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PREFACE TO THE SECOND EDITION

Ten years have passed since the appearance of the first edition of our book.
In this time many new and interesting results on the questions considered in
the book have been obtained, especially on difference methods of solving prob-
lems of mathematical physics and gas dynamics.

Some corrections of the text have been inserted in the second edition, and
also a considerable number of additions to reflect the progress that has taken
place. But as in the first edition, the general plan and style of the exposition
affects the choice of material. This applies particularly to the new material
in Chapter 3, which is devoted to difference methods. The great number of
papers on difference methods, together with the necessarily small size of Chapter
3, have compelled us to omit a number of theoretical questions already covered
in sufficient detail in accessible monographs and textbooks.

In preparing the second edition we have again made use of the help of our
friends and colleagues, as well as our students. We express our profound
gratitude to all of them.
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FROM THE PREFACE TO THE FIRST EDITION

In writing the book the authors interacted with various collectives of Soviet
mathematicians. Among them we mention those headed by M. V. Keldys, A. N.
Tihonov and A. A. Samarskii, and I. M. Gel'fand. The interaction with friends
and professional colleagues inevitably affected our opinions and points of view;
a number of results became known to us through conversations with them.

During the course of a number of years each of us gave special courses for
students on the theme of this book. As a result of work on the book, several
new results were obtained which are published here for the first time.

The present book arose from many years of work during which time we
constantly enjoyed the help of many of our friends and professional colleagues
and also of many of our students.

We are grateful to A. N. Tihonov, whose advice we constantly followed.

The help of L. V. Ovsjannikov was especially valuable to us; he not only
looked through the manuscript of the entire book and made a number of
valuable remarks, but also placed at our disposal materials which we used in
writing §13 of Chapter 1.

A. A. Samarskii read the manuscript for Chapter 3 and made a number of
valuable suggestions.

N. N. Kuznecov helped us a great deal; he read the entire manuscript, made
a number of valuable suggestions, and as editor of this book greatly contributed
to its improvement.

We express our gratitude to all of them.

xiii
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INTRODUCTION

To describe the behavior of a continuous medium (a gas, liquid, or solid)
theoretical physics uses various models which in most cases lead to nonlinear
partial differential and integro-differential equations.

The mechanics of continuous media is the main area of practical application
of systems of nonlinear partial differential equations, but it is not the only one.
In describing the majority of real physical processes we arrive at nonlinear
equations, and only essential additional assumptions regarding the smallness of
the amplitudes of waves of the field or the amplitudes of oscillations of the
medium, the amplitudes of the deviation for the equilibrium state, etc. lead to
linear equations which have been studied more extensively. In Chapter 4 of the
book a number of examples are presented of problems of physics, chemistry,
and mathematics which are connected with nonlinear equations. ‘

The study of general properties of nonlinear equations and methods of
solving them is a rapidly developing area of modern mathematics.

For all the interesting facts and the variety of original and clever methods
for investigating and solving nonlinear equations, this area of mathematics does
not yet have as solid a theoretical foundation as the theory of linear equations.
This is related primarily to the fact that the principle of superposition of solu-
tions is not applicable to nonlinear differential equations, so that the manifold
of solutions is not linear.

Systems of quasilinear equations are the simplest hyperbolic systems of
nonlinear partial differential equations. Systems of equations with two inde-
pendent variables have been most studied; these systems describe, in particular,
nonstationary one-dimensional and supersonic two-dimensional stationary
flows of compressible gases and liquids. However, even for these systems there
is presently no sufficiently complete theory; there are no general existence and
uniqueness theorems for a solution of the initial value problem.

This is due to the fact that for hyperbolic systems of nonlinear equations
the solution of the Cauchy problem involves considerable complication both
in the very formulation of the problem and the methods of solving it. Moreover,

XV



Xvi INTRODUCTION

almost all the basic difficulties that arise here are present already for the case
of two independent variables, and it may be expected that solutions of multi-
dimensional equations of gas dynamics locally have essentially the same features
as solutions of one-dimensional equations.

The study of hyperbolic systems of nonlinear equations in two independent
variables thus constitutes an altogether necessary and so far incomplete stage
in the investigation of more general nonlinear equations.

On the basis of these considerations the authors decided to restrict attention
mainly to the theory of hyperbolic systems in two independent variables and
the study of one-dimensional, nonstationary flows of compressible liquids and
gases. Therefore, as a rule, we speak of one of the variables as the time and
denote it by the letter .

Here we shall briefly describe the present state of the question of the solva-
bility of the Cauchy problem for hyperbolic systems of quasilinear equations and
the difficulties arising in the attempt to construct a global solution of this
problem. The basic method of solving hyperbolic systems of quasilinear equa-
tions is the method of characteristics, which is expounded in detail in Chapter
1. The existence, uniqueness, and the continuous dependence on the initial data
of a classical solution of the Cauchy problem are proved by means of this
method. The results obtained are highly satisfactory in the sense that the
classical solution is constructed in the entire domain of the variables ¢ and x
where it exists. We observe that the domain of existence of a classical solution
is, in general, limited, since solutions of nonlinear equations, in contrast to
solutions of linear equations, possess the property of unbounded growth of the
magnitude of derivatives which is called the “‘gradient catastrophe”.

The meaning of this property is that even for arbitrarily smooth initial data
the first derivatives of a solution become unbounded, in general, in finite time.
For some ¢, > 0 they become unbounded, and for ¢ > 7, a classical solution
of the Cauchy problem does not exist.

From the point of view of gas dynamics this corresponds to the formation of
a shock wave (a condensation jump) from the compression wave. Thus, if we
wish to determine a solution of the Cauchy problem for any ¢ > 0, i.e. globally
(and this is precisely the problem, for example, in gas dynamics), then we must
first find a definition of the solution, since, as already mentioned, a solution of
the system of equations in the usual sense—a classical solution—does not exist
for ¢t > t,.

In the majority of physical problems and, in particular, in gas dynamics the
definition of a generalized solution is dictated by the very formulation of the
problem. Thus, for example, in gas dynamics the basic physical laws from which
we derive all consequences are the laws of conservation of mass, momentum,
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and energy. These conservation laws have the character of integral relations,
and they are applicable not only to smooth (differentiable) flows. On the other
hand, the differential equations of gas dynamics are obtained from these con-
servation laws under the assumption that the flow is smooth.

We thus define a generalized solution of the equations of gas dynamics as a
flow (possibly even with discontinuous parameters) satisfying the basic con-
servation laws of mass, momentum, and energy. To this we add the thermody-
namic requirement that the entropy increase in each thermodynamically closed
system. There is a broadly held opinion, which has so far not been contradicted
by a single example, that a solution thus defined exists, is unique, and satisfies
all reasonable requirements.

The requirement of thermodynamics regarding the increase of entropy is very
essential: it indicates the possible direction of the process of rapid variation of
the state of the gas. This requirement does not enter in considering classical
solutions of the equations of gas dynamics for a gas without viscosity or thermal
conductivity, since in smooth flows the entropy of the system is conserved by
virtue of the same basic conservation laws.

In gas dynamics another approach to generalized (discontinuous) flows of an
ideal gas without viscosity or thermal conductivity is well known. Since a gas
without dissipation is an idealization of a gas possessing dissipative processes,
it is natural to consider its discontinuous flow as a “limit flow” of a viscous,
conducting gas as the coefficients of viscosity and thermal conductivity tend
to zero. Here it is assumed that the viscous flows are always described by clas-
sical solutions of the differential equations, while the limit as the dissipative
coefficients tend to zero exists and is unique in a reasonable sense. This assump-
tion has, in fact, so far not been contradicted by a single example, although
precise proofs have presently been obtained only for the very special case of a
stationary shock wave.

Here it should be observed that in many cases real gases possess rather small
dissipation, so that they can be ‘“‘approximated” by nondissipative gases.
However, the presence of dissipative processes, even small ones, leads to an
increase of the entropy of the system. Thus, the requirement of the increase of
entropy in the discontinuous flow of an ideal gas is related to the representation
of this flow as a “limit” flow of a viscous, thermally conducting gas.

We note that from a mathematical point of view the requirement of the
increase of entropy is the condition guaranteeing the uniqueness of a generalized
solution and its stability with respect to perturbations.

Although this formulation of the problem of the flow of compressible gases
has been known for more than a century (Riemann studied the simplest dis-
continuous flows), the progress in studying general properties of generalized
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solutions of the equations of gas dynamics has been relatively minor. Thus, as
we have already mentioned, there are still no satisfactory existence and unique-
ness theorems.

On the other hand, practical requirements occasioned by the pressing necessity
of the practical study of discontinuous flows and also new computing capabilities
related to the application of rapid computing technology have led to the situa-
tion that, in spite of our inadequate information regarding general properties of
discontinuous flows, various numerical algorithms have been created and used
which make it possible to satisfactorily compute flows with shock waves. It
should be mentioned that in creating these numerical algorithms the majority
of the conjectures that we mentioned above were accepted as true.

In view of the fact that a direct and rigorous justification of various assump-
tions regarding generalized solutions in gas dynamics is a difficult problem, it
is natural to hope to verify our views for model equations and systems of
equations which to some extent imitate the equations of gas dynamics.

A consequence of this desire was the appearance in the last decade of the
so-called theory of generalized solutions of systems of quasilinear equations or,
more briefly, the theory of systems of quasilinear equations (here systems of
hyperbolic type are usually meant). This theory poses the problem of introducing
in analogy with gas dynamics the concept of a generalized solution for an
“arbitrary’’ system of quasilinear partial differential equations of hyperbolic
type, proving its existence, uniqueness, and continuous dependence on the
initial data of the problem, and studying the properties of such solutions. At
least formally, this theory is more general than one-dimensional gas dynamics
and includes the latter as a special case.

It has attracted the attention of many mathematicians, and the number of
results obtained through the efforts of Soviet and foreign scientists make it
possible to expect further development of the theory.

On the basis of this view of the development of the theory of generalized
(discontinuous) solutions of systems of quasilinear equations, the authors
limited their attention to the case of only two independent variables and included
in the book the following basic questions:

1. Methods of constructing classical solutions of systems of quasilinear
equations; proofs of existence and uniqueness theorems and continuous de-
pendence of classical solutions; analytic methods of constructing solutions of
systems of nonlinear equations; and conditions for the formation of disconti-
nuities in solutions of arbitrary systems of quasilinear equations. These ques-
tions are discussed in Chapter 1. Results obtained for classical solutions of
systems of quasilinear equations during recent years are presented there.

2. Classical and generalized solutions of the equations of gas dynamics for
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one-dimensional, nonstationary flows. This question is discussed in Chapter 2.
The authors considered it expedient to consider in detail certain questions of
gas dynamics which are discussed in many textbooks. The foundations of
thermodynamics, a derivation of the equations of gas dynamics for various
symmetries of a one-dimensional flow, the Hugoniot conditions, generalized
properties of flows, the theory of the shock transition, and self-similar and
analytic solutions of gas dynamics are presented. The inclusion in the book of
these traditional questions of gas dynamics makes it possible to expound from
a unified point of view certain mathematical problems which arise in gas
dynamics; moreover, the majority of numerical methods in gas dynamics are
actually based on this material. The basic problem of the theory of discontinuous
solutions of the equations of gas dynanics—the problem of the decay of an arbi-
trary discontinuity—and also the interaction of shock waves with one another,
with travelling waves, and with a contact boundary are considered in detail.

3. Chapter 3 is devoted to difference methods for solving the equations of
gas dynamics. In our time these methods have become a basic means of studying
problems of gas dynamics, and therefore progress in the study of discontinuous
flows is to a considerable extent connected with difference methods.

In this chapter we have had to present the basic concepts of the theory of
difference methods. Unfortunately, the majority of assertions of this theory
pertain only to the case of linear equations.

The present situation regarding the justification of difference methods applied
to the numerical solution of problems of gas dynamics is briefly as follows.
Classical solutions (smooth flows) can be computed with almost arbitrary
accuracy. The basic method—the numerical method of characteristics—for
classical solutions is sufficiently justified. On the other hand, numerical methods
applied to compute discontinuous flows have not been rigorously justified, and
in the majority of cases certain conjectures regarding the behavior of solutions,
the approximation of certain equations by others, etc. are used. Simple equations
for which the behavior of the discontinuous solution is well known are most
frequently used to verify the various assumptions. It is no accident that in this
chapter in most cases each scheme is subject to verification on a simple quasi-
linear equation with a solution which can be written out explicitly.

This situation regarding the justification of difference methods indicates
that progress in this area is to a considerable extent connected with progress
in the study of general properties of generalized solutions of systems of quasi-
linear equations and, in particular, the equations of gas dynamics. On the other
hand, difference methods provide experimental material and strongly stimulate
the development of the theory of generalized solutions.

4. Chapter 4 is devoted to the theory of generalized solutions of systems of
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quasilinear equations of hyperbolic type, and contains the basic results obtained
in this area in recent years. A major success here is the construction of a theory
of a generalized solution of a single quasilinear equation, which may be con-
sidered near completion. For this equation existence, uniqueness, and con-
tinuous dependence of the generalized solution of the initial data are proved,
and the equivalence of the definitions of a generalized solution from the point
of view of the conservation law on the one hand and as a limit of “viscous
solutions” on the other is demonstrated.

On the other hand, as in gas dynamics, the study of generalized solutions of
systems of equations encounters major difficulties, and very meager results
have so far been obtained here. The basic problem, which is currently being
subjected to thorough investigation, is the problem of the decay of an arbitrary
discontinuity. By means of this simple problem it is possible to study the
structure of the generalized solution, and on the basis of this structure it is
even possible to construct generalized solutions for the case of a system of two
equations.

It should be noted that in recent years more general problems for systems of
quasilinear equations have also been studied intensively.

In Chapter 4 the basic results obtained for a single quasilinear equation are
presented, the problem of the decay of a discontinuity for an arbitrary hyper-
bolic system of quasilinear equations is considered, and some results pertaining
to more general cases are presented. To conclude this chapter a number of
problems are described in various areas of science which are related to the
theory of systems of quasilinear equations and, in particular, to discontinuous
solutions of such equations.

From what has been said above it should be clear that the mathematical
theory of discontinuous solutions of systems of quasilinear equations and, in
particular, of the equations of gas dynamics, although it contains many remark-
able results and achievements, is far from complete. We hope that our book
will afford the reader an idea of the modern methods of solving and studying
systems of quasilinear equations and will at the same time spur him to further
investigations in this interesting and rapidly developing area of applied mathe-
matics.

The book is subdivided into chapters, sections, and subsections. Formulas
are numbered independently in each subsection, and hence references contain
the number of the section and subsection in addition to the number of the
formula, so that formula (2.7.18) signifies formula (18) in Subsection 7 of
Section 2 (i.e., §2.7) of the given chapter. The number of the formula alone is
given only in the case where the reference does not go beyond the confines of
the given subsecton.
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