Translations of

MATHEMATICAL
MONOGRAPHS

Geometric Function
Theory in Several
Complex Variables

Junjiro Noguchi
Takushiro Ochiai

i i% American Mathematical Society




Geometric Function
Theory in Several
Complex Variables



This page intentionally left blank



10.1090/mmono/080

Translations of

MATHEMATICAL
MONOGRAPHS

Volume 80

Geometric Function
Theory in Several
Complex Variables

Junjiro Noguchi
Takushiro Ochiai

American Mathematical Society
Providence, Rhode Island




R i) 22 1Y B8 3% i

KIKAGAKUTEKI KANSU-RON (Geometric Function Theory in
Several Complex Variables)

by Junjiro Noguchi & Takushiro Ochiai

Copyright © 1984 by Junjiro Noguchi & Takushiro Ochiai
Originally published in Japanese by Iwanami Shoten,
Publishers, Tokyo in 1984

Translated from the Japanese by Junjiro Noguchi
2000 Mathematics Subject Classification. Primary 32-XX.

ABSTRACT. This expanded edition in English gives a self-contained account of recent developments
in geometric function theory in several complex variables and a fundamental treatise on the theory
of positive currents, plurisubharmonic functions, and meromorphic mappings, culminating on the
value-distribution theory for holomorphic curves.
Bibliography: 125 titles.

Library of Congress Cataloging-in-Publication Data
Noguchi, Junjiro, 1948—
[Kikagakuteki kansiiron. English]
Geometric function theory in several complex variables / Junjiro Noguchi and Takushiro
Ochiai : translated by Junjiro Noguchi.

p. cm. — (Translations of mathematical monographs: 80)
Translation of: Kikagakuteki kansuron.
ISBN-10: 0-8218-4533-0; ISBN-13: 978-0-8218-4533-2

1L

1. Geometric function theory. 2. Functions of several complex variables.

Title.

II1. Series.

QA360.N64 1990
515.94—dc20

© 1990 by the American Mathematical Society. All rights reserved.
Reprinted with corrections 1997.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

Information on copying and reprinting can be found in the back of this volume.

© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
This volume was printed from a TROFF file prepared by the author.
Visit the AMS home page at http://www.ams.org/

10987654 131211 10 09 08

I. Ochiai, Takushiro.

90-546
CIP



Foreword

This book is an expanded and largely rewritten version by J. Noguchi of the
original Japanese edition by Noguchi with T. Ochiai ([89]). The purpose of this
book is two fold. The first one is to give a self-contained and coherent account of
recent developments in geometric function theory in several complex variables
to those readers who have already learned the basics of complex function theory
and the very elementary part of the theory of differential and complex manifolds.
The second is to present, in a self-contained manner, sufficient fundamental
accounts of the theory of positive currents and plurisubharmonic functions, and of
the notion of meromorphic mappings, which are nowadays indispensable in the
analytic and geometric theories of complex functions in several variables.

The elementary complex function theory in one variable consists, roughly
speaking, of the following three themes:

I The contents from the definition of holomorphic functions to Cauchy’s
integral formula and the applications:

II Riemann’s mapping theorem and the construction of Riemann surfaces via
analytic continuation:

III The value distribution of meromorphic functions.

In the course, we have learned such theorems as Montel’s theorem on normal
families and Picard’s little and big theorems. R. Nevanlinna evolved those
theorems to the so-called Nevanlinna theory by establishing his first and second
main theorems. The contents of 1II may be considered the basic part of the Nevan-
linna theory.

In recent years, the contents of III have been.generalized and extended to



vi FOREWORD

problems of the complex function theory in several variables and of the value dis-
tribution of holomorphic and meromorphic mappings between higher dimensional
complex manifolds, and many interesting results have been obtained.

Problem of value distribution. Let M and N be complex manifolds and
f:M — N a holomorphic mapping (or more generally, meromorphic mapping).
Then, investigate the properties of f and the image f (M) in N.

In this book we discuss the problem of the value distribution through geometric
methods and treat the subject from the elementary level to the latest developments
and topics.

Chapter I is devoted to the theory of Kobayashi pseudo-distances. S.
Kobayashi defined a pseudo-distance d), for an arbitrary complex manifold M, and
called M a hyperbolic manifold if dy, is a distance. The definition is so natural that
it immediately implies the decreasing principle dy(f (x), f (y)) <dy(x, y) for all
x, y €M, which plays an essential role throughout his theory. A part of the prob-
lem of the value distribution can be reduced to those of Kobayashi pseudo-
distances and be systematically discussed. Kobayashi wrote a comprehensive text
book [54] and a survey paper [S5]. We here define the Kobayashi pseudo-distance
by making use of its infinitesimal form F,, due to Royden, and show that both
coincide. Those results which have been obtained after the publication of
Kobayashi’s text book are described in detail. It might be helpful to read this
chapter along with Chapters 4-6 of his book.

In Chapter II, we investigate the above problem of value distribution in the
equidimensional case (dim M = dim N) for non-degenerate f; i.e., the differential df
has maximal rank at a point. Similarly to the definition of F),, we define the hyper-
bolic pseudo-volume form ‘¥y, on M, which also satisfies the decreasing principle
¥y <¥y. We discuss the properties of W), and give applications.

Our next main object is to extend the Nevanlinna theory to the case of mero-
morphic mappings f : C¥ — M, where M is compact. There is a long history in this
subject beginning with R. Nevanlinna and represented by names such as H. Cartan,
A.Bloch, H.and J. Weyl, L. Ahlfors, W. Stoll, and S.S. Chemn. In the early
1970’s, P. Griffiths and his co-authors gave a new insight in this subject and
showed abundant connections to other fields such as differential geometry and
algebraic geometry. The extended first main theorem is described in terms of holo-
morphic line bundles and Chern classes. As for the second main theorem, the
problem, however, is more complicated. Nonetheless, P. Griffiths and his coau-
thors established a satisfactory second main theorem in the equidimensional case
for non-degenerate f. We devote Chapter V to these works. The Poincar€-Lelong
formula connecting plurisubharmonic functions with positive currents plays an
important role there. Therefore we need the following items:
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(i) Holomorphic line bundles and Chern classes,

(ii) Positive currents and plurisubharmonic functions,
(iii) Meromorphic mappings between complex manifolds,
(iv) Poincare-Lelong formula.

We explain (i) at the beginning of Chapter II. Chapter III is devoted to (ii).
The theory of positive currents was initiated by P. Lelong. Since the importance of
(i) has been lately increasing in various aspects of complex analysis and complex
geometry, we made Chapter III worthwhile to be read independently and to be used
as a reference.

We deal with (iii) in Chapter IV. We here discuss the notion of meromorphic
mappings after R. Remmert. Elementary facts from the theory of complex analytic
spaces are recalled without proofs (suitable references are given there). Then we
give complete proofs to theorems on meromorphic mappings. Chapter IV should
be used as a reference throughout the present book and may provide a standard
reference on meromorphic mappings.

In Chapter VI we investigate the value distribution of holomorphic curves
f:C — M. Except for certain special cases dealt by H. Cartan and L. Ahlfors,
there is no known satisfactory second main theorem for f: C — M. On the other
hand A. Bloch [9] stated a theorem that if M is projective algebraic and carries
linearly independent holomorphic 1-forms more than the dimension of M, then the
image f (C) of f must be contained in a proper algebraic subset of M. His proof
contained serious gaps and the statement was called Bloch’s conjecture. We give a
rigorous proof to this theorem. One notes that the theorem is connected to the
problem of establishing the second main theorem for holomorphic curves (see
Noguchi [77, 80, 82, 84,85]). Here we use rather freely terminology from algebraic
geometry, which is briefly explained in the second section. Readers without gen-
eral basics of the algebraic geometry may find this chapter somewhat difficult, but
we tried to make clear the essence of this theorem and our main idea.

In this English edition two appendices are added. In Appendix I, we explain
holomorphic vector bundles and the determinant bundle. Then we calculate the
Chemn classes of canonical bundles of some complex submanifolds of the complex
projective space P™(C). We use these to discuss a number of examples.

Appendix II is devoted to the Weierstrass-Stoll canonical function on C™,
which is a generalization of Weierstrass’ canonical product. As an immediate
consequence, we see that an effective analytic divisor D on C™ is algebraic if and
only if the mass of D B(r) has polynomial growth in r, where B (r) denotes a
ball of C™ with radius ». We use this in Chapter V. Our construction is after P.
Lelong and reveals a nice application of the theory of positive currents.
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Since we started our research in these subjects, we have been inspired by Pro-
fessor S. Kobayashi through his book, papers, lectures and many conversations. It
is our pleasure to express deep gratitude to him.

We also thank Professor W. Stoll. By his invitation, J. Noguchi visited Notre
Dame in 1984-1985 and gave a series of lectures on these subjects to graduate stu-
dents, notes of which make up a part of this book.

Junjiro Noguchi
October 1988 Takushiro Ochiai
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Remarks and Notation

(i) In this book, theorems, propositions, lemmas and equations are consecu-
tively numbered, so that for instance, (1.2.3) appears in Chapter I, § 2 and after
(1.2.2).

(i1) Throughout this book, manifolds are assumed to be connected unless
otherwise mentioned. We follow the usual conventions in notation N, Z, Q, R, C,

®, A, etc.; i.e., N denotes the set of natural numbers, Z the ring of integers, Q the
field of rational numbers, R the field of real numbers, C the field of complex

numbers, @ the tensor product, and A the exterior product. For sets A and B,
A-B={xeA;x¢B). For more symbols, see Symbols at the end of the book.

xi
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APPENDIX 1

Canonical Bundles of Complex Submanifolds of P™(C)

1. Holomorphic Vector bundles

We need the general notion of holomorphic vector bundles. We call a triple
(E, t, M) a holomorphic vector bundle of rank k if the following conditions are
satisfied:

(1.1) () Eis an (m + k)-dimensional complex manifold.
(ii) =: E — M is a surjective holomorphic mapping.

(iii) For every xe M, the fiber E, = n~!(x) is a complex vector space of com-
plex dimension k.

(iv) For every xe M, there exist an open neighborhood U of x and a biholo-
morphic mapping ®: E|U =n~!(U) — U x C* such that po ® = and
gO ®|,-1(y): ©7'(y) - C* are linear isomorphisms for all ye U, where
p:UxC — Uand g: U x C — C! denote the natural projections.

The rank of E is denoted by rank E. The mapping ®: E|U — U x Ck is called a
local trivialization of E over U, we consider C* the column vector space of dimen-
sion k. Then we have k holomorphic sections on U
i-th
5;(x)=d7'(x, Y0, ..., 1,..,0)), 1<i<k,

such that {s5;(x)}%., is a base of E, at every xeU. Such s =(s,, ..., 5;) is called a
holomorphic local frame of E over U. Conversely, if there is a holomorphic local
frame over an open subset U c M, there is a local trivialization of E over U. Let
{U,} be an open covering of M such that there are local trivializations
®,:E|U - U x C*. The pair ({U, ), {®y}) is called a local trivialization cover-
ing of E. Let (x;,£)eU,xC* and Let (ry, &) €Uy xCt. Then they
correspond to the same point of E if and only if

249



250 APPENDIX 1 CANONICAL BUNDLES OF COMPLEX SUBMANIFOLDS OF P"(C)

(1.2) .XK=X“=.\'EUkmU“,

&X = TM(X)gp,

where Ty,: Uy MU, — GL(k, C) are holomorphic. The family {T,} is called
the system of holomorphic transitions subordinated to the local trivialization cov-
ering. A complex submanifold F c E is called a holomorphic vector subbundle if
F is itself a holomorphic vector bundle of rank /4 (0 < h < k) over M of which fiber
structure is compatible with that of E. Then we naturally have the quotient bundle
E/F which is a holomorphic vector bundle of rank k — h. We write the above facts
as follows:

0-F->E-SEF->O0.

For two holomorphic vector bundles E; and E, over M, the tensor product E; ®E,
and the direct sum E, @ E, are naturally defined as holomorphic vector bundles

i
over M. Furthermore, the exterior power bundle A E (1 </ <k) is defined. In

k
special, A E is called the determinant bundle of E and denoted by detE. In

terms of (1.2), det E is a holomorphic line bundle such that it is trivial over U and
the system of holomorphic transition functions is given by {det T, }. For instance,
we have

(1.3) det (M) =KM)™", det T*(M)=KM).

(1.4) Lemma. (i) Let E; (i = 1, 2) be a holomorphic vector bundle of rank k; over
M. Then

det (E, ®E,) = (det E;)"? ® (det E,)"".

(ii) Let E be a holomorphic vector bundle over M and ¥ a holomorphic sub-
bundle of E. Then

det E = (det F) ® (det E/F).

Proof. (i) This immediately follows from the tensor algebra.

(ii) Let Let xe M be an arbitrary point. Then there is a holomorphic local frame
s =(Sy, ..., S3) (h =rank F) on a neighborhood U of x. Taking U smaller if neces-
sary, we may extend s to a holomorphic local frame §=(s,,..., ;9,,, wees SK)
(k=rank E) on U. Then s = (Sh41s --» Sx) induces a holomorphic local frame of
E/F over U. Taking a local trivialization covering as above, we easily see that the
transition Ty, are of the type
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A By
0 Ci

such that {Ay, } (resp. {Cy, 1) is a system of holomorphic transitions for F (resp.
E/F). Therefore

det (T'y,) = det (A, )-det (Cyy),
so that det E = (det F) @ (det E/F). Q.E.D.

2. Non-Singular Complete Intersections of P”(C) and the Canonical Bundles

In general, let D be an analytic hypersurface of a complex manifold M. Let
F =0 be a defining equation of D in a neighborhood of a point x € D (cf. Chapter
IV, §2). It follows from Theorem (4.2.3) and the implicit function theorem that

D MU is non-singular <= dF #OonD NU.
Let [z%---; z”‘]' be a homogeneous coordinate system of P"(C). Then we set
U;={z'#0} and z{ = z//2, j #i. Then (z/) are the affine coordinate of U;. Let P

be a homogeneous polynomial in (z°, ..., z™) of degree d.without multiple factor
and D an analytic hypersurface defined by

D ={[z%--;z"; P(°, .., 2")=0}).

Put
. i-th
P(zl)=P@, .., 1,.., 2™ onU,.
Then fori #k
@1 Pi(x) = (zf YPy(x).

Assume that D is non-singular. Then it follows that

2.2 dP;#0 onD NU;.

Let1p: D — P™(C) be the natural inclusion mapping. Then we obtain from (2.1)
2.3) (| U)*dP; = (¥ Y (p|Up)*dP; on U; N U, N D.

Let Hy be the hyperplane bundle over P"(C). Then {(15|U;)*dP;} defines a global
holomorphic section Gp of the holomorphic vector bundle Hg ST*(P™(C))|D,
which does not vanish anywhere in D. We identify the trivial line bundle 1, with a
holomorphic vector subbundle of H§ ® T*(P™(C))|D through

(x, a)eD x C =1p — acp(x) e HE ® T*(P™(C))| D.
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Then the quotient bundle HE ® T*(P"(C))|D/1, is isomorphic to (Hy|D)? ®
T*(D). Therefore we have the following.

(2.4) Lemma. Let the notation be as above. Then

0-1p - Hf @T*(P"(C))|D — (Hy|D)*T*(D) — 0.
(2.5) Lemma. Let D be a non-singular hypersurface of degree d of P"(C). Then
det T*(D) = (Hg| D)~ 1.

- Proof. This follows from Lemma (2.4), Lemma (1.4), (1.3) and Example
(2.1.26). Q.E.D.

Let D,, v=1, ..., be non-singular analytic hypersurfaces of degree d, of
P™(C). Let P, be homogeneous polynomials without multiple factor such that
D, =(P,=0}. Assume that ¥ D, has only simple normal crossings. Put

l
M= N D;. Then M is a complex submanifold of dimension m —/ and called a
v=1

non-singular complete intersection of degreed =Y d,.

(2.6) Theorem. Let M cP™(C) be a non-singular complete intersection of degree
d. Then

K(M) = (Hy | M) —m-1,

Proof. Let D, 1 <v <! be non-singular analytic hypersurfaces of degree d,
!
such that M = M D; as above. By Lemma (2.5)

v=1
@7 det T* (D) = (Ho|D )" ™",

Applying the same arguments as above to the non-singular analytic hypersurface
D, N D, of D and making use of (2.7), we have

det T*(D; N Dy)=(Hy|D; N Dy 47 m 1,
Inductively, we get
det T*(D, N --- N\ D)= Hy|D; N --- ADY+ 4"
so that det T*(M) = (Hy|M)?~"~'. Q.E.D.



APPENDIX II
Weierstrass-Stoll Canonical Functions

1. Review of Potential Theory on R™

We recall several fundamental facts from the real potential theory on the
euclidean space R™ (m 2 2). Cf. [32], Chapter 2 for this section. Let x = ', ..,
x™) be the standard coordinate system of R™ and set

mo 12
||X||=[ EIX'lz] » BOy={x| <rl.
i=1

The Laplacian A is defined by
2 2

__31_2 4o 9 .
o(x’) a(x™)
Let U be a domain of R™. Then the Laplacian A operates on the distribution space
D(U)’. We use the same notation and terminologies as in Chapter III, §1. A
locally integrable function u: U — [-e, =) is called a subharmonic function if
the following are satisfied:

A=

(1.1) (i) u is upper semicontinuous.
(ii) A{u] is a positive Radon measure.

Remark. For the definition of subharmonic functions on U, it is equivalent to
take the same definition as Definition (3.3.1), where (iii) has to be replaced with
spherical mean integrals.

Subharmonic functions satisfy properties similar to those of subharmonic func-
tions on C = R2. Let u: U — [—oo, o) be a subharmonic function on U. Then

1 J' .
< ceedy™
u(a) < 1B D] a+8(r)udx ax™,

provided that a + B(r)c U, where |B(1)| =j3<1)dxl --+dx™. The smoothing u,

defined as in Chapter III, §1 is a C™ subharmonic function on U and satisfies

253
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(1.2) uglu aselO.

Moreover, if —u is also subharmonic, then u is called a harmonic function on U. A
harmonic function u on U are C™ by (1.2), and Au =0. Let S(r) cR™ denote the
sphere of radius r > O with center origin and dS, the rotation invariant measure on
S (r) induced from the Euclidean metric, normalized as

_L oS =1

Let v be an integrable function on S (r) with respect to dS,. Then the integral

we=J, (y)"—HL— m-2ds,(y), Jxl <r

is called the Poisson integral. The function u is harmonic in the ball
B(r)={||x]| < r} with boundary value v. For a harmonic function u in a neighbor-
hood of B (r) we have

(1.3) u(x)= s(,,u(y)ﬁ‘—"”,,.— rmtas,(y) x| <r

(1.4) Lemma. Let u be a harmonic function on R™. Assume that there are a posi-
tive increasing sequence ry T oo (v T o) and constants C > 0, d 2 0 such that
sup{|u(x)|; xeB(r,)} < crd, v=1,2, ..

Then u is a polynomial of degree < d in xt, L xm,

Proof. Taking the complexification (z/) = (x/ +iy/) of (x/), we put

r2 _ i(zj)Z
(1.5) (@)= 5, 1 W) S rm24s,(w)
[ Sovi 22|
Jj=1

for |zl <r/2. Then &, is holomorphic in {|z|| <r/2} and #|{y'=---=

™ =0} =u. Hence &, =u, for r < r’, so that they define a holomorphic function
u on C™ such that u|{y'= ---=y™=0}=u. In (1.5) we put r=r, and
|zl <ry/4. Then there is a constant C; > O such that

A rV 4
ju@)| <C, 2| v=1,2..

Since u is a holomorphic function on C™, « is a polynomial of degree <din z!, ...,
z™, and hence soisuinx', .., x™. Q.E.D.
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We define the potential kernel function P (@, x) on R™ by

1

(1.6) P(a, x)= -
la-x|

form >3,

P(a, x)=-loglla —x| form=2.

In the case of m 23 (resp. m=2) P (a, x) is called the Newton kernel function
(resp. logarithmic kernel function). The potential kernel function P (a, x) with a
fixed is harmonic in R” — {a} and —P (a, x) is subharmonic in R™. It is a classical
fact that

1
______8 S
(m-2)|S()]

where |S(1)| denotes the area of the unit sphere S(1)cR™ with respect to the
Euclidean metric and §, the Dirac measure at a. This leads to the following:

AlP(a, x)]=—

(1.7) Proposition. Let ¢ be a positive Radon measure on B(R) and 0 < r <R and
set

1
(m=-2)|S (1)

Then U,(x, ©) is subharmonic in R™ and satisfies

AlU(-,0)]=06 inB(r).

(1.8) Uy, 0)=- J.ye,,(,)P(y, x)do(y).

Here we call the above integral U (x, o) the potential of the Radon measure .

2. Local Potentials of Positive Closed (1, 1)-Currents
and Modified Kernel Function

Let z/ =x%¥~'+ix¥, 1< j<m, be the complex coordinates of C™ with real
variables x¥, 1 <k <2m. By this we identify C™ = R*". Note that

A ? ml P
A= - - =4 =1 .
,Zl[ @y @y ] ,Zx[ dz/97’ ]

We use the same notation as in Chapter III, §3. For a locally integrable function u
on a domain of C™ we have "

@.1) dduIAG" = —Afulam.
4m
Hence, if u is plurisubharmonic, then u is subharmonic. Let

) ; k
T=Y—Tidz/ Adz
Ezn 4z
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be a positive current of type (1, 1) on B(R). Define the potential of T by

22 Ul T)=-——1—

m-1 )
m-—1 yeB(r)P(y’ )TN (y), 0<r <R

Then U,(z, T) is subharmonic in C™ and satisfies

(2.3) AW,z T =43 T;5 on B(r).
Jj=1

(2.4) Lemma. Let T be a closed positive current of type (1, 1) on B(R) and
0 <r <R. Then there is a subharmonic function u on B (r) such that

dd{u)=T on B(r).

Proof. Suppose first that T is C™ but not necessarily positive. Let r <r’ <R.
By Poincar€’s lemma (Lemma (3.2.30)) there is a real 1-form v on B (r’) such that
dv=Ton B(r’). Decompose v=v’+v"”, where v’ (resp. v"’) is a 1-form of type

(1,0) (resp. (0, 1)). Since v is real and T is of type (1, 1), v'=v” and
dv’=0v”=0. By Dolbeault’s lemma (cf. Hormander [48], Chapter II, §3), there
is a C™-function u” on B (r) with du” =v”. Putting u = 2mi(u” —u”), we have

dd‘u=T.
In the general case, we take U,-(z, T) defined by (2.2) and put
§S=T-ddU,.(-, T).

Put$ = Z—;;s,-;dz"/\d?j . Then (2.1) and (2.3) imply that
ij

2.5) Y. 57=0inB(r’).
j=1
Moreover, we put
2

Siig = ——1Sij.

! *oz

The d-closedness of S implies that S77 is invariant under index exchanges of i and
J,and of k and /. Using (2.5), we have

AS;=4% Six= 4[ > Sk;J =0 inB(r’).
k=1 k=1 =
if
Therefore S;j are harmonic in the sense of distribution and hence C”. Then the
result of the first half implies our assertion. Q.E.D.
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We are going to define a modified kemel function derived from P (a, x). The
potential kernel function P(a, x) for m =2 is quite different to that for m = 1.
Since our main concern is in the case of m = 2, we restrict ourselves to the case of
m 2 2. Now we expand P (a, z):

1
la—z|*=*

=Pyla, z)+P(a, 2)+ --- +P3(a, 2) + ---,

Pa, z)=

where Py(a, 2) = and P;(a, z) are harmonic homogeneous polynomials

o]
ofdegree L inz/ andZ', j=1, 2,.., m. ForqeZ" we set
(2.6) e(g;a, 2)=-P(a, )+ Po(a, 2) + ---+ Pyla, :
== (]'4‘1(“! z)—Pq_._z(a' Z)-—...‘

This e(q; a, z) is the modified kernel function, which will be used to construct
Weierstrass-Stoll canonical functions in the next section. Puts = ||z{|/||a < 1 and
let © be the angle formed by the vectors a and z. Then

@7 P(a, z)=|a]|*~*"(1 - 2tcos § +12)' ™"
= "‘1"2'2'"[ 1+B;(cos 0)t +---+ B, (cos eyh...) .

On the other hand, we have

P, )< la>2"(1 = 2" = [a |27 5 by,
A=0

Here note that P (a, z) = ||a]|>~¥"B; (cos 8)t*. Hence

.8) IBl(COS 6)| <b;,
2.9) e(q;a, z) =—Ha||2‘2”' f: B (cos 8)r*.
A=g+1

Now we consider general 7 = ||z||/[|a]|. We fix 0 <1 < 1. Suppose first that ¢ < 1.
Then it follows from (2.8) and (2.9) that )

(2.10) le(g; a, 2)| € ||all?~ 29+ T bytte-!
A=g+1

=C,(g, Da)>2m*!,
where C1(q, ©)= 3, b3t 971, We next suppose that > 1. It follows from

A=g+1
(2.6)~(2.7) that
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e(g;a, z)< |lal|> (1 +B,(cos B)t + ---+ B, (cos 6)1%)
Sllaf> "+ byt +--+byt?)

Slla* 9@+ byt 4+ by)

<flalf> 29+ byt 4o+ by).
Putting C5(q, )=t +b,T9*! +---+ b,), we have
(2.11) e(g:a, 2) S Cy(q, Dfaf> e,
Thus (2.11) and (2.10) imply the following.
(2.12) Lemma. Let the notation be as above. Then
lz]e*!

lali*iz) + al)

e(g;a, 2)<C(g, Dla> "

for any z, ae C™ witha # O, and
L)+
lafieclizll + llalD
for |z|| £1|la||, where C (g, ©) = max{(1+7)C (g, 1), (1+1/T1)Cy(q, T)}.

le(g;a, 2)| <C(q, D]jaf> "

3. Weierstrass-Stoll Canonical Functions
LetT = ZEIE Tivdd/ AdZ" be a closed positive current of type (1, 1) on C™.
ik
Consider the equation
3. dd‘{U)=T.

If U is a solution of (3.1), then
AlU)=43T;.
j=1
The potential U,(z, T) defined by (2.2) is subharmonic in C™ and satisfies
AUz, T)] =43 Tj inB(r).
j=1

Hence, if U,(z, T) converges as r — oo, then the limit is a candidate for a solution
of (3.1). In general, it is not convergent. Therefore we will use the modified ker-
nel function e (q; a, z) defined by (2.6), of which difference to —P (a, z) is only a
harmonic polynomial of degree g.

We first investigate the condition for the convergence. Let ge Z*. Then
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J‘:t dn(t, T) = [t“’n (t, T)} ' +qJ.r n(t, T) dr.
1

g+l

This implies the following lemma.

(3.2) Lemma. Letr, Tee,v=1, 2, ... be a positive increasing sequence. Then

rV
(3.3) limJ t™dn(t, T) <
: v ¥ 1
if and only if
n(r,, T v
im 2 T o nd tim | 2Dy ¢
V=0 ,-3 Voo o | tq+l

We define the order pr of T by

— logN(r, T) — logn(r, T)
4 =1 =1 .
34 i logr roe log r

Assume that there is a positive increasing sequence r T o such that
rV
lim , t™dn(t, T) < oo.
V—yoo

We may use any r, Teo if lim J‘lt “dn(t, T) < eo. For instance, we may put ¢ =0
r—oo

if n(r, T) =0 (1); if pr < o, then we may put

(3.5 g=I[prl+1,

where [-] stands for the Gauss’ symbol. We define the canonical potential
U(q;z, T)of T due to Lelong [63] by

(3.6) U(q;z T)= lim—— e(q:a, 2)TAG™ ",

Voo M — 1 Ja€B(ry)

We check the convergence. For simplicity, we assume that O € suppT. Let
llz) =r < ry. Itfollows from Lemma (2.12) that

1 . -1
(37) m_—]--LEB(r,,)e (q sa, Z)T/\(Zm

’_q+l

i J‘ 2—2m m-1
< C(q, 1)|a Talldrm <Ay
aesroC @ Dlal lall?¢+ |lal)

m-1

Tv 1
_C@1 Jotz-z:n—qlid(r/\a"'"(B(t)))
m— r+t

Continued
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g+l v
=L@ [ g, T)]
rtt

m-—1
0

II—Zm—q t2-2m—q

+,-q*‘_[;[(q+2m-2) }T/\a’”“'(B (1))dt

+ 2
r+t (r+t)

_C@ { rarl n(ry, T)

m-1 r+r, rf

v 2m—1)t + (g +2m—2)r
+r"”j Chs n(t, T)dtl .
0 (r+0*9+! @1
By Lemma (3.2)
I'q+l n(rV9 T)

(3.8) ——— 0 (Vo ).

r+r, rd

Moreover we have

Can O AL VA e I
(r+1)?
ry T)
@ (r+ 69!
where C’(q, 1) =C(g, T(g+2m—1)/(m—1). Lemma (3.2) implies that the last
integral in (3.9) converges as v — oo. Without loss of generality, we may assume

that TAQ™ (S (r,)) =0, v =1, 2, ... (cf. the proof of Theorem (3.2.31)). Making
use of Lemma (2.12) in the same way as above, we infer that the sequence

3.9)

J-aeB(rv)!e (q:a, )|TAa™ !, v=1,2,..

is a Cauchy sequence which is uniform for z belonging to a fixed compact subset.
Therefore the right hand of (3.6) converges uniformly on compact subsets and
U(g; z, T) is a subharmonic function on C™. Note that

O (r+)?*! O(r +1)19+! T (r+ 9t

n, T) J'"n(z, T)
.[o dt + '————tq“ dt.

tq+l
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Put
C(q)=inf{C’(¢q, ©); 0 <T < 1}.
Then (3.6)~(3.10) implies the following.

(3.11) Lemma. The canonical potential U(q; z, T) is a subharmonic function on
C” and satisfies

AlU(q;z, D) =43 T,
j=1

G12) U@z Ds< C(q)r”{_[o%dt +rlim j nT(:’;—zT—)dt} .
Put
M(ry=sup {U(g; z, T); ze B(r)}.

1 J' _
(3.13) Corollary. e (r)IU (¢ 2, T)|o™ <2M (7).

Proof. Put U*(q; z, T) = max{0, U (q; z, T)}. Then
U(g;2, T)=U%q;2, T)-U"(q;2 T).
Since U(q; z, T) is subharmonic and U (¢; O, T) =0,

r U@z T = U(@g; 2, Do 20,

so that

rm U (g;z, T)a™ < ram

+ . m
B() syl @z DA™ <M(r).

Since |U(g;z, T)|=U*(g;z, T)+U™(q;z2, T), we have the desired estimate.
Q.ED.

(3.14) Theorem. Let T be a closed positive current of type (1, 1) on C™ such that
O ¢ supp T. Assume that there is a sequence r,, T o= (v T o) such that

lim j tdn(t, T) < oo.
V=300 @ 1

Then the canonical poten;ial U(q; z, T) satisfies the estimate (3.12) and a solution

of 3.1):
dd‘[U(q;z, D)=T.
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Proof. There remains to show that dd‘[U(g; z, T)] =T. We may assume that
B(ry)NsuppT =Q. By Lemma (2.4) there are plurisubharmonic functions u,, on
B(r,) such that u, =0 and dd“[u,]=T|B(r,). Put

H,(z2)=U{q, z, T) —uy(z), ze B(r,).
Then A[H,] =0, so that H, are C™ harmonic functions on B (r,). Put
o’H,

3zio7

vij =
Then
H(v+l)if"Hvi/_'= 0 on B(r,).

Therefore H ,;j define harmonic functions H;j on C™. It follows from (2.6) that
(3.15) all partial derivatives of order < g — 2 of H;j vanish at O.
Let x and %, be the convolution kemels defined in Chapter III, §1, (c). Then

1 z
Xe(2) = @;X[;] .

Put

°x

C = max: - j(z);zeC’",l_<_i,jSm .

20z
Then

2
(3.16) = (z)| <Ce7" 72

d0z'0z

Since Hjj is harmonic, H;je = Hjj«X, = H;j. By definition

I UICTES ») A L

y ‘o7 3z'o7
Put
d*[U(q; 2, D]

S =——L 2 2y,
! dzid7’ *Xe

S az[uv] T=
= - =% =1 %) e
2= o e = Tixe

It follows from (3.16) that

1S1(2)] SCe-Z'"-ZJ

WEB(E)IU(q; z+w, Tjo™(w).
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Put r = ||z|| and e =r. Then by Corollary (3.13)

(3.17) |S,(z)|SCr'2”"2j |U(q;z, T)|a”

weB(2r)

SCr 2212 2M (2r) <27 Cr 2 M (2r).

1 -
—Y T;; as measures,

2

Since ||T;;]| <
(3.18) [S,02)| = ljwee(z;e)TiJXE(W - z)a"(w)

< J-WEB(Z; 5)" T’;IIXE(W - )" (w)

< —% ven e ke = DTAG™(w)

ﬁ_ -2m m—1
\[2' (max X)j €B(z; €) TAc
_\jﬂ__ M(max x)j o= 1

= 22" (max Y)r2n (2r, T).
We have by (3.17) and (3.18)
(3.19) |Hij(2)] <C'r {M@2r) +n(2r, T))

for ||z|| < r, where C’ is a positive constant independent of r and 7. We infer from
the assumption, Lemma (3.2), (3.19) and Lemma (3.11) that

q-2
|Hi7(z)| s0<r3‘2)50[[r—“] ] ol < =
2 2

If0<gq <1, then H;j=0. In the case of q > 2, we see by Lemma (1.4) that H;; are
polynomials of degree < g ~2. Then it follows from (3.15) that H;; = 0. Therefore
dd‘{U(q;z, T))=T. Q.E.D.

(3.20) Theorem (Stoll). Let D be an effective divisor on C™ such that
O ¢ supp D. Assume that there are qeZ* and a positive increasing sequence
ry T oo (¥ — o) such that

T
lim J- t9dn(t, D) < oo,
Voo o 1

Then there exists a unique holomorphic function F satisfying the conditions:
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@ E)=D.
(ii) F(0O)=1and all partial derivatives of order < q vanish at O.

(iii) There is a positive constant A (q) depending only on q such that

Il e, T) J n(, 1)
q 3 M i
log |F(2)| A(q)|z] {J.o et de + "2"322 Ry dri .

Proof. Take z{ locally finite open covering {W, }5-, of C™ so that W, are balls
and there are holomorphic functions F, on Wj satisfying (Fy)=D|W,. By
Theorem (3.14) we have the canonical potential U (g; z, D) of D satisfying

dd‘(U(q; z, D)]=D.
Put

1
h;‘=—2-U(q;z, D) -log |F].

Then dd‘h) =0; i.e., h; are pluriharmonic. Therefore there are holomorphic func-
tions g, such that the real parts Re g, of g, coincide with 4. Hence we get

%U(q;z, D)=Re(g; +logF;)

When W, "W, 20,

grtlogFy =g, +log Fy +iay,,
where a,, €R satisfying the cocycle condition

Ay =—ap, Ay +ayy tay, =0.

Hence we have a Cech cohomology class (a M)EHI(C"’, R). Since
H'(C™, R) = {0}, there are constants bj € R such that

ay, =b,-b,.
Then we have
gr+ibyt+logFy =g, +ib,+logF, onW; "W, »#D.
Then we define a holomorphic function F on C™ by
F =F,exp(g) +iby) onW,.

By Theorem (3.14) this F satisfies the required properties.

Let G be a holomorphic function on C™ satisfying (i), (ii) and (iii). Then
A=F/G is a nowhere vanishing holomorphic function on C™. By (5.2.25),
Corollary (5.2.30), condition (iii) and Lemma (3.2), we see that



APPENDIX II WEIERSTRASS-STOLL CANONICAL FUNCTIONS 265

T(ry AT, F)+T(r,, G)+0Q)=0(9).

Thus Theorem (5.3.13) implies that log M (ry, A*) = O (r{). Taking log A(z)
so that log A(O) =log 1 =0, we get

sup{|Re log A(z)|; zeB(ry)} = 0(r?).
Since Re log A (z) is harmonic in C”, Lemma (1.4) implies that Re log A(z) is a

polynomial of degree <g in z' and Z. Then condition (ii) implies that
RelogA(z)=0and hence A(z)=1. Q.ED.

The unique holomorphic function F for a given divisor D in Theorem (3.20) is
called the Weierstrass-Stoll canonical function of D.

We give a criterion of the algebraicity of a divisor on C™.
(3.21) Lemma. Let P be a polynomial on C™. Then

degree of P =p <= N(r, (P))=(p +o(1))logr.

Proof. Remark that N (r, (P)) is a convex increasing function in log r. Hence it
suffices to show that for any pe R withp 20

degree of P <p <= N(r, (P))<(p+o(1))logr.
Suppose that the degree of P < p. Then by Proposition (5.3.14)
N(@r, P)ST(r, P)S(p +o(1))logr.
Conversely, suppose that N(r, (P))<(p +o(1))logr. Let p’ be a degree of P.
Then Theorem (5.1.15) implies that

(3.22) N(r, (P) =] Jlog|P|n— | log|P|n.

Let p: C™ — {0} — P™~!(C) be the Hopf fibering and @y, the Fubini-Study Kahler
form. Then

(3.23) n=dlog | z[|Ap*@™"!.
For every complex line /e P"~!(C) through O, we take a point a,€! N\ T(1). Then
it follows from (3.22) and (3.23) that

B2 N, (P)=

leP’""(c){IOg [P (re®ap]|d0 - log |p(eieal)|d9} g !

- rdr m—
=IIGW"(C)N(r' P[D)wg 1=J.ITJ‘151»-‘(C)"(” P|D)wg .
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Since P is a polynomial of degree p’, n(r, (P|))Tp’ as r Te. Therefore we
obtain

N(r, (P))=(p"+o())logr <(p+o(l))logr,
sothatp’<p. Q.ED.
(3.25) Theorem (Stoll). Let D be an effective divisor on C™. Then D is an alge-
braic divisor defined by a polynomial of degree p if and only if
N(r, D)=(p +o(1))logr.

Proof. By Lemma (3.21) it suffices to show that if N(r, D) = O (log r), then D
is algebraic. Suppose that N(r, D) =0 (log r). Then

(3.26) n(r, DYy=0(1).

We may assume that O & suppD. Let ¢ =0 and take any positive increasing
sequence r, T e in Theorem (3.20). Then we have the Weierstrass-Stoll canonical
function F satisfying

log |F (2)] SA(O){ J‘;E(’;ID_)_dt +rJ-°:n(tt,ZD)dl}

for ze B(r). It follows from this and (3.26) that
T(r, Fy=m(r, F)<O(logr).
By Proposition (5.3.14) F is a polynomial. Q.E.D.

Notes

In the case of m =1, the Weierstrass canonical product of a given effective
divisor on C, of which order is finite, is well known (cf., e.g., Hayman [46]). Stoll
[110] proved its higher dimensional version, Theorem (3.20). The proof given here
is due to Lelong [63]. By the uniqueness, the function constructed here must coin-
cide with that of Stoll. Let /e P"~!(C) denote a complex line of C™ through O.
Then the restriction F |/ of the Weierstrass-Stoll canonical function of an effective
divisor D on C™ are the Weierstrass canonical product of the intersections DI for
all /e P"~1(C). This is trivial by Stoll’s construction. Stoll [114] is a nice survey
on his method. There is an application for meromorphic mappings f : C™ — PY(C)
of finite order due to Noguchi [75]. Mok-Siu-Yau [70] applied the method of the
canonical potential of Theorem (3.14) to the characterization problem of C™.
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analytic cycle, 218

analytic hypersurface, 33, 143
analytic subset, 140
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Borel identity, 228

bundle homomorphism, 59
bundle isomorphism, 59
canonical bundle, 71

canonical potential, 259
characteristic function, 180, 182
Chern class, 64

Chemn form, 64

closed current, 103

cocycle condition, 60

complete hyperbolic manifold, 18
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decreasing principle, 78
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defect relations, 213

defining equation, 144

defining functions, 144
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determinant bundle, 250

differential metric, 5

dimension (of analytic subset), 142
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divisor, 139, 144, 146



276

dominant, 161, 235

dual projective space, 44

effective divisor, 144

fiber, 59, 151
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germ of holomorphic function, 139
germ of holomorphic mappings, 237
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hermitian line bundle, 64

hermitian metric, 1, 63

hermitian pseudo-metric, 1
holomorphic chain, 16
holomorphic cross section, 59
holomorphic curve, 230
holomorphic differential, 5
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holomorphic sectional curvature, 49
holomorphic tangent bundle, 5
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hyperbolic manifold, 18
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hyperbolically imbedded, 26
hyperplane, 44

hyperplane bundle, 67
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Laplacian, 253
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local ring of holomorphic functions,
139

local trivialization, 25, 59, 249

local trivialization covering, 60, 249

locally integrable, 94

locally irreducible, 140

locally reducible, 140

logarithmic kernel function, 255

maximum modulus, 188

measure hyperbolic manifold, 81

meromorphic function, 146

meromorphic function field, 146

meromorphic mapping, 153

meromorphic section, 148

meromorphic with respect to, 152

monoidal transformation, 160

multiplicity, 40, 175
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order of distribution, 96
order of meromorphic mapping, 182

order function, 178

order less than or equal to, 95, 101

plurisubharmonic, 131

Poincaré distance, 3

Poincaré-Lelong formula, 171

Poincaré€ metric, 2, 8

Poincar€ volume element, 74, 75

Poisson integral, 254

polar divisor, 146

poles, 145

positive current, 111

positive line bundle, 69

positive (1, 1)-form, 69

positive distribution, 99

potential, 255, 256

projective algebraic, 68, 233
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proximity function, 180

pseudo-distance, 12

pseudo-volume element, 74

pseudo-volume form, 74

pullback (of line bundle), 63

pullback (by meromorphic mapping),
160,161, 162

pullback (of meromorphic function),
161

pullback (of divisor), 161

pullback (of holomorphic form), 162
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Ricci curvature function, 74

Ricci form, 71
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INDEX 21
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rational forms, 235
rational function, 234
rational function field, 234

real current, 111
real differential form, 110

reducible, 140,

regular (non-singular) point, 140

regular rational form, 236

regular rational mapping, 234

rotationally symmetric, 47

Second Main Theorem, 209

simple (torus), 38

singular point, 140

small deformation, 38
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smoothing, 98

subharmonic, 121, 253

support (of distribution), 98

support (of current), 103

support (of divisor), 144

system of holomorphic transitions,
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system of holomorphic transition
functions, 60

tensor product (of line bundle), 62

trace (of current), 114
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trivial (line) bundle, 25, 59

type of current, 109
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volume element, 74
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Symbols

®, tensor product B (as differential form), 116
A\, exterior product B(zo; 2), 190

& CU), 9%

AE, 250 c“w), 100
k c"?w), 108
=237 C, complex numbers
|L' ’ 14§ C., 44
(Z?v"-v Z;,..., z?l),44 (":ll'l'l 160

L,... m ’

[Z ,"'92’"]744 CI(L),64
[f 1(®), 96 c l(K(M)'l)
[lo flo. 95, 101 —,213
lo:.95. 101 o5
(T(, 98
"*" o 116 codimy, X, 142
lz e D), 9%

M D,(U), 9%
A(M), 243 4.9
Aut(A(), 4 D), 101

rl) (0.X))
D U), 109

||, 93 W)

DY), 101
Dy, 9%

Diw), 101

Dippep, mogy(U), 109

A’M, ©),73
A’M, R), 72
o (as differential form), 116

B™?wy, 108 D9, 110
|B(1)],253 (D], 149
B(a;R),29 D%,93

B(E), 67 Div(M), 144
B(R), 29,116 dc, 116
B(z;r), 29,116 ) dy(z, w),2
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dy(x, y), 12
dy(x, y), 16
det £, 250
dim X, 142
dim, X, 142
ds,, 254

dr, 103

dz, 1

dz, 1

dzdz, 1

dz’, 108
&7, 108

(dzAdz), 167
A (Laplacian), 127, 253
A(r), 2
Aw;r),2
84D), 213
oT, 110
aT, 110
0
2z
Eip
d9z
Ew),93
E" W), 100
E®?w), 108
E*, 44
E(f]X), 151
e(q;a, z),257
1 (as differential form), 116
n,(2), 27
n(zp; 2), 190
Fy ., 139
Fy, 5
Fu(), 11
), 6

, 1

SYMBOLS

fH, 64

f'L, 64

f1X, 151

G(f), 152, 153
82

Ty, 116

(U, L), 59
[oer (M L), 148
I(z;r), 116
e 188

Yo 139

Y(zg: 2), 191
H(C, X),,237
H,, 67

Hg, 65

H® 63

HP(M, R), 73
Hol(M, N), 19
h,,8

Iy .. 143

1(f), 156

1, 240

J(X),, 237
Ju(f), 238
Ji(X), 238
Jo(X),, 237
KwW), 94

K. (U), 94
K'w, 101
Ky, 101

K" W), 108
KWy, 9%
KiU), 102
Ky, m-gy(U), 110
K79, 110



K(M), 70
KM),, 70
k°, 124
K,(T1), 49
Ky (x), 49
K 1
Kq,74
Lo (U), 94

LWy, 109
Ly, 67

L*, 62

L*,63

L(E), 65

(L, H), 64

(L*, *, M), 60
(L, ®L,, 1, ®7,, M), 62
L>0,69
L<0,69
L;(9),2

Ly, 12

L({J), 168

log*, 184
Mer(M), 146
Mer(M, N), 153
Mer*(N, M), 88
Mer(M, N), 153
M(r, F), 188
mgr, D), 180
{m;k}, 93

m(r, F), 184
m(Z; fu-x), 146
m(Z; 9), 146
mult,(X), 40
um(B), 79
[u|(B),99

SYMBOLS 281

f(B), 80

N, natural numbers
N(r, E), 178,219
N(r,T), 178

n(r, T),117, 177
n(z,r, T), 117
v(z; D), 175
o), 60

Op. 1 139

Oy 139

Q,, 167

Qryy ., Iy, 74
Q*ryy ey I'm)s 15
o>0(w=0),69
wp, 67

o, 238

O, 1), 64
P™1(C), 44
P™1(C)*, 44
P(C™), 44

P(a, x), 255
P(E), 43
P(E*), 44

ps, 167

O, 68

Dry, 1), 68
Ox)Ye, 94

(), 146

(9o, 146

()., 146

e, 65

n®), 63

™, 63

Yy(x), 77

Wu, fx), 77
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q(M), 242

R, real numbers
R*,5

Ric Q, 74
Ria, b}, 30
Ric Q, 201
R(X), 140
rank f|X, 151
rank, f|X, 151
p(x), 44
SU(n, 1), 189
S (X), 140
S(r), 254
supp D, 144
supp 7,98
supp ¢, 94

S srdz! Az, 109

Y’ ¢;dx’, 100
o, 111
TM),.5
T(M),.4
TAq, 103

Ty, 115

T, 98

SYMBOLS

T,.99

T(r, F), 184
T(r, L), 180
T(r, ), 178
Tr, {Q)), 182
Trace (w; T), 170
©4D), 213

<T, ¢>, 101
Ue,94
Uy(x;r), 19
U, (x, 6), 255
U.(z, T), 256
U(q;z T),259
ug, 127

Vol(S), 29
W(p.p)’ 112
x® 40

<X, ¢>, 115

Z, integers
7,93

Zero (h), 1
Zero (s), 67
Zero (2), 74
Zero (o), 67
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