theorem (Doob [1]) on the
stopping of a supermartingale. Kolomogorov’s inequality for supermartingales may also be
found in Doob [1].

§3. Theorems 3.1 and 3.2 are well known. See, for example, Gihman and Skorohod
[1].

§5. For related results, see, for example, ABR [1], Chapter IV.

§6. Theorems 6.1 and 6.2 were provec by Kolomogorov [1] in a more general setting.

§7. Theorem 7.1 is conceptually similar to Theorem 8 in Chapter 4 of ABR [1].

§8. For a detailed discussion of the questions related to this formulation of the prob-
lem, see ABR [1], Chapter 5.

Chapter 3

§1. For more details about the definition and properties of a continuous Markov
process, see Dynkin [1].

§2. The limit passage from equation (2.1) to a continuous Markov process was con-
sidered by Bernstein [1], who, among other things, proved a theorem on the limit behavior
of the transition probability as » — 0.

§§3 and 4. This definition of the stochastic integral is due to It6. For a proof of
Theorem 4.1, see, for example, Gihman and Skorohod [2].

§7. A proof of Theorem 7.1 may be found in Has'minskii [1].

§8. Similar results are presented in the authors’ paper [1].

Chapter 4

§1. As mentioned in the text, s.a. procedures for location of the roots of regression
equations were first suggested in the 1951 paper of Robbins and Monro [1], who proved
convergence in mean square of the procedure (5.1) under certain assumptions. This result

233



234 NOTES ON THE LITERATURE

was generalized by Wolfowitz [1], Blum [1], Chung [1], and others. Blum [1]), in particular,
presented the first proof of convergence with probability 1. Theorem 1.1 and the method of
proof used in the text are due to Glady¥ev [1}. Multidimensional RM procedures were intro-
duced by Blum {2]. Blum was the first author to apply the theory of supermartingales to
investigate the convergence of s.a. procedures.

§2. The procedure (2.5) was proposed by Kiefer and Wolfowitz [1] in 1952. Blum
{2], Derman {1], Burkholder [1] and others studied the procedure in detail and, in particular,
proved that it is convergent with probability 1. No account is given here of more general s.a.
procedures such as those proposed in Burkholder {1], Dvoretzky [1], etc. More detailed
bibliographies may be found in the review articles of Dvoretzky [1], Fabian [3], Sakrison
{3], Schmetterer [1], Loginov [1], and others,

§3. The continuous analog of the RM procedure was introduced by Driml and Nedoma
[1]. They proved the convergence of the procedure under fairly general assumptions on the
stochastic processes appearing on the right of the equation. Under certain assumptions,
Sakrison [1] proved the convesrgence of the continuous analog of the Kiefer-Wolfowitz pro-
cedure. The continuous procedures considered here were defined in Has'minskii [1] and
‘Nevel'son and Has'minskii [1].

§4. The first convergence theorems for multidimensional RM procedures wese proved
by Blum [2]; see also ABR [1], Schmetterer [1] and further bibliography cited there. Theo-
rem 4.4 is similar to the above-mentioned result of Glady¥ev [1]; Theorem 4.5 is due to
Braverman and Rozonoér (see ABR [1]). The formulation of the last theorem raises the
question as to whether one can also weaken the condition }:az(r) < e in the proof that
X(1) - Xq as. It turns out that this is indeed possible. For example, in some cases it is
sufficient to demand that £d”(7) < o for some n > 0 (although one must then impose more
stringent conditions on the “noise”). The theorems proved here for continuous RM proced-
ures are due to the authors [1].

§5. Convergence theorems for discrete multidimensional KW procedures were proved
by Blum [2], Dupa¥ {[1] and others. For the continuous case, see Nevel'son and Has'minskii

[1].
Chapter §

The conjecture that a KW procedure cannot converge with positive probability to
minimum points of the regression function was advanced by Fabian [1], [2]). The resuits
presented here are based on Has'minskif [1] and Nevel'son [1], [2]. The two last-mentioned
papers also prove more general theorems. See also Krasulina [1].

Chapter 6

§1. Theorem 1.1 for the one-dimensional case is proved, e.g., in Loéve [1]; for the
multidimensional case, see Sacks [1].

§2. Conditions for the validity of the estimate EX2(s) = O(1/f) as t — =, where X(7)
is a discrete one-dimensional RM process, were first obtained by Chung [1]. An analog of
Lemma 2.1 for discrete multidimensional RM processes was proved by Sacks [1] under the
additional assumption EIG(s, x, m)l2 < ¢ < =, The fact that (2.9) is a consequence of (2.8)
follows from a well-known lemma of Chung [1].

§§3 and 4. Lemma 3.1 was proved by Has'minskif {2]. Lemma 4.3 is due to Sacks
[11.
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§5. Theorem 5.3 for u > 0 is proved in Has'minskii [2]. The asymptotic normality
of a RM procedure was established, under certain assumptions, by Holevo [1].

§6. Theorem 6.1 was proved by Sacks under the following additional assumptions:

3) the matrix B may be reduced to diagonal form by a similarity transformation involving
an orthogonal matrix; b) the norm of the matrix A(f, x) is bounded for ¢t > 1 and x € E,.
Theorem 6.3 is new. Asymptotic normality theorems for other s.a. procedures were proved
by Fabian [5], Derman {1], Burkholder [1], Dupa& {1] and others. The “truncation”
method in asymptotic normality proofs for s.a. procedures was first applied by Hodges and
Lehman [1].

§7. The first convergence theorems for moments of s.a. processes were proved by
Chung [1] in the one-dimensional case. For the multidimensional case, the result of Theorem
7.2 is well known (see, for example, Schmetterer [1]) for A > %a. But if Condition () of
§7 holds with A < %gq, the only result known to us on convergence of moments is that of
Sakrison [2]. Constructing a certain modification of the RM procedure, Sakrison proved
that the matrix of second moments of the process \/T(X(s) — xgq) converges to the correspon-
ding covariance matrix of a normal law, provided all moments E|{G(s, x, WP, p=1,2,...,
are bounded.

Chapter 7

§§1—4. Albert and Gardner [1] established convergence and asymptotic normality
for the procedure (1.1) and a more general one in which the factor a(r) is allowed to depend
on past observations. These authors also considered a multidimensional modification of (1.1).
Recently, Csibi [1], [2] has proved convergence of truncated procedures for a broad range
of truncations.

§5. There is a considerable literature on the optimal choice of parameters for RM
procedures and their adaptive modifications. Among others, we mention Chung [1],
Dvoretzky [1], Kesten [1], Cypkin [1], [2],and Stratonovi¢ {2]. Our approach is based
on the work of Venter {1], who proved Theorem 5.1 under slightly more restrictive assump-
tions.

§6. Theorem 6.1 slightly generalizes a result of Venter [1}; Theorem 6.2 is new.

Chapter 8

§1. Theorem 1.1 follows from resuits of Chapman and Robbins [1] and Kagan [1].
Theorem 1.2 was proved by Ibragimov and Has'minskii [2]. These papers also derive inequal-
ities for biased estimates.

§2. Theorem 2.1 and its analog for biased estimates were proved by Ibragimov and
Has'minskii [2].

§3. The use of RM procedures for parametric estimation is discussed in Albert and
Gardner [1], where a larger class of estimates, not necessarily forming Markov processes, is
considered.

§§4 and 5. Theorems 4.1 and 4.5 were proved by Sakrison [2], [3] under stronger
conditions (and without the convergence of distributions). Other optimality criteria were
considered by Albert and Gardner [1], Cypkin [1], and Stratonovi& [2], but their procedures
generally depend on past observations (see, for example, the procedure (0.9) in the Intro-
duction).
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Chapter 9

§1. For inequality (1.7), see, for example, Van Trees [1].

§2. A procedure equivalent to (2.4) for m linear in the parameter (m(xg) = mx,,
where m is a nonsingular matrix) was considered by Holevo [1]. He also considered the
case that m is not a square matrix but mm®* is nonsingular. For the nonlinear case, Holevo
proposed a procedure more complicated than (2.4). Under certain assumptions, he established
asymptotic normality of the estimation procedure.

§3. Recursive procedures similar to (3.1) may be derived from the Bayesian approach,
using linearization. For linear systems, similar estimation procedures may be found in Kal-
man and Bucy [1], Lipcer and Sirjaev [1], and elsewhere.

§4. The problem of estimating xq based on observations of type (4.7) (estimation of
linear regression coefficients) has been considered from other points of view in many papers.

§5. With suitable initial conditions, the procedure (5.3), (5.4) for a linear function
m(t, x) = m(t)x coincides with the Kalman-Bucy optimal linear filtering equations. In other
words, this system is satisfied, in particular, by the conditional expectation of xg given Y(s),
s < t, provided the a priori distribution of x¢ is Gaussian.
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SUBJECT INDEX

Admissible control, 221
asymptotically optimal, 230
Asymptotic
efficiency, 186
normality, 123
variance, 18§
Borel set, 12
Chapman-Kolmogorov relation, 30
Condition (A), 36
(B), 72
(@), 155
Control parameter, 221
Convergence
almost sure, 15
in distribution, 15
in probability, 15
Diffusion
coefficient, 38
matrix, 67
Distribution of a vector, 14
Drift
coefficient, 38
vector, 67
Estimate, 181
asymptotically efficient, 186, 210
strongly, 185, 188, 209
weakly, 186, 188
asymptotically unbiased, 182
efficient, 185, 188
maximum likelihood, §
recursive, 190, 210
strongly consistent, 182
unbiased, 182
weakly consistent, 182
Expectation, 15
conditional, 17, 18
relative to a random vector, 19
finite, 15
Fisher information, 182
matrix, 186
Function
Borel, 13
characteristic (of a set), 17
distribution, 14
Ljapunov, 89
measurable, 13

Gaussian white noise, 63
Generating operator, 31
differential, 67
Independent
events, 20
random variable and o-algebra, 20
sets of random vectors, 20
o-algebras, 20
vectors, 20
Inequality
Cebyiev's, 15
Cramér-Rao (information), 182

Kolmogorov’s (for supermartingales), 33—34

Information
content, 6, 182
Fisher, 182
inequality, 182
matrix (Fisher), 186
Integral, Lebesgue, 14

1t3’s formula for stochastic differentials, 66—67

Kiefer-Wolfowitz procedure, 83ff.
Lebesgue integral, 14
Lemma
Fatou’s, 16
Ljapunov’s, 133
Martingale, 22, 23, 69
Measurable space, 12
Measure, 12
absolutely continuous, 16
complete, 12
finite, 12
Lebesgue, 12
probability, 13
o-finite, 12
Observation process, 207
Plan of experiment, 221
asymptotically optimal, 223
Probability, conditional, 17, 18
relative to a random vector, 19
Probability space, 13
Product
of measures, 21
of spaces, 20
Random variable, 13
independent of the future, 61
vector-valued, 13
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Recursive procedure, 190 differential (It5), 63
truncated, 162 equivalence, 14
Regularity condition, 71 of stochastic processes, 54
Regularization, 31 strong, 62
Robbins-Monro procedure, 4, 79ff. integral (It3’s), 60
Sample function of a stochastic process, 22, 53  process, 53
Separating hyperplane, 50 discrete, 22
Set of elementary events, 12 Markov, 30, 54
g-algebras, 12 homogeneous, 54
Borel, 12 measurable, 53
generated by a random vector, 19 regular, 71
imbedding of one in another, 12 separable, §3
intersection of, 12 stationary (in the narrow sense), 144
minimal, 12 Supermartingale, 23, 69
Signalling rate, 216 Theorem
Space of elementary events, 11, 12 Fubini’s, 21
Stable 1tG’s, 66
matrix, 132 Kolmogorov’s, 56
point, 106 Lebesgue’s, 16
Standard Wiener process, 55 Radon-Nikodym, 16
with values in Ej, 56 Transition density of a Markov process, 54
Statistic, 181 Transition function, 30, 54
Stochastic homogeneous, 31
approximation procedures 4, 79ff. temporally homogeneous, 54
Kiefer-Wolfowitz, 83ff. Transition probability of a Markov process, 29

Robbins-Monro, 4, 79ff.



MAIN NOTATION

IBI = V/Z;;53: norm of matrix B = ((5;), p. 125

C,: class of functions V(r, x) continuously differentiable with respect to ¢ and twice con-
tinuously differentiable with respect to x, p. 57

Cg: set of functions ¥(x) € C, with bounded second-order partial derivatives, p. 92

Dy : domain of definition of generating operator, p. 31

D§%%): domain of definition of generating operator L at point (7, x), p. 31

Ej: euclidean I-space, p. 12

¥,: monotone family of o-algebras, pp. 36, 59

I(x): Fisher information matrix, pp. 182, 186

J: identity matrix, p. 124

L: generating operator, pp. 31, 67

L,[a, b]: set of measurable random functions f (f, w), t € [g, b, wE R, ?,-measunble for
every t, such that [2 fz(t, w)dt < = with probability 1, p. 59

N,: o-algebra of events generated by random variables X(u), u < ¢, pp. 30, 73

E: closure of set U, p. 162

U(B): e-neighborhood of set B, p. 39

U r(B) = V(B) N {x: x| <R}, p. 40

V(B) = E\U(B), p. 39

%: domain of values of unknown parameter x, p. 181

X(1) ~N(m, S): asymptotic normality of X(z), p. 123

y™) = Ggs s V) P- 202

Z: domain of values of control parameter z, p. 221

Vs (x): vector with coordinates [f(x + ce;) — f(x — ce;)]/2c, p. 86

dyp/dx: matrix with elements a.p,-/ax,-, p. 107

7g: first exit time from domain G, pp. 32, 73

®(B): class of functions defined on p. 40
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