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Dedicated to
Nikolai Ivanovich Slobodchikov,
my school teacher

Foreword

The problem of finding an integral representation for and computing finite
and infinite sums (generating functions) arises in the most widely disparate
areas of mathematics: combinatorial analysis, graph theory, the theory of
algorithms and programming on a computer, probability theory, function
theory, and group theory, as well as in physics and other areas of knowledge.
The present book contains a systematization of known ideas and methods and
an exposition of new ones concerning this problem.

Since the appearance of our book “Combinatorial sums and the method of
generating functions” (Krasnoyarsk, 1974), we have received many useful
comments from investigators in the USSR and abroad, the books of Gould
(USA, 1972) and Kaucky (Czechoslovakia, 1975), both with the title “ Combi-
natorial identities”, have been published, and many new results have been
obtained. All this has enabled us to better understand the essence of the
proposed methods and has significantly enriched the factual material on
combinatorial identities.

The formation of the author’s views has been greatly influenced by his
collaboration with the group of mathematicians led by L. A. Aizenberg
(Kirenskii Institute of Physics, Siberian Branch of the Academy of Sciences of
the USSR, Function Theory Laboratory), as well as by the group led for a long
time by Yu. M. Gorchakov (the Group Theory Laboratory of the same
institute). This collaboration has contributed to the emergence of new applica-
tions of methods being developed in function theory and group theory.

To understand the contents of the book it is necessary to study thoroughly
only Chapter 1. The material in the remaining chapters may be read selectively
according to the interests and degree of preparation of the reader. Those facts
from the theory of multidimensional residues needed to read the book are
presented in the Supplement, written by A. P. Yuzhakov. §6.1 was written
jointly with L. A. Aizenberg, part of §4.2 with B. 1. Selivanov, and §6.4 with
Yu. D. Ushakov.

ix



X FOREWORD

The sections and formulas are numbered by chapters. For example, formula
(5.20) is formula 20 in Chapter 5. Subsections, definitions, theorems, lemmas,
and problems are numbered by sections according to the same scheme. Thus,
“Theorem 4.5.2” means that this is the second theorem in §4.5.

The author expresses his deep gratitude to the editor-in-chief G. P. Gavrilov,
and to A. P. Yuzhakov, B. L. Selivanov, G. 1. Zolotukhina, and E. K. Leinartas
for a useful discussion and critial comments. V. K. Ivanov and K. A. Rybnikov
made valuable remarks in the process of familiarizing themselves with the
manuscript, and the author sincerely thanks them for this.

The author is especially grateful to A. M. Aronov for help in putting the
finishing touches on the text of the manuscript, and is also thankful to his
students A. K. Avraménok, A. 1. Karapetyan, A. V. Kurikov, N. I. Sereda, and
E. M. Smirnova for help in preparing the manuscript.
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SUPPLEMENT

Facts from the Theory of Multidimensional Residues

A. P. YuzHAKOV

Introduction

It is well known what numerous applications the theory of residues of
analytic functions of a single complex variables has. At its basis lie the Cauchy
integral theorem, permitting us to replace the contour of integration in the
integral of a holomorphic function by another simpler contour, and the residue
formula, expressing the integral over a small contour about a singular point in
terms of the coefficient of the corresponding Laurent series, and—in the case
of poles—in terms of the derivatives.

The theory of multidimensional residues, which goes back to Poincaré [173],
is based on the general Stokes formula and its corollary: the Cauchy-Poincaré
integral theorem. Serious topological difficulties arise for analytic functions of
several complex variables in connection with the fact that the role of a singular
point is now played by analytic sets (surfaces) in C”, which have a complicated
structure in the general case, and the apparatus of algebraic topology is needed
to overcome these difficulties. Unlike in the case of functions of one variable,
integrals over “elementary” cycles cannot always be computed completely even
for poles. For example, the Leray residue formula [142] (see §2.4 below) only
enables us to lower the order of the integration in the general case. Although
the theory of multidimensional residues evolved in a profound and comprehen-
sive way in work of Leray [142], who developed a general theory of residues on
a complex analytic manifold, and in work of Dolbeault, Martinelli, and others,
it is still far from complete. Multidimensional residues have in recent times
found important applications in the investigation of Feynman integrals [16], as
well as in combinatorial analysis (see the present book).

229



230 SUPPLEMENT. MULTIDIMENSIONAL RESIDUES

In §1 below we present auxiliary concepts and facts on which the theory of
multidimensional residues is based. In §§2 and 3 we survey the main concepts
and results in this theory and give practical devices for computing residues in
some special cases useful in applications. In §4 we present the theory of the
logarithmic residue in detail, and in §5 its application to a generalization of the
Lagrange expansion to arbitrary implicit functions. The reader will find a more
complete exposition of the material given here, along with a bibliography, in
the book [240].

§1. Integration of differential forms. The Stokes formula

1.1. Differentiable and complex analytic manifolds. An n-dimensional manifold
is defined to be a connected Hausdorff topological space X, each point of
which has a neighborhood homeomorphic to a ball in the n-dimensional
Euclidean space R". A pair (U,, ¢), where U, is a neighborhood of a point
a€ X and ¢: U, » {t € R™ |t] < 1} is a homeomorphism, is called a local
coordinate system, and the values t = (¢,,..., t,) = @(x) are called local coordi-
nates of a point x € U,. Suppose that on X there is a family F = (U,, @y }qe4
of local coordinate systems satisfying the following conditions: 1) U _, U, =
X; 2)if (U, 9,), (L, ) € Fand U, N U *= &, then the mapping g ° @' is
r times continuously differentiable; 3) if a coordinate system (U, @) is
connected with any coordinate system (U,, ¢,) € ¥ by condition 2), then
(U, 9) € ¥. Then the pair (X, %) is called a differentiable manifold of class S,
0 <r< oo (it is assumed that r = co in what follows). A differentiable
manifold is said to be orientable if ¥ can be partitioned into two classes in such
a way that if two pairs (U, 9,), (3, @) are in a single class and U, N {; = 9,
then the Jacobian of the mapping g ° @;' is positive. These classes are called
(opposite) orientations of X. If X is a 2n-dimensional manifold, the mapping

9u Uy = {8 = G 8) €l = (P + o + 5 ) 7 < 1)

in (U, ¢,) € ¥ is a homeomorphism onto an open ball of the n-dimensional
complex space C", and g ° ;' is a holomorphic mapping, then the pair
(X, %) is called an n-dimensional complex analytic manifold. Obviously, an
n-dimensional complex analytic manifold is at the same time a (real) 2n-
dimensional differential manifold (and orientable). Some examples of complex
analytic manifolds are a domain in C”, an analytic set without singularities in
C*"(S={(ze€C" F(z)=--- = F(z)=0), where F|,..., F, are holomor-
phic functions with rank||dF,/dz,|| = k), Riemannian manifolds of multivalued
analytic functions of several complex variables, etc. (see [202], [5] and [234]).

1.2. Differential forms. Differential forms are objects of integration over
multidimensional surfaces on a manifold and are invariant with respect to the
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choice of a local coordinate system. A differential form of degree p (p =
0,1,...) on a differentiable manifold X is defined to be a skew-symmetric
covariant tensor field of valence p (see [179]). In a neighborhood of an
arbitrary point a € X a differential form w can be uniquely represented in
local coordinates (x,,..., x,) by an expression

w(x) = ) ,mi,,(x) dx; A -+ Adx,, (1)

IS"]<"' <’p<n

where the a; (x) are functions of (xy5-.+, x,) (which are differentiable
sufficiently many times), the dx; (j = , n) are the differentials of the local
coordinates, and A is the 51gn for exterior multiplication and satisfies the
anticommutativity condition

dx; A dx; = —dx; Adx;, dx; Adx;=0. (2)

In passing to other local coordinates ( y,,..., y,) the expression (1) transforms
to

A Ay,

" ox,  ox,
w=_ Z (Z ai,-ui(x)il""i

a'}{jl a))Jp

3(xir.n x,)

’))d)ij»l/\-”/\dyjp.@)

iyt ip a()’,, --,yjp

A differential form of degree zero is understood to be an ordinary function w:
X — R', C'. A differential form w is said to be regular if its coefficients in any
local representation of the form (1) are functions of class &> (differentiable
any number of times). Differential forms can be added and multiplied by
numbers. The set of regular forms of degree p on a manifold X thus forms a
vector space, denoted by 7( X).

The operation

A QP(X) X Q9(X) > 2749(X)

of exterior multiplication is defined for forms; it is realized in local coordinates
by the rule for multiplying polynomials, with the rule (2) taken into account.
The following properties of the exterior product are obvious:
DoA(p+d)=wAe+twAi
) w A= (-1)"9% A w, where p and q are the degrees of the forms w
and @.
The exterior differentiation operator

d: Q7(X) > QP 1(X)
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is defined in local coordinates by the formula
aw= Y da,.i,.,,.p(x) Adx; Ao Adx, (4)

where

n aail'“ip
dai.-~~i, =X
i=1

0x; dx;.

The exterior differential has the following properties:

Dd(w, + w,) = dw, + dw,.
2)d(w A @) =dw A p(-1)?w A do, where p is the degree of the form w.
3)ddw = 0.

A differential form w is said to be closed if dw = 0, and exact if w = dg for
some form @. The set of closed forms of degree p is denoted by Z?( X), and the
set of exact forms of degree p by B?(X). By properties 1) and 3) of the
exterior differential, Z?( X) is a subgroup of the group €7(X), and Bf(X)isa
subgroup of Z?(X). The factor group Z?(X)/B?(X) = HP(X) is called the
p-dimensional cohomology group of X, and its elements are called cohomology
classes. Two closed forms », and w, belonging to the same cohomology class
are said to be cohomologous (v, = w,). Their difference w, — w, is equal to dg
for some form ¢ € 27~ (X). A mapping

[ X->Y (5)
of manifolds induces homomorphisms
far(Y) - Qr(x), f*H/(Y) - HY(X),
defined as follows. If (x,,..., x,,) and (y;,..., y,,) are local coordinates in the

neighborhoods U, and V, of the points @ € X, b = f(a) € Y and the form
w € @2(Y) is represented in ¥, by the expression

w= Y ' ai,mi,,()’) dy, A A &,
p

| TP

then in U,

.....

(It is assumed that (5) is a mapping of class &>, i.e., local coordinates
Y1»- - -» Yy are infinitely differentiable functions of the local coordinates x;,...,
x,.) It can be shown that d e f= fod. Consequently, f maps Z”(Y) into
ZP(X) and B?(Y) into BP(X) and, thus, determines the homomorphism f*.

In the case of a complex analytic manifold we usually consider forms with
complex coefficients, and in place of the differentials dx f and dyj, j=1...,n,
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we take the linear combinations dz; = dx; + idy, and dz; = dx; — i dy; (z; = x;
+ iy;) of them. A form w is said to be holomorphic if it does not contain terms
withdz, j=1,..., n, and its coefficients are holomorphic functions of z,,...
z

-

1.3. Singular chains. Homology. Let us consider integration of differential
forms over multidimensional oriented surfaces. It is most convenient to repre-
sent the surface of integration in parametric form, with the orientation given
by the order of the parameters. To be able to apply algebraic topology we
assume a partition of the surface into parts: singular simplexes or cubes. A
smooth singular simplex of dimension p on a differentiable manifold X is
defined to be a pair 9, = (4, g), where 4, is a rectilinear simplex in R”, say
A,={t€RP:1;>0;Xft;< 1), and g: A, — X is a continuously differentia-
ble mapping. We write (4, g) = (4}, g") if there exists a diffeomorphism (a
differentiable homeomorphism) ¢: A, = A’ with positive Jacobian such that
g’ @ = g. Thus, g, is determined to within a parametrization. The simplex o,

is assigned an orientation determined by the order of the coordinates ¢,..., ¢,
in R?. If other coordinates 7,,..., 7, are chosen in R?, then they determine the
same orientation if 9(¢)/3(7) = 3(¢y,..., 2,)/3(m,..., 7,) > 0, and the oppo-

site orientation if 9(¢)/9(t) < 0. The 51mplex w1th the opposite orientation,
is denoted by —o,. A finite linear combination

c, = Zm A (6)

of oriented singular simplexes, where the m, are integers, is called a singular
chain or simply a chain. Chains can be added and multiplied by integers
termwise. The set of singular chains thus forms an abelian group C,( X).

The set |g,| = g(4,) is called the support of the simplex o, = (4, g), and
the set |c,| = U[o(')l is the support of the chain (6). If A‘,;’ yisa(p— 1)
dimensional face of the simplex A,, i=0,1,...,p, then the (p - 1)-
dimensional singular simplex o2, = (A}),, g|A%}. ) is called a face of the

p-D
simplex ¢,. We choose a coordlnate system (?),...,7,) =1 in R? that de-
termines the orientation of o, so that the face A} | hes in the plane 7, = 0, and
<0 at points 7 € A,. Then the parameters tz, , 1, determine an orienta-

tion of o2, that is coherent with the orientation of a,. The boundary of the
simplex o, is defined to be the sum of its coherently oriented faces:

Z 0(l)

The boundary of the chain (6) is defmed by the formula
dc, = Zmiao;").
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We have the property
ddc, = 0. (7)

A chain y € C,(X) is called a cycle if 3y = 0. The relation (7) means that
the boundary of a chain is a cycle. Let

Z,(X)={yeC(X):3y=0}, B,(X)={y=0dcce C,+1(X)).
The factor group
H,(X)=Z,(X)/B,(X)

is called the p-dimensional homology group of X. Two cycles y, and v, belonging
to the same element (homology class) of the group H,(X) are said to be
homologous (v, ~ v,). If Y € B,(X), then y ~ 0. A cycle v is said to be weakly
homologous to zero (y = 0) if ky ~ 0 for some integer k. The factor group of
Z,(X) by the subgroup of cycles weakly homologous to zero is called a weak
homology group. In the cases of interest to us it coincides with H,(X), and we
denote it also by H,(X). If H,(X) is a finitely generated group, then its
dimension (the number of independent generators) is called the p-dimensional
Betti number of the manifold X. A system {y;} C Z,(X) is called a p-dimen-
sional homology basis if each cycle Yy € Z,( X) can be uniquely represented in
the form y = ¥; my;, where the m; are integers. The mapping (5) of manifolds
induces a homomorpmsm [ G (X ) = C,(Y) defined by specifying it on
singular simplexes o, = (4, “g)in X as follows o,) = (A f ° g). Obviously,
de f=fed. Thus, (5) mduces a homomorphism f . (X ) = H,(Y) of the
homology groups.

Other definitions of homology groups, definitions equivalent to those pre-
sented here in the case of manifolds, along with methods for computing them,
can be found in the books [216], [230], and [80].

1.4. Integration of differential forms over chains. The integral of a form
w € Q7(X) over an oriented singular simplex 6, = (A, g) is defined by

j;w =jA (w) =fm lA(z)dzl c-dy, (8)

where g(w) = A(¢) dty A --- A dt, is a form on A, C R?; if the form « has
the expression (1), then

40 = 2 Gy (x(2) - H
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The last integral in (8) is understood as an ordinary p-fold integral in R?. The
integral of a form over the chain (6) is defined by

j;w=Zm,- w. 9)

(i)
%

REMARK 1. We often parametrize a chain (surface of integration) in the
large, without partitioning it into simplexes. In this case the integral is
computed by a formula like (8), and then (9) becomes a consequence of the
additive property of a multiple integral.

THEOREM 1 (change of variables formula). If f: X — Y is a mapping of
manifolds, andy € C,(X) and w € QF(Y), then

./;f(w) =ffmw. (10)

In view of (9), it suffices to prove this for the case wheny = 0, = (4, g) is
a simplex. Then

J )= [e(r() = [ ga(/G) = [ o(£(s())
and

[.o=f, . o= [ (fra)e)= [ o(s(s(0)).

COROLLARY 2. If f: X — Y is a homeomorphism, then

/w - [(v)f_l(w)'

Y

REMARK 2. Theorem 1 enables us to make a change of variables in fw when f
is not a homeomorphism, but either y = f(Y') or w = flw).
1.5. The general Stokes formula. Integration by parts.

THEOREM 3. If w € @7~ '(X) andy € C,(X), then Stokes’ formula holds:
w=[do. (11)
Jo=],

COROLLARY 4. Ify € Z,(X) and w € B?(X), then

fw=0,

Y

i.e., the integral of an exact form over a cycle is equal to zero.
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Indeed, w = do for some ¢ € 277 '(X) and dy = 0, so, by Stokes’ formula,

j;w=/;dcp= ach=0.

COROLLARY 5. The integral of a closed form over a cycle weakly homologous to
zero is equal to zero.

Indeed, if dw = 0 and ky = dc, where ¢ € C, (X)), then

fw=%/kdw=71(-j;cw=%j;dw=0.

.
COROLLARY 6. If Yy = v, (¢ycles) and w = w, + d¢ ( forms), then

fyw=j;lwl.

Thus, the integral of a closed form w over a cycle y depends only on the
weak homology class {y} € H,(X) to which y belongs and the cohomology
class {w} € HP(X) containing w. It is therefore possible to define the integral
of a cohomology class {w} € H”(X) over a homology class {y) € H?(X) by
the equality f,,{w} = [, @.

As a special case of Corollary 4 we have

COROLLARY 7. If w is a holomorphic form of degree n on an n-dimensional
complex analytic manifold X, and o is an (n + 1)-dimensional chain in X, then
f da W= 0.

It suffices to show that  is a closed form. In local coordinates z = (z,,...,
z,,) the form w can be written as
f(z)dz=f(z,...,2,)dz; A -+ A dz,,

where f is a holomorphic function (3f/92; = 0 for j = 1,..., n; see [202] and
[5]). Then

do=dfAdz, A---Ndz, = Y, ﬂdzj/\dz,/\-'-/\dz,,=0,

P 9z,
because dz; A dz; = 0.
For X = D c C" we get
THEOREM 8 (Cauchy-Poincare). Suppose that the function f(z) = f(z,,..., z,)

is holomorphic in a domain D C C". Then for any (n + 1)-dimensional chain o in
D

ff(z)dz=ff(z,,...,z,,)dzlf\---/\dz,,=0.
do do
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The following formulas for integration by parts are a consequence of Stokes’
formula and the property 2 of the exterior product.

PROPOSITION 9. If @ € QP(X),y € Q9(X),andy € C,, . (X)), then
doAv=[ oAV —=(-1)"[o Ady.
Jdony=fonv-Cv7f
Ify € Z,, ;4 \(X), then
fdtp/\¢=(—l)P_lfq)/\d\lJ.
Y Y

PrOPOSITION 10. If f(z) and @(z) are holomorphic functions in a domain
D c C"andy € Z,(D), then

f 39
=@ -dz=-|f--dz, 12)
Y azj fY azj (

gmit e +m,

AT Lyt [, 8T
fyaz;nl - 9z™ ¢-dz=(-1) ,/;f Az - 3Z'rlnndz' (13)

Equality (12) follows from Stokes’ formula and the equality

A0 dn A ) nde) = (o152
z; 0z !
where [j] means that dz; is omitted in dz; A --- A dz,. The equality (13)
follows from (12).
§2. Elements of the general theory
of multidimensional residues

2.1. The subject of the theory. In a narrow sense, the main problem of the
theory of multidimensional residues is the study and computation of integrals
of holomorphic functions of n complex variables (') over n-dimensional cycles
(closed n-dimensional surfaces) in the domain of regularity of these functions.
In a broad sense, it is the computation of integrals of closed differential forms
over cycles on a complex analytic manifold. It is common to consider integrals
of forms having singularities on an analytic set of codimension 1 (such a set
can be given by an equation g(z) = 0, with g holomorphic, in a neighborhood
of each of its points).

The corollaries of Stokes’ theorem permit us to replace an integral of a
closed form over a cycle by an integral of a simpler form cohomologous to the

(") More precisely, of holomorphic forms of degree n.
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given one over a simpler cycle homologous to the initial one. From Corollaries
S and 6 of §1 we have

PROPOSITION 1. Let (Y} be a basis for the p-dimensional homology of a
manifold X, and let w be a closed form of degree p on X. Then for any cycle
Y € Z,(X)

/;w = ij];w, (14)

where the k; are the expansion coefficients of y in the basis {y;): Yy = L kY.

The problem of computing the integral of a closed form over a cycle thus
reduces to: 1) a study of the homology group of the manifold X (determina-
tion of its dimension and construction of a homology basis); 2) computation
of the integrals over the basis cycles; 3) determination of the expansion
coefficients of the cycle of integration in the basis. Unlike in the one-dimen-
sional case, the solution of these problems for the multidimensional case
involves considerable difficulties. Below we present some methods and results
enabling us in many cases to solve these problems completely or in part.

2.2. Application of Alexander-Pontryagin duality.(*) We give some facts from
algebraic topology (see [152] and [6]). Let X be an n-dimensional orientable
manifold with fixed orientation determined by the order of the local coordi-
nates (x,,..., x,), and let v, = (A,, @) and u, = (A, ¥), r + ¢ = n, be singu-
lar simplexes in X having a common point x© “interior” to both simplexes
and being “in general position” at this point. Then the intersection index of the
simplexes v, and u,, is defined by

a(x,..., x,)
a(:l,..., Ly Tyseees 'rq) x“’)’

where (x,,..., x,) are local coordinates in a neighborhood of the point
x@e X, and (1),...,1,) and (7,...,7,) are coordinates in R" D A, and
R?> A, determining the orientation of the simplexes v, and u, (to say that v,
and u, are “in general position” at x© means that the Jacobian in (15) is
nonzero). If |u,| N |u | = @, then we set x(v,, u,) = 0. The intersection index
of two chains ¢, = I, n,0” and [, = £, m u{) is defined by
x(c. 1) = Zn,mjx(v,“), uf,f)).
L

x(v,, u;) = sgn (15)

(%) The idea of applying Alexander-Pontryagin duality is due to Martinelli, who used it in
generalizing the Cauchy integral formula to holomorphic functions of n complex variables and to
(n + I)-fold integrals, where 0 < / < n — 1 [152]. On the initiative of V. K. Ivanov this idea was
developed by the author for multiple residues in [237], [238], and elsewhere.
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The linking coefficient of two cycles o,_, € B,_,(X) and v, € B (X) such that
r+ g=nand|o,_,|N|y,| = & is defined by

B(0,_1,¥,) = x(c,v,) = (-1)"x(0,-1, 1p41),

where dc, = o,_, and 9/, | = v,.
The linking coefficient does not depend on the choice of the chains ¢, and
I,+1- We note the following properties of the linking coefficient:
DB(o,_1,Y,) = (-7 V71B(y,, 0,_y).
2) B(m0, + my0,,Y) = m;B(0y,Y) + my;B(0y,Y).
3)If o = 0in X\ |y, then B(o,y) = 0.

THEOREM 2 (Alexander-Pontryagin duality). Let S" be an n-dimensional
spherical manifold (a space homeomorphic to a sphere) and let T be a compact
polyhedron (3) in S". Then the weak homology groups H,_ (T) and H (S"\T)
are isomorphic for r,q > 0, r + q = n. Moreover, for every basis o,,..., o, of
the (r — 1)-dimensional homology of the polyhedron T there exists a correspond-
ing dual basis v,,. . ., Y, of the q-dimensional homology of the set S" \ T such that

1, i=j,
%((’)’Yi) = 6]1’ = {O, i :#j-'

Let us apply Theorem 2 to the problem of computing the integrals (14). In
Proposition 1 we set X = D = C"\ T, where T is the singular set of the form
w. Since the space C" = R?" is homeomorphic to the 2n-dimensional sphere
with a “deleted” point, C" can be regarded as imbedded in the spherical space
§2" = C" U {(0)). The exterior of any ball in C" is a neighborhood of the
point (co0) in it. If T = T U {(o0)} is a polyhedron in S*", then Theorem 2 can
be applied to T and S2"\ T = C"\ T (it is sometimes expedient to replace C"
by a domain B € C”" homeomorphic to a ball; then we can supplement B to
form the spherical space S2" by identifying the boundary 9B with a single
point). To find the g-dimensional Betti number of the domain D (the dimen-
sion of the group. H (D)), it now suffices to find the dimension of the group
H,_(T), where T = T U {(0)}, r + ¢ = 2n. Instead of a g-dimensional basis
{v;){ for the homology of D we can construct an (r — 1)-dimensional basis
{0;}f for the homology of the singular set T. The expansion coefficients {k;}{
for the integration cycle y € Z (D) in the basis {v,) dual to {o;) are found as
the linking coefficients:

P p 14
SB(",',Y) = %(oj’ Z kiYi) = Z kiSB(Oj’ ) = Z kiaji =k;.
i=1 i=1

i=1

(®) 5" admits a triangulation in which T is a subcomplex, i.., consists of finitely many
simplexes.
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To find the integrals of the form w over the basis cycles v; it is also not
necessary to determine directly the basis (;} dual to {g;}. For this it suffices to
choose p homologically independent g-dimensional cycles I'y,..., I, in D over
which the integrals of w are as simple as possible. Then the integrals over the
basis cycles can be found from the system of linear equations

fw E,l j;iw, ji=1..,p,
where kj; = B(o;, I), and det||k;|| = 0 is the condition for the cycles I}
(j= 1,. .., p) to be homologically mdependent.

Nowletg=r=nand w = f(z) dz = f(z,..., 2,) dz, A --- A dz,, where f
is a holomorphic function in D. The foregoing arguments and Proposition 2
then gives us

THEOREM 3 (on residues). Suppose that f(z) is a holomorphic function in the
domain D = C"\ T, and the set T = T U {(x)} is a polyhedron in the space C",
completed to form the sphere S*" = C" U {(0)} by a single point () at infinity.
If {0;}{ is a basis for the (n — 1)-dimensional homology of the singular set T, and
{Y;)f is the corresponding dual basis for the n-dimensional homology of D, then
for any cycley € Z,(D)

fo(z) dz = (2mi)" é kR,

where
k;=8(g,v),

R, = ff(z)dz j=1,...,p.

/ (2m)

By analogy with the one-variable case, R; can be called the residue of the
function f(z) with respect to the basis cycle ;.

Application of Alexander-Pontryagin duality is especially efficient when
n = 2, because in this case the study of the two-dimensional homology group
of a domain in R* reduces to the study of the one-dimensional homology group
of a two-dimensional surface.

EXAMPLE 1. Let f(w, z) be an entire function in C?, and m and n relatively
prime integers. Then for any cycle y € Z,(C?\ T), where T = {(w, z) € C*:
aw™ — bz" = (), we have

[£(w, 2)/(awm — bz") dw A dz = 0.
Y
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Indeed, the set T = T U {(o0)} is homeomorphic to the two-dimensional sphere
S%, and H,(S?)=0. Consequently, H,(C2\ T)=0. It remains to use
Corollary 5 in §1.

EXAMPLE 2. Let T = {(w, z) € C:: wz — 1 = 0). Then the set T = T U {())
is homeomorphic to the two-dimensional sphere with two points identified (the
points at z = 0 and z = oo are identified with the point (o0)). Consequently,
the dimension of the groups H,(T) = H,(C*\ T) is equal to 1. As dual basis
cycles we can take

o={(w,z)€C:Imz=Imw=0,Rez>0,wz =1} € Z,(T)
and
v={w=ld=2 e z(c\T).
Obviously, B(o,y) = x(c,y) =1, where ¢ = {(w, z): |w| < 2,|z| = 2). The
residue of the function f(w, z)/(wz — 1), where f is an entire function, with
respect to the cycle v is
R = 1 ff(w,z)dw/\dz= b 1 ffdw/\dz
(2mi)* wz =1 k=0 (2mi)* % )e!
_ v _ 1 9%%(0,0)
k=0 (k!)z awkazk ’

(wz

See §3 below for further examples. Residues of arbitrary rational functions
of two variables are considered in [237] and [239] with the use of Alexander-
Pontryagin duality.

2.3. Application of de Rham duality. Instead of Alexander-Pontryagin duality
it is sometimes convenient to use de Rham duality according to an analogous
scheme.

THEOREM 4 (de Rham duality) [184], [142]. For any homomorphism v:
H,(X)— C', where X is a differentiable manifold and C' is the group of complex
numbers, there exist a unique element h* = {w) € H?(X) (here H?(X) is the
cohomology group of complex-valued differential forms on X) such that [, h* =
fy = N(h) for any h = (y) € H,(X).(*)

The de Rham theorem and Stokes’ formula (11) give us the following
important corollaries.

COROLLARY 5. A cycle y € Z,(X) is weakly homologous to zero (y = 0) if
and only if [, w = 0 for any form w € ZP(X).

(*) We observe that any closed form w € Z7(X) (its cohomology class {w) € H?( X)) de-
termines a homomorphism \: H,(X) — C' by the equality N(h) = [, {w).
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COROLLARY 6. A closed form w € Z,(X) is exact if and only if Jy@ =0 for
any cycley € Z,(X).

COROLLARY 7. If the condition detl|a; || # O holds for the cycles v; € Z,( X),
j=1,..., g, and the closed forms w; € Z?(X),j = 1,..., q, where a, = [, w;,
and if any form w € ZP(X) has a representation w = L c;w; for some complex
numbers c|,..., oo then the cycles v,,..., Y, make up a basis for the p-dimen-
sional homology, and the forms w,,..., w, make up a basis for the p-dimensional
cohomology of the manifold X.

The bases (v;){ and {w,){ are said to be dual in the de Rham sense if
fyj Wy = 8jk'

THEOREM 8 (on residues). If vyy,..., Y, is a basis for the p-dimensional
homology, and w,,.. ., w,isa basis for the p-dimensional cohomology of X that is
dual to the former basis in the de Rham sense, then for any cycley € Z,(X) and
any closed form » € Z?(X)

where N, = [, w; are the expansion coefficients of the cycle y in the basis {;}, i.e.
y=ZX;Ny,andR; = j,,j w is the residue ( period) of the form w with respect to
the basis cycle ;.

In function theory, as a rule, we deal with domains of holomorphy in C" and
their generalizations—Stein manifolds (see [79], [202] and [5])—so it is useful
to bear in mind the following theorem of Serre.

THEOREM 9 [79). If X is a Stein manifold (in particular, a domain of
holomorphy in C"), then for any closed regular form w € ZP( X) there exists a
form cohomologous to it that is holomorphic in X.

Thus, in the de Rham theorem and its corollaries the form w € h* € H?(X)
can be assumed and be holomorphic in the case of a Stein manifold.

COROLLARY 10. If X is a Stein manifold of complex dimension n, then
HP(X)=H,(X)=0forp>n.

ExaMPLE 3. The form

w, = 1 iz- where.d—z-=gz._l/\ .« /\ dz"
Yo@m)" 2 z oz z,’
and the cycley, = {z;| = --- =|z,| = 1) make up dual bases for the n-dimen-

sional cohomology and homology in the domain D = C"\{z, --- z, = 0).
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Indeed, since D is a domain of holomorphy, any form w € Z*(D) is by
Theorem 9 cohomologous to a holomorphic form, which can be expressed by
f(z) dz, with f a holomorphic function in D. The function f can be expanded
into a multiple Laurent series in D:

f(Z) = Zcuzu = Z Cu,mu,,z;‘l e Z:".
[\ [ TR a®,=-00
Ifa=(a,...,a,)=-I=(-1,..,-1), for example, a; = 1, then
CZ%dz =d| — o 12;" ezt g dzy A ee- [G]ee Adz, | = 0.

Thus, w = f(z) dz = c_;(dz/z). Obviously, it remains to apply Corollary 7.
See [240], §13, for other examples of the use of de Rham duality.

24. The Leray theory of residues ([142], [171]). Froissart’s decomposition
theorem [127]. Let X be a complex analytic manifold, and S a complex analytic
submanifold of it with codimension 1 (its dimension is smaller by 1). We shall
define the coboundary homomorphism

8:C,(S) = C,, (X\ S). (16)

To do this, we assign to each point z € S an oriented curve 8z € X\ S
homeomorphic to a circle, in such a way that the following conditions hold:

a) 8§ = U .8z is a smooth surface.

b)IfzM = 2@, then 8V N 6P = @.

¢) In some neighborhoods U, of a point a € S there exists a local system of
coordinates z|,...,z, in which SN U, =(z, =0} and da = {|z,| = ¢, 2, =

- =z, = 0}, where ¢ is a sufficiently small positive number.

It suffices to define the homomorphism (16) for a singular simplex o,. It can
be assumed that |o,| C U,; otherwise, we break up o, into finer simplexes. We
set dg, = U ze0, 3,, thh the corresponding onentauon (80, is homeomorphic
to (|z,| =g} Xo ) Obv10usly, 0d0, = —dd0,. Consequently, (16) induces ‘a
homomorphism 6 H,(S)—- H,, l(X\ S).

Further, suppose that the form »w € ZP(X\ S) has a first-order polar
singularity on S. This means that in a neighborhood U, of an arbitrary point
a € S the form w(z) - s(z), where s(z) is a holomorphic function defining S in
U, (SN U, ={z: 5s(z)=0}), can be extended to a regular (of class &%)
function in U,. The form w has a representation

o(z) = ———‘P(Z)S(Az‘)’s(z) +0(2)
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in U,, where ¢ and 0 are regular forms in U,. The form ¢| ., is closed and
does not depend on the choice of the local coordinate system and the function
s(z) defining S in U,. The form res[w] € Z?~!(S) defined locally by the
equality res[w], = Plsn y, is called the residue form of the form w.

THEOREM 11 (Leray residue formula). If Y € Z,_,(S) and the form » €
ZP(X\ S) has a first-order polar singularity on S, then

fa w=2m’fres[w]. (17)

Y Y

THEOREM 12 (Leray [142]). For every form w € ZP( X\ S) there exists a form
&» € {w) € HP(X\ S) having a first-order polar singularity on S.

The cohomology class {res[w]) € H?~'(S) is called the residue class of the
cohomology class {w) € HP(X\ S) and denoted by Res[w]. The mapping
Res: HP(X\ S)— HP'(S) is a homomorphism. From (17) we get the
formula

fayw = Zﬂi./‘:Res[w].

Let S,,..., S, be complex analytic submanifolds of codimension 1 which are
“in general position”. The latter means that at any pointa € §; N --- N S,
{Js++-sJy ©{1,..., k), the vectors grad s;(z)|,, j = jis-..,J,» Where s,(2),
where s(z) is a holomorphic function defining S; in a neighborhood U, of a
(e, S; N U, = {s;(z) = 0)), are linearly independent. We define the multiple
coboundary homomorphism

8k: Hp(sl Nn---N Sk) —)Hp‘fk(X\Sl U--- v Sk)
as the composition of the homomorphisms :
8
H (SN NS8) > Hy (SN NS\ Sy)
8 )
= Hyg (SN U U S ) = Hy (XN S U - U Sy).

The multiple residue class Res* is defined as the composition

HPHR(X\ S, U -+ US,) SHP(S,\ S, U US,)

R
- S HPPY(S, NN S \S) S HP(S, NN S,).
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For a form w € ZP*K(X\ S, U--- U S, )andacycley € Z,(5, N --- N S})
we have the Leray multiple residue formula

fsky‘“’ = (Zﬂi)kj;Res"[w]. (18)

An algorithm is given in [142] (Chapter VI) and in [171] (Chapter III, §4.3) for
determining the residue class for semimeromorphic forms (i.e., forms having
polar singularities on the submanifolds S;,..., S;).

THEOREM 13 (Froissart decomposition theorem [127]). Let Z,,..., 2,, and
So> Sis---» S be two families of complex (n — 1)-dimensional submanifolds of
the complex projective space CP" which are in general position, with S, = CP"~!
a complex hyperplane at infinity, CP"\ Sy = C", and X = C" N (N T Z)).
Then

H (X\(S;V---US§))= he(l@ k)SIhIHq—IhI(Xﬁ (JQhSJ))

k
= H,(X) ej@lqu_l(sj) @ @ ¥¥H ,(XxnsnS§)e---,

1<i<j<k
where |h| is the number of elements in the set h, and © is the direct sum symbol.

Froissart’s decomposition theorem shows that in sufficiently nice cases every
cycley € H (X\ §; U -+ U S,) can be represented as a sum of coboundary
cycles such that the integrals over them reduce (by the Leray residue formulas)
to integrals over cycles of lower dimension on submanifolds.

§3. Local residues of certain meromorphic functions

We apply the results of the preceding section to compute the residues of
certain meromorphic functions with respect to cycles lying in a sufficiently
small neighborhood of the singular set.

3.1. The case n =2 [239] (application of Alexander-Pontryagin duality).
Consider the integral

/ F#:2) 4o n i, (19)
rg ( w, 2z )

where f and g are holomorphic functions in a domain D ¢ C2, T € Z,(U\ T),
T = {(w, z) € C?% g(w, z) = 0}, and U is a sufficiently small neighborhood of
apoint (a, b) € T. We assume that (a, b) = (0, 0). According to the Weierstrass
preparation theorem [202], g can be represented in the form g = % - Q in some
neighborhood U of (0, 0), where P(w, z) = w™ + a,(2)w™ ' + --- + a,(z) is
a Weierstrass polynomial, with a;(z) and £(w, z) holomorphic functions such
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that a;(0) = 0 and 2(0,0) = 0. The Weierstrass polynomial ¥ can be decom-

posed into a product of irreducible Weierstrass polynomials: @ = ' - - - F/x,
where
P (w, z2)=1T1 [w——w(sm ,-z)], s,,,j‘,=e2'“““/’"/,
wi(z) = Z bjnz"/™. (20)
n=ng

The series (20) can be found with the help of a Newton diagram (see [45]).
Note that only finitely many terms of this series are required.

The irreducible polynomial &; defines a surface T, = (z € U: 9,(z) = 0} in
U that is homeomorphlc to a dxsk (m-sheeted over the z- plane) The set
TNnU= U T, is thus homeomorphic to k disks with centers identified. We
complete U to form a four-dimensional sphere by identifying its boundary oU
with a single point Q. According to Theorem 2 in §2, we then have H,(U\ T)
= H/(T), where T = Uk 1 Tj, T T; U {Q). The set T is homeomorphic to k
two-dimensional spheres with two common points ((0,0) and Q). It is easy to
compute (for example, with the help of the Euler-Poincaré formula; see [80]
and [216]) that the dimension of the group H,(7) is k — 1. In particular,
H,(U\T)=H(T)=0fork = 1.

We construct dual bases for the groups H,(7) and H,(U\ T). Let ¢ ' be an
oriented curve on 7; joining the point (0,0) with @ = 9U N T, for example,
t;={(w,z): z—¢,w—w(1),0<1 TosJ = 1,..., k). We take o, =1, — 1,
e Z(D, j=1,..., k-1, and, respectively, Y, = {(w, z): z=¢-e'% w=
w;(ee'® + 3e”), 0 S@<2mm;, 0<8<2m), j=1,..,k— 1 For ¢ suffi-
ciently small and 0 < 8 < ¢ we have y; € Z,(U\ T). It is easy to verify that
B(9;, Y,) =8, j, s = 1,..., k — 1. Thus, {0,)f~" and (y;)™"' form dual bases
in T and U\ T (see §3.2).

A residue with respect to a basis cycle can be found by repeated application
of the residue formula for functions of a single complex variable with respect
to a pole:

fawndz _ 1 faw A dz
j dz r T
j (21’”)2 '[{, (2.,”')2 f-ge'v jl‘w—w,(z)'-a G*?II cee G_Pk"ﬂ

=m, 1es 1 vt (1 (W— wj(z))"
fz=0 (':I - 1)! own ! Q- @1’1 @’:k

z

w=w;(z)
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3.2. The case n > 2 (under certain additional assumptions). Consider the
integral

/’f(l) /f(zls ’z)dz,/\---/\dz,,, (21)
re@“ T g(zy,...
where f and g are holomorphic functions in a domain D c C*",T' € Z (U\ T),
T ={z € D: g(z) = 0}, and U is a sufficiently small neighborhood of a point
a € T (it can be assumed that a = 0 = (0,..., 0)). We examine the case where
g= g{'l N gl?" gJ(O) =0, and
a(gjl,..., gj,.)
A(zy50--5 24) |,

for any collection { j,...,j,} € {1,..., k).

By our assumptions, for any # functions g;,..., g; amongg,..., g, there
are functions ¢,..., ¢, that are holomorphic in a sufficiently small neighbor-
hood U of 0 and such that ¢;(z) = 0 in U and

g(2) =g;(2)o(z) + -+ + g, (2) o, (2).

For this, it suffices to make the substitution §, = g;(z), v = 1,..., n, expand
g, in a series in powers of §,,..., {,, and regroup. Then in U

-y [v“i"_. . (22)

& - gj.. v=1 & ° * 8,8k

=0

Using representations of this form sufficiently many times, we represent the
fraction 1/g in the form

1 - Z \Pu.B
g{l oo gl’c'k o« B gEll N gg:

where a = (a,..., o,y € {1,..., k), a, =k, B =(By,..., B,), and B, +
B, = r + -+ + r.. Thus, computation of the integral (21) reduces to computa-
tion of integrals of the form

— %.a(z) dz
“P frgﬁ.‘(Z) - gh(z)’

In precisély the same way as in Example 3 of §2 it can be shown that the
cycle

(23)

Yo={z€ Ui g, (2)]= -+ =g, (2)]=¢),
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where ¢ is a sufficiently small positive number, and the form

o oL GBa A N,
* (Zﬂl)n 8a, " &a,

make up dual (in the de Rham sense) bases for the n-dimensional homology
and cohomology of the domain U, = U\T, U --- U T, ,where T, ={z € U:
g;(z) = 0). Consequently, in U, we have I' ~ k,y,, where k, = [rw,. Then the
integral (23) is

=f \l"u.B dgul A A dgu,,
“P U (3(g,)/8(2))gl -+ g

k, Qb1+ +Byn Vo p
(By=1)! - (B, — )! awP—' --- awh! | 3(g.)/3(2)

3
©

where w; = g,.(2),j = 1,..., n(w = g,(2)).

3.3. Residues of meromorphic functions with linear singularities (the case of
general position).(*) We consider an integral of the form (21), where f is an
entire function, g = g - -+ g, 8,(z) = Lia;,z, + b; (linear functions such
that the analytic planes S; = {z € C": g,(z) = 0}, j = 1,..., k, are in general
position), and I' € Z (C*"\ S, U -+ U §,). Theorem 13 of §2 is applicable
under our assumptions. Since H,(C") = 0 and H,_,(S; N --- N Sjp) = 0 for
P < n, it follows that

H,(C"\ 5, U---US,) = @ 3"Hy(S,, n--- NS, ),
x€A

where 4 is the set of n-tuples a = (a,..., @,) €{1,..., k} for which S
N---NS§, = @.Since§, N---NS, =a,isa point for a € 4, the cycles
Yo = 0"a, = {|8,,(2)| = + - =8, (2) =¢), a €A, where ¢ is sufficiently
small, form a basis for the n-dimensional homology of the domain C”\ §,
U --- U §,. Obviously, the forms

1 dgy A - Adg,
T (2m)" 8 " 8,

W s a €A,

(%) See [238] for the arbitrary case.
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make up the dual n-dimensional cohomology basis. The residue of the form
w=(f/g)dz with respect to the basis cycle v, is

f 1 et ey
R (Zm) coe (ry, = 1)1A, 8gi! - Bl
[fg,,, -y

aa
where
0(&apr- -1 &a,)
o= et Bl et e

§4. Multidimensional analogues of the logarithmic residue

Just as the logarithmic residue is connected with the number of zeros of a
holomorphic function in the case of analytic functions of a single complex
variable, the multidimensional analogues of the logarithmic residue are con-
nected with the number of common zeros of a system of holomorphic func-
tions.

4.1. The multiplicity of a common Zero of a system of holomorphic functions.
The theorem on the logarithmic residue in C", connected with integration over the
whole boundary ([33], [157], [202], [243]). Suppose that a system of n holomor-
phic functions

wi=f(z)=f(z1,...,2,),  Jj=1,...,n, (24)
or, in other words, a holomorphic mapping w = f(z), f = (f,..., f,), is
defined in a domain G € C". A point a = (a,,..., a,) € G is called a zero of

the system (24) if f(a) = 0,j = 1,..., n(f(a) = 0). Let &, = {z € G: f\(2) =
- = f,(2) = 0} be the set of zeros of the system (24) in G. It is assumed that
&, is discrete and the Jacobian

0(f) _ 3(f1s---5 1)
az) 9(z,...52,)

is not identically zero in G. A zero a of the system (24) is said to be simple if

(B(f)/3(2))|, * 0.

PROPOSITION 1. Let U, be a neighborhood of a zero a of the system (24) such
that U, N (8 \{a))= 2. Then for any number ¢ > 0 there exists a point
§=Cpeens § ) 81 < e (€= (51> + - + [§,1>)"/?), such that the system

w=f(z) =8 =(fi(z) =%, fu(2) - %) (25)
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has only simple zeros in U,. Moreover, for ¢ sufficiently small their number does
not depend on the choice of §.

Under the hypotheses of this proposition the number of simple zeros of the
system (25) is called the multiplicity of the zero a of the system (24).

THEOREM 2 (on the logarithmic residue). Suppose that the system (24) of
holomorphic functions has a discrete set &, of zeros in the domain G C C", and
that 9(f)/0(z) £ 0 in G. Then the number of zeros (counting their multiplici-
ties)(®) of (24) in a domain D & G with piecewise smooth boundary 93D,
dD N & = &, is determined by the formula

N(f,D) = /a e(/(2), (26)

where

o(f) =V LS nd A ] A A,

(=)™ |f1P" ;2
(f1 = E&1£1%)'7?) is the Martinelli-Bochner kernel (see [5] and [202]).
THEOREM 3 (the Rouché principle). Suppose that the system (24) satisfies the

conditions of Theorem 2, while the system g = (g,..., 8,) of holomorphic
functions in G satisfies the inequality

lg(2)<lf ()l (orllg() <llf (2)l, where |l = max{f,.... £,}) (27)
on dD. Then the system

fre=(fit8 /ot 8n) (28)

of functions and the system (24) have the same number of zeros in D, counting

multiplicities.

LEMMA 1. Suppose that the conditions of Theorem 2 hold and neighborhoods U,
of the points a € &; N D are chosen in such a way that U, ¢ Dand U, N U, = &
fora=b,a,be & ND.Then

)= E e (29)

Indeed, it can be verified directly that the form w( f(z)) is closed and regular
in G\ &, We have

aD~ ) U,
aEtEfﬁD

(%) More precisely, the sum of the multiplicities of these zeros.
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because

oD- Y aU,,=a(D\ U U,,).

o€ 5/0 D a€e 5/0 D
Thus, (29) follows by Corollary 5 in §1.

LEMMA 2 (special case of Theorem 2). Suppose that the conditions of Theorem
2 hold and all the zeros of the system (24) in the domain D are simple. Then the
number of these zeros is determined by (26).

ProoF. Take U, to be the connected component of the set{z € G: |f(z)] < €)
containing the point a € 8, N D, where ¢ is sufficiently small. By assumption,
(3(f)/3(2))|, = 0, so the mapping (24) is biholomorphic in U, for ¢ suffi-
ciently small. Making the change of variables (24) and applying Stokes’
formula, we get

[etn=[  ww

n—1) 1 _ B . ~
= ((21")2 ~[|w|=5;,; j§ledW?/\ dWI A dwl Ao [j] e A dW" A de

— !
=(” D-L/ n-dw, Adw, A--- Adw, A dw,
lwie

2mi)" "
n! n!
= duy Aavy A -+ Adu, A dv, = ———V,,(¢g) =1, (30)
2" Jwi<e 2"

where V,,(e) = n"e2"/n! is the volume of the 2n-dimensional ball of radius e,
andw, = u, +iv;(j=1,..., n).(")
Lemma 2 follows from (29) and (30).

LEMMA 3. Under the conditions of Theorem 3,
[ o) = o(f+8). (31)
D D

PROOF. According to (27), |f(z) + 1g(z)| = | f(2)| — t]g(2)| > O(®) for z €
0D and 0 < ¢ < 1, so the form w(f(z) + tg(2)) is continuous on the compact
set 9D X [0, 1]. Consequently, the integral I(t) = [,, w(f + tg) is a continu-
ous function of ¢ on [0, 1]. But I(z) is an integer, because [y, w(f + 1g) =
Jer+1gyap @(W), (f + 18)dD ~ n(t) - {w € C™ |w| = 1} in C"\ {0} (the domain

(7) It is assumed that the orientation of the space C: = R?7 ,, is determined by the order of the
coordinates u,, vy,..., Uy, U,.
(®) The inequality ||g(z)l| < ||f(2)|| also implies that |f(z) + 1g(z)| > 0.
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of regularity of the form w(w)), where n(z) is an integer, and /|, w(w) = 1
(see (30)). Consequently, I(¢) = const. Then I(0) = I(1), i.e., (31) is valid.
PROOF OF PROPOSITION 1. By Sard’s theorem (see, for example, [184]),

measf({z € G: %%)l= }) =0.

Hence, for any ¢ > 0 there is a point { = ({,,..., §,), [{] <&, such that
0(f)/9(z) = 0 for any z € G N f~!(). The system (25) will have only simple
zeros in G for such a point §. If &€ < min, ¢y |f(2)), then &,_, N AU, = 2,
and, according to Lemma 3,

fww(f) =fww(f— ). (32)

By Lemma 2, the integral [, w(f — {) is equal to the number of zeros of (25)
in U,. The equality (32) implies that this number does not depend on the
choice of { if [§| < min, ¢y |/(2)]-

PROOF OF THEOREM 2. From the definition of the multiplicity of a zero and
from (32) it follows that the multiplicity of a zero of (24) is determined by

m, = [ e (/(2)). (33)

This and Lemma 1 give us Theorem 2.

Theorem 3 is deduced from Theorem 2 and Lemma 3. Here the discreteness
of the set 5f+ ¢ N D follows from the fact that f + g = 0 on 9D (the compact
analytic set &, , is discrete in the domain D C C").

ReMARK 1. Obviously, the multiplicity of a simple zero is equal to 1. It can
be shown that if (3(f)/3(z))|,=0,a € &, then the multiplicity m,, of a zero
of (24) is greater than 1.

THEOREM 4 (generalization of the logarithmic residue theorem). Suppose that
the system (24) and the domain D & G satisfy the conditions of Theorem 2, and ¢
is a holomorphic function in G. Then

[o(@e(s@) = T mo(a), (34)

a,eND
where m, is the multiplicity of the zero a, of (24).

PrOOF. Since ¢ is a holomorphic function and w(f) is a closed form
containing the factor dz = dz; A --- A dz,, it follows that ¢ - w(f) is also a
closed form. Similarly, (29) gives us

fw‘v-w(f)= 2z fauw-w(f), (35)

a,EE,ﬁD v
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where U, is the connected component of the set {z € G: | f(z)| < €} containing
a,, with ¢ sufficiently small. By the continuity of ¢(z), (33) implies that

lim [ e(e(f() =lm [ o(a)a(f() = ¢(a)m,.

e—=0 J3U,(e)

This and (35) give us (34).
4.2. Theorems on the logarithmic residue in C", connected with n-fold integrals
(1153], [202], [215], [243]).

THEOREM 5 (on the logarithmic residue). Under the conditions of Theorem 2
the number of zeros of the system (24) in the domain D is expressed by

_ qa _ dfi(z)  d(2)
N“D)(Z)f @m)Lnu " 9
where ' = {z € dD: | fo(z)| = - =|f(2)| = €}, with 0 < & < min, ¢y f(2)ll
and ||f|| = max{f,|,..., |f,)- The orientation of the cycle T is chosen to be
coherent with that of the surface (z € D: |f,(z)|= --- = |f,(2) = &), as de-
termined by the order of the parameters u,, v,and 9,,..., 6,, where f,(z) = u,
+iv, and f(z) =& - e, j=2,...,n, is the parametrization of this surface at

the points wzth 9(f)/9(z)= 0.
We also have the following modification of Theorem 5.

THEOREM 6. Suppose that the system (24) satisfies the conditions of Theorem 2,
and D is a connected component (a union of finitely many connected components)
of the set {z € G: |f(z) < ¢;,j = 1,..., n}, D @ G. Then the number of zeros
of the system (24) in D is determined by (36), where I' = {z € D: f,(z) = ¢;
j=1...,n}

THEOREM 7 (generalized theorem on the logarithmic residue). If ¢ is a

holomorphic function in the domain G, then under the conditions of Theorems 5
and 6 :

df(z) _
()7 = L mo(a), (37)
(2 ) f f(Z aveéfﬂD
where m, is the multiplicity of the zero a, of the system (24), and
df df] dfn
—_— /\ oo /\ —_
f f! fn

The next result turns out to be useful in applications.

THEOREM 8. Suppose that the system of functions (24), the open set D, and the
cycle T satisfy the conditions of Theorem 6, and the system

g=1(85--,8) (38)
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of holomorphic functions in the domain G satisfies on T the inequalities

If.(2) - g, (2)| <|f(2)| =95, J=1,....n. (39)
Then the systems (24) and (38) have the same number of zeros in D, counting
multiplicities. Moreover, for an arbitrary holomorphic function ¢(z) in G

o [eBE A A B T ), @)

g,,(z) b,eb,ND

where 53 is the set of zeros of the system (38), and m, is the multiplicity of the
zero b, € &,.

LEMMA 4. Under the conditions of Theorem 8 there is a number d, > 0 such
that if 0 < 8 <, then

T ~y(3)={z€D:|g(z)|= - =[g,(2)| =)
in the domain

Gg = G\{Z € G:gl(z) gn(z) = O)‘

PROOF. Let r; = max, ¢ 51f;(z) — g(2), j = , n. The inequality r; < p;
follows from (39) and the fact that the maximum modulus of a holomorphxc
function in the Weil polyhedron D is attained on its distinguished boundary T
(see [79], §15). Take &, = min{p, — ry,..., p, — I}, 8 < 8, and consider the
family of n-dimensional cycles T, = (z € D: |g,(2)| =8, j = 1,..., p;|£,(2)|
=p,v=p+ L...,n,p=0,1,..., n. Obviously, |I}| C G,, because g,(z) =
0 on I, by the choice of 8. We have I' =TI, ~ T}, ~ --- ~ T, = y(3) in G,.
Indeed I,-1I,,, =0B, where B,={z¢€ D: |gl(z)| =9, j=1...,p—
1;1g,(2) = 9, |j§,(z)| pp,|fv(z)| Py v=p+1...,n)C G, The lemma is
proved.

PROOF OF THEOREM 6. We enclose each point a, € & N D in a neighbor-
hood U, ceDwnhUnU @ forv = p. Take

0<e< min [f(z)]
D\u, ,
(note that f(z) = 0 in D/U U,). Then each connected component of the
cycle y(e) = {z € D: |f,(2)|= --- =|f,(z)| = ¢} falls in one of the neighbor-
hoods U,. Let

W=v()nU -y(e)= ¥ v,

a,€6ND
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We have I' ~ y(¢) in G, = {z € G: fi(2),.. fn(z) = 0}, since I' — y(¢) = 0B,
where B = (z € D: [f(z)| = et + p;(1 — 'r), 0t j= ., n). By the
Cauchy-Poincaré theorem,
af
- 4]
1.7 “n

v

(zm 5 s (zm)

If a, is a simple zero of (24), then the neighborhood U, can be chosen small
enough that the mapping (24) is biholomorphic in it. Then, making the change
of variables w = f(z), we obtain

af(z) _
e L 70 -y fm.-g (@2)

|W,,]—£

Let a, be a zero of multiplicity m,. By Proposition 1, there is a point { € C,

S|l < e, such that (25) has m, simple zeros in U,, namely, a,;,j = 1,..., m,.
According to Lemma 4 (with g(z) = f(z) - §),
v={ze U:1fi(2)|= - =If,(2)|=¢)

~v,(3) = {ze U |fi(z) =) =8, = 1,...,n}

in G,_, when 0 <& <& — |[{||. For 8 sufficiently small the cycle v,(8) splits
into connected components y,;,j = 1,..., m,, each of which lies in a neighbor-
hood Uj; of some zero a,; of (25) in which the system (25) is biholomorphic.
Using (42), we then get that

1 d(f(z)=%) _ 1 d(f-%)
(Z“i)"'/;v f(z)-¢ -‘(Z'rri)"j;,(s) f-%

UL dymy
ng (2'"")" '/;vj f=3 .

Passing to the limit as { — 0, we have

L_ 4. a(f - c)
(2mi)" f, §-’0 (211'1) fv (43)

Theorem 6 follows from (41) and (43).

Proor OF THEOREM 5. First of all, note that I' C G, under the conditions of
Theorem 5. Indeed, |f,(z)| = -+ =|f,(z)]=¢ > 0 and |f,(z)| > € > 0 at the
points of I, since || || > e on dD. Take D, = {z € D: |f(z)| <&, j=1,...,n)
and T} = (z € D: |f\(z)| = - =|f,(2)| = &). Obviously, D, N & = D N &,.
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We have I' ~ T in G, because I' — T, = 3B, where B = {z € D: |f,(z)| > &,
|f2(2) = -+ =|f,(2) = ¢). By the Cauchy-Poincaré theorem and Theorem 6,
applied to D, and T, this gives us Theorem .

Theorem 7 can be proved in the same way as Theorems 5 and 6. Instead of
(42) we then get

(2 )f () (2) (20 APC )2 = o(a,),

and instead of (43)

L/ d(f-%)
(2111) f ) (zm)"/“’ /=3

= 11m ‘él(p(an) m,-o(a,).

PROOF OF THEOREM 8. As we remarked in the proof of Lemma 4, |f(z) —
g;(2)] < p;in D. Consequently,

If(2) = () <lf ()] ondD =0, (z€8D:f(2) = p),

and, by Theorem 3 (see the remark in parentheses), the systems (24) and (38)
thus have the same number of zeros in D. Since (see Lemma 4) &, N D = &, N
D, for & < §,, where D; ={z € D: |g;(z)] <8, j=1,..., n), Lemma 4 and
Theorem 6 give us that

f ‘Pgr’ E myp(b),

v & be&,ND

(2m) fr‘ (2111)

i.e., (40).
§5. Application of the multiple logarithmic residue
for determining implicit functions
and inverting holomorphic mappings

With the help of the logarithmic residue for holomorphic functions of one
variable it is easy to derive the Lagrange expansion [236] (the Biirmann-
Lagrange expansion [202]) of a holomorphic function f(z) in a series of powers
of a variable { connected with z by the equation z = a + {{y(z). Similarly, the
multiple logarithmic residue can be used to generalize the Lagrange expansion
to the multidimensional case (see [88], [173] and [241]}; some generalizations are
obtained in [169], [196], and elsewhere without using residues). Such a generali-
zation is given below for arbitrary implicit functions.
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5.1. Generalization of the Lagrange expansion to systems of implicit functions
(]241), [242]). We solve the following problem. Suppose that

F(w,z), j=1..,n, (44)

and ®(w, z) are holomorphic functions of the variables w = (w,,..., w,,) and
z =(zy,..., z,) in a neighborhood of the point (0,0) € C/1"}, with
d(F) (Fy,..., F,)

F(0,0)=0’ j=1’.__,n’ — “\T1-v>7n) =0
’ a(z) (0,0) a(Zl,..., zn) (0,0)

It is required to find an explicit representation of the function ®(w, g(w)),

where z = ¢(w), ¢ = (®,,..., ¢,), 1S an implicit vector-valued function de-
termined by the system of equations

Fj(w,z)=0, i=1,...,n, (45)
in a neighborhood of the point (0,0) € C(.".}. In particular (for ®(w, z) = z)),

it is required to find implicit functions z; = @,(w),j = 1...., n, determined by
(45). We shall assume that

4F(0,0)

0z,

=8jk‘ j$k=15'-~sn, (46)

where 8, is the Kronecker symbol—otherwise, we replace (45) by the equiva-
lent system

azk

9F,(0,0) “‘ F,

The following theorems hold under these assumptions.

THEOREM 1. There exist numbers 8 > 0 and € > O such that in the closed
polydisk Vi = {(w > C™: Wl <8, j=1..., m) the function ®(w, @(w)) has
the integral representation

o5 = 5L [ 2008 & @)

(2mi)" Jr, F(w,{) ’

where F=F, --- F, I,={(¢€C" [|=---=[,=¢), and d{ = df,
A NS IfP(w, 2) =2, ) = 1,..., n, then (47) gives an integral represen-
tation of the implicit functions z; = @;(w) = @;(wy,..., w,) determined by the
system (45).



258 SUPPLEMENT. MULTIDIMENSIONAL RESIDUES

THEOREM 2. Let h(w) = (hy(w),..., h,(w)) be a system of functions holomor-
phic in a neighborhood of the point 0 € C™, h(0) = 0. Then in some neighbor-
hood of O the function ®(w, (w)) can be expressed by the following uniformly
and absolutely convergent function series:.

(Gl a(F)]
d w)) = b(w, 0P(w, , (4
i (W (P( )) Bgo 1 3z Py ( Z) ( )a( ) sy ( 8)
where B = (By,..., B,) is a multi-index, Bj >0, Bl=B,+---+B, B!'=8

o+ B0 /028 = 9Bl /(32D - - 3zBr), and 6P = 6P - 6,?", with 8,(w, z) =
F(w,z)—z + hi(w),j=1...,n

REMARK 1. It is most often convenient to take either h;(w) = 0 or 4;(w) =
—F}(w, 0).

THEOREM 3. In a neighborhood of the point 0 = (0,..., 0) € C™ the function
®(w, @(w)) can be represented by a multiple power series

o(w,p(w)) = Ldwe= X do W oow o (49)

a>0 Qiyonny a,=0
whose coefficients are determined by the formula
(_l)lﬂl lal+IBl (F) ]
d, = KL 5 s
a (Bl 2ol alf! gwedzP ( Z)g (w ) a( )

where g% = gb .-+ gl g(w,2) = Fi(w,2) —z;,j = l,..., n.

, (50)
©0)

ReEMARK 2. The coefficients (50) can be represented in integral form (see
(52)).

For n =1 formulas (48) and (50) can be transformed to a form more
convenient for computations.

PROPOSITION 4. Suppose that F(w, z), ®(w, z) and h(w) are holomorphic
functions of the variables w = (w,,..., w,,) € C™ and z € C' in a neighborhood
of the point (0,0) = (0,...,0;0) € C™*', with F(0,0)=0 and F!(0,0)= 1.
Then the function ®(w, @(w)), where z = @(w) = @(w,,..., w,,) is an implicit
function determined by the equation F(w, z) = 0 in a neighborhood of (0,0), can
be represented by the function series

o(w, p(w)) = ®(w, h(W))

S (1) 9!
+ Y ')

=1 Poogzk!

[®;(w, 2)0%(w, 2)]|.cnewy (48)
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where 0(w, z) = F(w, z) — z + h(w), and also by a power series of the form (49)
whose coefficients are determined by

1 aI% 0,0) B (-1k gkt
dy = ( ) Z (|)| an, k-1 [
kla! 3wedz

« " gl -

o, - gk]l(o,O)a (50')
where g(w, z) = F(w, z) — 2.

ProoF. Under the assumptions F;(0,0) = 0 and (46) it follows that the
Taylor series of the function g;(w, z) = F(w, z) — z; (j = 1,..., n) does not
contain a free term nor terms in the first powers of the variables z,..., z,.
Consequently, there exist real numbers ¢ > 0 and 8 > 0 such that|g (w, z)| <€,
j=1...,n forany wed; and z€ U, ={z€C" |z|<¢e,j=1,...,n)
Since the system of functions z = (z,,..., z,) has a unique simple zero (the
point 0 = (0,..., 0)) and the inequalities |g;(w, {)| < [{| = ¢ hold for w € V;
and §{ € T, it follows from Theorem 8 in §4 that for any w € Vj there is a
unique point z = p(w) € U, ={(z € C™: |z;| <, j = ., n) satisfying (45),
and the equality (47) holds by (40).

Moreover, the numbers ¢ and 8 can be chosen in such a way that the
inequalities |h;(w)| < e/2 and |6;(w, O =1g;(w,§) — h(w) <e/2, ie., the
inequalities [§; — A ;(w)|/16;,(w,{) < 1,j = 1,..., n, hold for w € V; and { €
T.. If we expand the fraction

1 1
W F T, [5 - h(w)][1 = 8w, ) /(8 = B, (w))]
_ 1
5 = R(w)I[1 - 0(w, )/ (§ — h(w))]

| —

under the integral sign in (47) in a multiple geometric series, which converges
uniformly and absolutely on ¥; X I, and integrate termwise, we get the
expansion

v P @(w, §)0P(w, §)(3(F)/3(5))
D(w, p(w
(v, 9(w)) z a7 A )] ds, (51)

where B + I = (B, + 1,..., B, + 1), or (48).
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To represent ®(w, (w)) as a power series we apply the Taylor expansion
with coefficients in integral form ([5}, [202]) to (51) for A(w) = 0. This gives the
series (49) with coefficients

(zm) f (o, fPu(:*’,)) do
_y _)® [ 2w, $)g*(w, )A(F)/3(5)) dw A df
>0 (2mi)™™" Jyxr, Wt igR+!
(52)
whereys = (w € C": |w)| = -+ =|w,|=0}anddw = dw, A -+ A dw,,

Taking account of the facts that g;(0,0) = 0, that the Taylor series of the
difference g;(w, z) — g;(w,0) does not have terms of order zero or one, and
that [, .r, wXPdw Ad{ =0 only when B, =--- =B, =a; =+ =q, =
-1, we easily show that the terms of (52) are equal to zero when || > 2ja|.
Thus, (52) can be written in the form (50).

For n = 1 formula (48) can be represented in the form

(I)(w, Cp(W)) = kgl) (kli) a (IJ(w z) ek(w z)(] * %)] z=h(w)
= fb(w,h(w))
) 1 . ®(~1)% gkt 00%
¥ k§| (k!) azk~ '((I) ") - kz-;l (k!) 5;77—7(@_3?)] z‘h(W)’

or (48'). In exactly the same way, (50") follows from (50).
5.2. Local inversion of a holomorphic mapping in C". The following is a
special case of the preceding problem. Let

w=f(z)=f(z,....2,), [=(fis-s ],)s (53)
be a holomorphic mapping in a neighborhood of the point 0 € C”, with
9£,(0) _ ‘
fj(0)=0, B z, s Sk =1...,n. (54)

It is required to find the expansion of a function ®(z) holomorphic in a
neighborhood of 0 in a series of powers of the functions (53) and, in particular,
a power series expansion of the mapping

Z=q)(W)=(P(W|,...,Wn), (p=(q)l*"" (pn) (55)
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inverse to the mapping (53) in a neighborhood of 0. We have

THEOREM 5 ([169), [241]). Under the above assumptions the function ®(p(w))
can be represented as the function series

1B
o(p(w) = ¥ LN 8

B>0 B! 3 B

®(z)08(z o(f )] 56
Eeaid| e
where 6 = 0f1 - - - 68+, 8,(2) = £,(2) — z;, as well as by the power series

oc

Bg(m)= L dw' = L dygwtwn,  (5))

a>0 [ TI a,=0
with coefficients

_ (_])IBI a|u|+|B|[ 68(5 a(f)]
g B g [P R0 |

0

(58)

PROOF. If m = n, h;(w) = w;, and F)(w, z) = f,(z) — w; in Theorem 2, then
(56) follows. Applying the Taylor expansion to (56) and taking into account
that 8,(0) = 96,(0)/9z, = 0, j,k = 1,..., n, we get the series (57) with the
coefficients in (58).

COROLLARY 6. If ®(z) =z, j = 1,..., n, then (56) as well as (57) and (58)
give formulas for inverting the mapping (53).

THEOREM 7 ([88], [173], [243]). If the components of the mapping (52) have the
form

wi=f(z)=zy,(z), 4(0)=0, j=1,..,n, (59)

then the following expansion is valid.

q)(qa(w) Z wP aIBI ( )(a(f)/a(z))

. (60)
B>0 B' 0z 228 ‘PB(Z) 2=0
PROOF. The system (59) can be written in the form
i 0 =1
z - =0, j=1,..,n.
\Pj(z)

Then (60) follows from (48) with 6;(w, z) = —(w;/¥;(z)) and & (w) = 0

5.3. Expression of the power series coefficients of implicit functions in terms of
the power series coefficients of the original functions. Inversion formulas for a
system of power series. Suppose that the functions (44) are given in the form of
power series

E(w,z)=2z+ Za whz',  j=1,...,n. (61)

jnv
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It is assumed here and below that the multi-indices p = (p,,..., p,,) and
v=_(v,..., %) in X , IT, , and { ) , range through all possible tuples of
nonnegative integers such that either |p| + [v] > 20orv = 0 = (0,..., 0), |p| = 1.
Let
O(w,z)= ) b gwh (62)
(o, 8)>(0,0)

THEOREM 8.(°) The coefficients of the power series expansion (49) of
®(w, @(w)), where z = @(w) is an implicit vector-valued function determined by
(45), can be expressed in terms of the coefficients of (61) and (62) by the formula

d,= Y (_l)msn.bm.D(S)j_]'"'[l[p(sj)_1]!.n's_-1_(am)s,“.,

(1.7, S by S
(63)

where S = (S),..., §), S; = {8, )., is a collection of nonnegative integers s;

only finitely many of which are nonzero,

p(8) = (0(S). - 0(S)), 0(S) = s,

pvo

D(S) = detllskjp(sj) - ok(sj)”/'.k-l,...,n’

where 6,(S;) = L} , ViS;uy» and 8 is the Kronecker symbol; the summation in
Z(nr).s is over all multi-indices 0 = (y,..., n,,) and 7= (7,..., 1,), and all
systems S = (S,,..., S,) satisfying the conditions

n
nk+ZXk(S})=ak, k=1,...,m,
- (64)
Tk+ Zuk(Sl)=p(Sk), k=l,..., n,
j=1

where N, (S;) = L, , 145;,,- Moreover, if S contains an S; for which p(S;) =0

pr

(i.e,s;, =0foralls,, €S,), then the product
1
[o(8) = 1]TT —a
B,V Sjpv’

must be replaced by 1 in the corresponding term of (63), and 8, i P(S;) — 0, (S))
by 3, ; in D(S).

(°) Theorem 8 was obtained by the author jointly with V. A. Bolotov. The proof given here is
due to the author. Bolotov obtained (63) from (58).
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REMARK 3. If ®(w,z) =z, j = 1,..., n, then (63) yields formulas for the
power series coefficients of the implicit functions determined by (45). In this
case the summation over 7 and t disappears in (63), and (64) takes the form

n
YN(S) =, k=1,..,m,
j=1

=n (65)
3y + X o(S) =0(S), k=1,..,n
j=1
ProoF. Starting with the integral representation (47) and the first of the
equalities (52), we get the following formula for the coefficients d,, in (49):

1 | ®(w, §)Q(F)/3(8)) dow A d§ (66)

dy= ———
O (2mi)™ Yy F(w,§) w*t!

For suitable choices of € > 0 and § > 0 the function

B(9.8)- (AFY/AE) _ g o300 Flut)
F(a,%) = 2007510 (67

is holomorphic on the (m + n)-circular compact set 5 X I, € C™*", and can
be expanded on this set in an absolutely and uniformly convergent multiple
Laurent series. It follows from (66) that the coefficient d, is equal to the
coefficient of X~/ = w} - -+ ¢! -+ {-' in this series. The Laurent series
expansion of the function (67) can be found directly. Taking into account that
the inequalities |g;(w, §)| < [§;/=¢,j=1,...,n, hold for v € V; and { € T,
we get the expansions

. g,(w,o)

In F(w,§) = +n
5

5 (—l)p_l p .
=1In §j + Z p'§p [gj("‘),g)] s ] = 1,...,'1. (68)
p=1 )

Substituting
gj(w' §) = E ajp.kugv
w, v

into (68), and then the resulting expansions and the series (62) into (67), we get
the desired Laurent series after appropriate transformations, and this gives us
(63).

As a consequence of the theorems in §5.1 we obtain formulas for inverting
systems of power series.
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Suppose that the functions of the system (53) and ®(z) are given in the form
of power series

w=(2)=z+ ¥ auz®, j=1...,n, (69)
laj=>2
®(z)= ) bz°, (70)
a0

where a = (a),..., a,). We have

THEOREM 9 ([43), [196], [225]). The expansion coefficients in the power series
(57) for the function ®(@(w)), where z = @(w) is the inverse of the mapping
(53), can be expressed in terms of the coefficients of the power series (69) and (70)
by the formula

- T (1), A(sm[ o(S)t e =1} L@,

7.8 J' piz2 S
(71)

where S = (S,..., S;) S; = {5;, )52 is a collection of nonnegative integers s;,,
v =(v,,..., v,), of which only finitely many are nonzero, p(S) = (p(S)),...,
p(S,)), ‘

p(S)= X vs, J=1...,n,
v|=2

A(S) = detllskj[aj + P(S})] - ok(sj)n/,k=l.....n’

and 0,(S;) = L, 152 VkSjy» Js kK = 1,..., n; the summation in ¥, s is over all
possible multi-indices v = (7},..., T,), T > 0, and all collections S, p(S) > 0
satisfying the conditions 7, + X7 0,(S;) = o + p(S;), k =1,..., n. More-
over, if p(S;) = 0 and a; = 0, then the product

1

[o(s) + o= 1] TT —(au)™

|
=2 Sjv

must be replaced by 1 in the corresponding term of (71), and 3, oy +0(S)] -
0,(S;) must be replaced by 8, ; in the determinant A(S).

REMARK 4. If ®(z) = z;,j = 1,..., n, then (57) and (71) give formulas for
inverting the system of power series (69).

5.4. A case of isolating a single-valued regular branch of a system of implicit
functions |241). We consider without proof a case of isolating a single-valued
branch of an implicit vector-valued function determined by the system (45) in
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a neighborhood of the point (0,0) € C(;,"} when
aR)|
8(z) |00

Suppose that the functions of the system (44) can be represented in a
neighborhood of (0, 0) in the form

P}(W’z)=zj@j(w’z)+ej(w’z)’ J=1...,n, (72)

where z, - ?Pj(w, z) is the homogeneous polynomial of lowest degree in the
expansion of F; at (0,0) in a series of homogeneous polynomials, ?Pj(w, 0) = 0;
M-« . whim be the leading term of ?Pj(w, 0) in the lexicographical

let who) = w)
order of its terms (the conditions o, = N;,,..., &4y = N, ,_, hold for some

k,1 < k < m, for any term a;w* other than w™w). The coefficient of whw is
assumed to be 1. Let

gi(w,z)=F(w,z) —zwho, j=1,..n,
NB+I)=(Ny(By+ D+ -+ N8, + 1, u N, (B + 1)
+ o+ Na(B, + 1),
Y5 = {w € C™ lwl=138,j=1,..., m},
I={eCmfl="=[l=¢),

where d and ¢ are sufficiently small positive numbers. Under these assumptions
we have

THEOREM 10 [241]. For the existence of a system of holomorphic functions
;=g (w)=gq(w,....,w,), Jj=1...,n, (73)
satisfying the system (45) in a neighborhoood of the point (0,0) € C/".) and the
conditions

g, (0
;(0) =0, (p’()=o, jok=1,...,n, (74)

it is necessary and sufficient that

0" DR dan
Y5 X T

B30 (21”.)"1-#" §B+Iw)\(ﬁ+l)+u+l

for all integer multi-indices a = (a,..., a,), ~0 < &, < 00, such that |of > 2
and o; <O for ar least one j € ({l,..., m}. Under the conditions (75) the

0 (75
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expansion coefficients in the power series

[o o]
D(w,p(w))= Y dw® = Y Aoy QWP o W, (76)
a>0 [ TP a,=0

where ®(w, z) is a homomorphic function in a neighborhood of the point
0,0) € C.75 and @ = (@y,..., ©,) is the system (73), are determined by

- (-1)® GG Dre [ 5(F)
de = 5§0 B'[}\(B +1)+ oz] 9zBawetNB+D) gB a(_z)

(There are only finitely many nonzero terms in (75) and (77).)

. (77)

0.0

COROLLARY 11. Under the conditions of Theorem 10 and the conditions (75), a
single-valued branch (73) of the implicit vector-valued function determined by the
system (45) is represented by power series of the form (76), where the coefficients
are determined by (77) with ®(w, z) = z,.

COROLLARY 12. If m = 1 in the conditions of Theorem 10, then the conditions
(71) always hold, i.e., there exists an implicit vector-valued function satisfying
(45) and (74).

5.5. Examples. 1. Find an implicit function z = @(w) determmed in a
neighborhood of the point (0,0) € C? by the equation

z—w+zPw?=0.
Settingm = 1, ®(w, z) = z, and g(w, z) = -w + zPw?in (49) and (50), we get

=g(w)= i c,w",

n=1

where

2n n+k-—1

1 9
T kgo k!n! gzk=1gyn [(W—z ") ]‘(00)
-1 !
( l) (pr) ifn=pr+qr—r+],r=0,1,...,
={ri(pr—r+1)
0 otherwise.

That s,

— — < (—l)r(pr)‘ prg—1)r+l
Z_CP(W)_E’O r!(pr—r—l)!W( "

2. Find regular branches of the implicit function determined by the equation
z3 — 3wz + w? = 0 in a neighborhood of the point (0,0) € C2. According to
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Corollaries 11 and 12, a single-valued branch of the desired implicit function
tangent to the line z = 0 is represented by the series

[~
z=3 cw",
n=2

where
c, = _l_f §(§3+w3)k(w—§2)dw/\d§‘
’ k>0 (2'rri)2 :§|=s 3kpkyk+n+2 ;
w|=0
that is,
3 ! 2 5 8 1
Z=Z (3)‘) w3r+2=.”_'_+ﬁ_+w_+4w "
=0 33r+lr!(2r + 1)! 3 3 36 39



This page intentionally left blank



Table M.
Integral Representations of Numbers

Suppose that « is an arbitrary complex number, m and k are positive
integers, and n,n,...,n, =0, 1, +2,..., and let (a), = a(a—1) ---
(a—n+1),(a)y =1

I. The binomial coefficient.

a). The one-dimensional case.

Definition. 1) Arbitrary case:

11 =0’
ay_ Ja(a=1)---(a=n+1) B
(n)_ — , n=123,...,
0, n=-1,-2,-3,...;
2)a=m:
1, n=0,
m!
m = YR =172’3a-~'s )
(n) n{m — n)! " "
0, n=-1,-2,-3,...orn > m;
Na=-m:
-m)\ _ nfm+n-—1 - .
()= ( L ) n=0,+1, +2,...;
Ha=-1/2:

Integral representation, the formula M, = M,(w).
1y

(;‘) =res(l +w)w ! =?l'"—i'/l‘l (1+w)w " 'dw,
w w|=p

0<p<1;

269
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2)

("’;‘) = rss(l +w)"w T = E'l; |w|=-p(1 +w)"w " law,

0<p< oo,

or, the identity (') = (,,” ,), a frequently used representation is

m\ _ my-mtn=1l =_1- m -m+n—1
(n) rss(l +w)"w P lwl-p(l +w)"w dw,
0<p<oo;
3)
(m +": - l) =res(l —w) "w !
- (1-=w)y"w " ldw 0<p<l1
2mi [wl=p ’ ’

or, the identity (™*7~') = (""7'), a frequently used representation is (n =
0,1,...),

(m +n- 1) =res(l —w) "l
n w

=§1Ti[, (1=-w)"""'wmaw, 0<p<l;
wi=p

4)
(29« s - amy e

=§‘1“—'f (1-4w)'" 2w ldw, 0<p<l.
Iw|=p

b) Multidimensional case.
Definition. 1) Arbitrary case:

1, n=ny,=-:- =n, =0,

a ot(ot—l)-..(a—nl—..._nk+1)
(n,,...,nk)= nl!"z! ceemg! ,
Ny, =0,1,...,1<n, + -+ n,,

0, otherwise;
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2o =m:
ls n,=n,= =nk_.0,
m!
m ’
(n],...,nk)= "1! "'nk!(m—nl—..._nk)!
nl,nz,-..,nk=0,l,2,...,1<n1+..,+nk<m,
0,  otherwise;
Ha=-m:
-m )= (—l)n|+.,.+"k Wl"’nl 4+ ... +nk— 1
Ny,..., Ny ny,..., N, s

n,n,y,...,n,=0,+1, £2,....
Integral representation, the formula M, = M,(w,,.

coy W)
1))
( * )= res (L+w 4+ - +w)w ™ opo!
T 1 k) Wi k
1 « - -
= .kf (T+w + -+ w)wm™ ! eeewem N aw,
(2mi)" ’T(e)

where T'(p) = (w = (W,..., w); Iw| = p;, 0 < p, < 1,i = 1,..., k), the skele-
ton of a polydisk;
2)

m - L
(n,,...,nk)= res (14w + -+ w) " wim g

" Gt )N
mm [

where T'(p) ={(w = (w,...,w.); [w]=p;, 0<p,<o00, i=1,...,k), the
skeleton of a polydisk;

3)
m+n +---+n,—1
ny,..., N,
= res (1 —-—w, == vvk)-m“;]'"l—I e ‘vk"'k—l
Wiy Wy
1 -m ,-n -1 -n;—1
= .kf (l_wl—-..-—wk) wll ...wk dw,
(2mi)" “Teo)

where T(p) = {w = (w;,..., w); Iwj| = 0,0 < p; < 1,i = 1,..., k), the skele-
ton of a polydisk.
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I1. The expansion coefficients of the logarithmic function — In(1 — w).
Definition and integral representation, the formula M, = M,(w):

0, n=0,
1/n, n=1,2,3,...

res(~In(1 — w))w™""!

1

I - -n—1
P In(1 — w)w™""'dw, 0 <p<l.

|w|=p

II1. The expansion coefficients of the exponential function exp(aw).
Definition and integral representation, the formula M; = M,(w):

a” aw,  —-n—1 1 aw, -n—1
— = res(e™w = -—f e*¥w dw,
! w 2midymp

0<p<oo,n=0,1,2,....

IV. The (ordinary) Euler numbers E,, n = 0, 1,2,....
Definition and integral representation, the formula M, = M, (w):

E, = n!rescosh™!(w)w™""! = nt= cosh™'(w)w™ "' dw,
v 27 Jwi=p -

0<p<owo,n=0,1,2,....

V. The Bernoulli numbers B,,n = 0,1,2,....
Definition and integral representation, the formula My = M (w):
1

B,=n'res(e” — 1)'w™" = ﬁr—zf, ! (e” = 1)"'w " dw,
w w|=p

0<p<oo,n=0,1,2,....

V1. The Stirling numbers s,(m, n) of the firstkind, n = 0,1, 2,....
Definition:

-]

(W)m= 2 s;(m,n)w",  5,(0,0)=1.

n=0

Integral representation, the formula Mg = Mg(w):

!
si(m,n) =res(w),w " ! = % res[In(1 + w)]"w-""!

—m—!——l— 1 -m-1 _
=g, I W)W, 0<p<n=012,
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VII. The Stirling numbers s,(m, n) of the second kind, n = 0, 1,2,....
Definition:
e e]
wh =Y s,(m,n)(w),, 5,(0,0) =1
n=0
Integral representation, the formula M, = M,(w):

_m_' w no_- —l_m! 1 w n o -m-—
s;(m,n) = . rss(e - 1)'wm —-;!—E;T—iflw|=p(e - 1)"w " law,

O<p<oo,m=0,1,2,....

VIII The gamma function I'( z).
Definition (integral representation), the formula Mg = Mg(s):

o0
I‘(z)=/(; e Ss* " lds, Rez > 0;

a particular case is

n=T(n+1)= f e~ss"ds, n=0,1,2,....
IX. The beta function B(u, v).
Definition (integral representation), the formula My = My(t):
_T(u)T(v)

B(u,v)

a particular case is

TT(u+v+1) f’" '1-0)"""dr, Rew>0, Rev>0;
u

n'm! ! m
———————=B(n+1,m+1)=| "(1 —1t)" 4, ,m=0,1,2,....
(n+m+ 1) (n m+1) j;) ( ) o v

X. The generalized Stirling numbers s{*(m, n, k) of the second kind, n =
0,1,..., and k is a positive integer ([129], [208]).
Definition (integral representation), the formula M\, = M ,(w):
1 kw n
s$(m,n, k) = n rese"“”—(-f-——=l

n! W wm+l

___”l_'__l_— aw( kw n -m-—1
= Zﬂi‘/|‘w|=pe (e 1)"w dw,

0<p<oo,n=0,1,2,....
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XI. The generalized Bernoulli numbers B{™, n = 0,1,2,... ([54], Chapter
15).
Definition (integral representation), the formula M, = M, (w):

B{™ = plres(e” — 1) "w"+m-!
1 -
=nle— (e¥ = 1)"wnrm=dy, 0<p<oo,n=0,1,2,....
2'\'” lwl=p E

XII. The Euler numbers E{™ of mth order, n = 0, 1,2,... [34].
Definition (integral representation), the formula M, = M,(w):

E{™ = n!res(coshw) w1 = n!—~1—: (coshw)™"w=""1aw,
w 2'1'” |W|=P
O0<p<oo,n=0,1,2,....
XIII. The generalized Euler numbers A(n, k), n, k = 0,1,2,... [41].
Definition (integral representation), the formula My, = M ;(w, z):

(Z _ l)n+l
A(n, k) =n'res ._—_w____w—n—lz-k—|
w,z | Ze —_ 1)

__n! / (z=1)"""dw A dz
(2«11’)2 Iwi=p, (2" — I)W"HZ,(H ,
1zl=p,

0<p, <0,0<p,<1,mk=0,1,2,...
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