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Introduction 

This boo k aros e a s a  resul t o f writin g u p th e lecture s o f A . T . Fomenk o 
delivered a t th e Mosco w Mathematica l Societ y (i n Mosco w University ) fo r 
students o f mathematics , physic s an d mechanic s (i n th e framewor k o f th e 
cycle of lectures "Readings for students") . Th e writing up of the lectures fo r 
the press has been carried ou t by A. A. Tuzhilin an d A. T. Fomenko . 

The reade r who wishes to extend hi s study o f th e theor y o f minima l sur -
faces ca n turn to the following mor e specia l books and articles : 

H. Federer , Geometric  measure theory, Springer-Verlag, New York, 1969 . 
J. C. C. Nitsche, Vorlesugen  titer Minimalfldchen,  Springer-Verlag , Berlin-

Heidelberg-New York, 1975 . 
E. Giusti, Minimal surfaces  and functions of  bounded variation, Birkhauser, 

Boston-Basel-Stuttgart, 1984 . 
A. T. Fomenko, Topological  problems in  topology.  The  geometry of  lengthy 

area and volume,  Mosco w Universit y Press , Moscow , 1984 ; English transl. , 
Gordon an d Breach , 1990 . 

A. T . Fomenko , Variational  principles in  topology,  "Nauka" , Moscow , 
1982; Englis h transl. , Multidimensional  minimal  surface  theory,  Kluwer , 
1990. 

Dao Trong Thi and A. T. Fomenko, Minimal surfaces  and Plateau's prob-
lem, "Nauka", Moscow, 1987 ; English transl., Amer. Math . Soc , Providence, 
RI, 1991 . 

Yu. A . Aminov , Minimal  surfaces,  Kharkov Universit y Press , Kharkov , 
1978. (Russian ) 

R. Finn, Equilibrium capillary  surfaces, Grundlehren de r Mathematische n 
Wissenschaften 284 , Springer-Verlag, New York, 1986 . 

A. T. Fomenko, The  Plateau problem, 2  vols., Gordon and Breach, London, 
1990. 

R. Osserman, A survey  of minimal surfaces,  Van Nostrand Reinhold , Ne w 
York-London-Melbourne, 1969 . 

R. Courant , Dirichlefs  principle,  conformal  mapping,  and  minimal  sur-
faces, Interscience , New York, 1950 . 

Vll 
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APPENDIX 

Steiner's Problem for Convex Boundaries 

In Chapter 1  w e spoke about Steiner's problem, which, we recall, consists 
in constructin g a  networ k o f minima l lengt h joining n  give n point s i n a 
plane. I n this Appendix w e present recen t result s o f A . O. Ivanov an d A. 
A. Tuzhilin [41] , in whic h the y obtaine d a  classification o f nondegenerat e 
minimal network s withou t cycle s an d wit h conve x boundary u p t o plana r 
equivalence (Theorem s 1  and 2) . The y discovere d tha t al l suc h minima l 
networks can be described as dual graphs to "planar tree tilings"; for the exact 
definition of these see below. They also produced an algorithm, realized on a 
computer, for calculating all networks of the given type for any fixed number 
of boundary points. Also, the authors found several infinite series of minimal 
networks with a regular convex boundary and individual interesting examples 
of suc h networks no t contained i n them. I n the latter case i t i s importan t 
that th e set of boundary points of the network is fixed, which considerably 
complicates the investigation. 

1. Genera l statement of the problem. W e shall understand the minimality 
of a network in the following sense : an y small fragment o f the network has 
the shortest length. We recall that soap films have a similar property. When it 
is a question of shortest length, we need to distinguish the class of admissible 
variations of the network. Firs t o f all , by analogy with the way we defined 
minimal surface s by means of the variational principle , we restrict th e ad-
missible variations just t o those tha t leav e fixed the initia l point s spanne d 
by the network (henceforth w e shall call these points the fixed points of the 
network). Two possibilities arise. 

The first possibility: under a  deformation o f the network it s vertices do 
not split, that is, variations of the type shown in Figure 48a are forbidden. I n 
this case it can be shown (see [33], for example) that the network is minimal 
if and only if for each moving point the sum of the unit vectors having the 
directions of the segments going out from it is equal to zero. In this sense the 
network given in Figure 48a is minimal. I n Figure 48b we give an example 
of a network that is not minimal in this sense. 

The second possibility: Th e vertices of the network are allowed to split. In 

115 
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FIGURE 48 A 

FIGURE 48 B 

this cas e unde r a  deformation o f the network i n the direction o f decreas-
ing length its vertices spli t int o points of degree at most three , and if three 
segments now meet at a vertex, the n the angles between the m are equal to 
120°; i f two segment s mee t a t a vertex, the n the angle between the m is at 
least 120 ° an d this vertex is fixed; also, each vertex from which exactly one 
segment goes out is fixed. 

All these effect s can be observed in the following simpl e experiment . We 
take a flat sheet of plexiglass and drill n  smal l holes in it (Figure 49a). Thes e 
holes will correspond to the fixed points of the network. Fro m a piece of string 
we cut a set of n  -1 segments . O n one end of n  - 2  o f the segments we make 
a small loose loop. W e take the segment without a  loop and pass it through 
an arbitrar y numbe r of loops. W e can again pas s the ends o f the resulting 
configuration throug h a certain number of loops and so on, continuing thi s 

FIGURE 49 A 
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FIGURE 49 B 

process unti l al l the segment s have been used . W e note that the number o f 
ends of the resulting configuration i s equal to the number of holes. 

We place our sheet horizontally and pass all the ends of the resulting con-
figuration upward s through the holes s o that throug h eac h hole strictl y on e 
end passes. T o each end we fasten a  load, the loads being equal in mass. 

After the system arrives at an equilibrium position, the network of strin g 
takes the for m o f a  minimal networ k i n on e o f th e sense s described abov e 
(Figure 49b) . Mor e concretely , i f al l the loops ar e separated, without inter -
fering with one another , w e obtain a  minimal networ k i n the secon d sense . 
But if a t least one pair of loops is coupled, then there is a disallowed vertex 
in the resulting network, and the network i s minimal only in the first sense. 

Henceforth we shall study networks that are minimal in  the second sense. In 
order to state our problem more precisely, we give the following definitions . 

DEFINITION 1 . A  topological  Steiner network  i s define d a s a  connecte d 
graph for which the degree of the vertices is at most three. 

A realization of a topological network in a plane is called a planar network. 
To give a  stricte r definitio n w e recal l tha t a  planar graph i s a  collection o f 
curves in the plane that intersect only at their ends. 

DEFINITION 2. A  planar Steiner network is a planar graph for which there is 
a one-to-one correspondence with a topological Steiner network under which 
vertices correspond to vertices, curves correspond to edges, and the incidence 
relation is preserved. 

A set of fixed points of a  planar Steiner network is defined as an arbitrary 
subset of the set of vertices of the corresponding planar graph in which there 
occur all vertices of degree one or two (whic h agrees with the description o f 
possible types of vertices of a network that is minimal in the second sense) . 
Clearly, a set of fixed points of a network is not uniquely defined . 

DEFINITION 3 . A  plana r Steine r networ k i s sai d t o b e minimal  i f i t i s 
minimal for some set of fixed points of it. 

THE GENERA L STEINE R PROBLEM . Describ e th e class of Steine r networks 
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that can be realized a s minimal networks . Mor e precisely , suppos e w e ar e 
given a class {M}  o f finite sets M  o f points of the plane. I t is required to 
describe all Steiner networks that can be realized as minimal network s with 
a set of fixed points lying in this class. 

REMARK. I n Chapter 1  we talked abou t close d minima l network s o n a 
sphere (w e needed to study them to prove Plateau' s principles) . Th e prob-
lem of describing closed minimal networks on a closed two-dimensional ori-
entable surface of genus g  i s an interesting generalization of Steiner's prob-
lem. A  description of special classes of such networks was recently obtained 
by Shklyanko [34] . 

To start with, we consider as the class {M}  al l possible subset s of points 
of the plane. 

PROBLEM 1 . Describe all Steiner networks that can be realized as minimal 
networks. 

The clas s {M}  i s the widest o f al l possible classes . However , i t i s not 
possible t o realize al l Steiner network s eve n o n this. Figur e 50 a shows an 
example of a topological Steine r network that cannot be realized as a planar 
network, and hence as a minimal network. Figur e 50b shows a planar Steiner 
network that cannot be realized as a minimal network. W e note that in both 
cases all the trouble arises because of the presence of cycles. I t turns out that 
this is the only obstacle to the realization of a Steiner network as a minimal 
network. 

FIGURE 50 A 

FIGURE 50 B 
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PROPOSITION I.  Any  acyclic topological Steiner network  (Steiner  tree)  can 
be realized  as  a planar network.  Moreover,  any  planar Steiner  tree  can be 
realized as a minimal network  for some  set  M  of  fixed points. 

We say that a  Steiner networ k i s degenerate  if i t has at least on e vertex 
of degre e two . W e note tha t nondegenerat e acycli c Steine r networks , b y 
definition, ar e 2-trees. Thes e network s hav e vertice s o f degre e one , which 
we call boundary vertices, an d vertices of degree three, which we call branch 
points. Fo r such networks it is natural to take the boundary points as fixed, 
and we shall do this from now on. Startin g from here we shall study acyclic 
nondegenerate minimal Steine r networks, that is, minimal 2-trees. 

On the set of al l planar graph s w e can introduce a  natural equivalenc e 
relation. W e say that two planar graphs are equivalent if there is a homeo-
morphism of the plane onto itself (preservin g the orientation) that takes one 
planar graph into the other. I t is easy to see that there are only finitely many 
equivalence classes of 2-trees with a fixed number of boundary points. 

The following natural question arises: how many such equivalence classes 
are there for a given number n  o f boundary points? Fro m Proposition 1  i t 
follows that there are exactly as many of them as there are equivalence classes 
of 2-trees . Th e number of the latter was calculated in 1964 by Brown [35] in 
implicit form. Th e numerical results for n  < 23 ca n be found in [36] . 

We note that to solve this problem, instead of planar trees we can consider 
the dua l objects , namel y triangulations by diagonals o f convex w-gons . Le t 
us describ e i n mor e detai l th e correspondence betwee n plana r 2-tree s and 
triangulations. 

Suppose we are given a 2-tree with n  boundar y points. Conside r a convex 
H-gon. W e number th e boundary point s o f the 2-tree i n succession , goin g 
around anticlockwise , fo r example . Similarl y w e number the sides o f the 
polygon. Thes e numbering s generat e a  natural one-to-on e correspondenc e 
between the vertices of the 2-tree and the sides of the n-gon . 

Obviously, the boundary points incident with the same branch point have 
consecutive numbers . Fo r each pai r o f suc h point s w e consider th e corre-
sponding pair of sides of the rc-gon and construct a  triangle on these sides , 
drawing a diagonal of the polygon (this can always be done, since these sides 
are adjacent). 

We cut out all the triangles obtained in this way and simultaneously discard 
from the 2-tree all the edges going out from the boundary points. Obviously , 
we again obtain a  convex polygo n and a 2-tree, an d the number of vertices 
and the number of boundary points, respectively, are equal. 

Between th e boundary point s an d sides o f the resulting object s ther e i s 
a natura l one-to-on e correspondence , whic h i s obtaine d directl y fro m th e 
correspondence establishe d at the previous stage. 

We repeat the procedure just described until the 2-tree is exhausted. (The 
last stag e is a little more delicate , but it does not present any essential diffi -
culty, so we leave the details to the reader.) 
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As a result we obtain a partition of the convex n-gon  into triangles, which 
is called a  triangulation by diagonals corresponding to a planar 2-tree. 

Conversely, if we are given a triangulation of a convex «-go n by diagonals, 
it is easy to construct the corresponding 2-tree. A s boundary points of such a 
tree we can take the midpoints of the sides of the n-gon , as branch points the 
centers of the triangles of the triangulation, and as edges the segments joining 
the centers of adjacent triangles and also the segments joining the midpoints 
of the sides of the «-go n to the centers of the triangles constructed on these 
sides. 

Two triangulations are said to be equivalent if they are equivalent as planar 
graphs. In each equivalence class it is convenient to choose as a representative 
the correspondin g triangulatio n o f a  regula r polygo n inscribe d i n th e uni t 
circle. Tw o triangulations of such regular polygons are equivalent i f they are 
obtained fro m eac h othe r by a  motion o f th e plane . I t i s eas y t o se e tha t 
equivalent plana r 2-tree s correspon d t o equivalen t triangulation s o f conve x 
rc-gons b y diagonals and conversely. 

Thus, the following proposition is true. 
PROPOSITION 2 . The  equivalence classes of planar 2-trees  with n  bound-

ary points  are  in  one-to-one  correspondence with the  equivalence  classes of 
triangulations of convex n-gons  by diagonals. 

Figure 51 shows all possible triangulations in the cases when n  = 3 , 4 , 5 , 
6. W e note tha t fo r n  <  6  th e triangulation by diagonal s i s unique (u p to 
equivalence), but for n  = 6  ther e are three different triangulations . 

Another natural class {M}  o f boundary points of networks is the class of 
extremal sets. W e recall that a set is called extremal i f it lies on the boundary 
of som e convex set . I f the set of boundary points of a  network i s extremal , 
such a networ k is called a network with convex boundary . 

n =  3 n =  4 n =  5 

N **. 
-K 

* r / \ 

* * v 

n =  6 
FIGURE 5 1 
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PROBLEM 2. Describ e all minimal Steiner networks with convex boundary. 
REMARK. Thi s problem can be generalized. Fo r this we need the followin g 

definition. 
DEFINITION 4 . Suppos e w e are given a n arbitrar y finit e se t M  o f point s 

of the plane. W e split i t into classes , which we call levels  of convexity. 
In th e first  leve l o f convexit y w e put al l point s lyin g o n th e boundar y o f 

the convex hull of M . Conside r the set M*  obtaine d from M  b y discarding 
all points o f th e first level. 

The second level of convexit y contains the points o f the firs t leve l of con-
vexity for th e se t M'  (i f M'  i s not empty) . 

Continuing thi s operatio n unti l al l th e origina l se t M  i s exhausted , w e 
obtain th e necessary partition . 

We observ e tha t extrema l sets , an d onl y they , hav e exactl y on e leve l o f 
convexity. 

PROBLEM 2 ' . Describ e all minimal Steiner networks for which the number 
of levels of convexity o f set s of boundary point s does not excee d som e fixed 
number. 

Below we give a complete solution o f Problem 2  for 2-trees . 
One more important varian t o f the general Steine r problem i s obtained i f 

for th e clas s {M}  o f set s o f boundar y point s o f network s w e conside r th e 
class consisting o f exactl y one set . 

PROBLEM 3  (the classica l Steine r problem) . Describ e al l minima l Steine r 
networks whose se t of boundary point s i s fixed. 

An interesting variant o f thi s problem i s the following . 
PROBLEM 3 ' . Describ e al l minimal Steine r networks whose set of bound -

ary points consist s o f the vertices of a  regular polygon . 
Below we give som e result s o f A . O. Ivanov an d A . A. Tuzhilin, devote d 

to investigations o f Problem 3 ' agai n for 2-trees . 
In connectio n wit h th e statemen t o f th e genera l Steine r problem , th e fol -

lowing interesting questio n arises : i s there a  se t M  consistin g o f n  point s 
on whic h al l equivalenc e classe s o f plana r 2-tree s wit h n  boundar y point s 
can be realized a s minima l networks ? Fo r n  =  3 , 4, 5  w e can take as such 
a se t the vertices o f th e correspondin g regula r «-gon . Fo r n  >  5  thi s i s not 
so. Fro m Propositio n 3  (see below) i t follow s that , generall y speaking , suc h 
a se t M  mus t hav e quite a  complicated structur e (fo r example , it cannot b e 
extremal). 

2. Classificatio n o f minimal 2-tree s with convex boundary. A n importan t 
role i n th e classificatio n o f minima l 2-tree s wit h a  conve x se t o f boundar y 
points is played by the so-calle d twisting number ; we begin thi s section wit h 
a definition o f it . 

For each branc h poin t o f a  planar 2-tre e ther e i s a  circula r neighborhoo d 
whose intersectio n wit h th e tre e consist s o f thre e smoot h nonclose d curve s 
going from it s center , no t having any other point s o f intersection , an d going 
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out t o th e boundar y o f thi s neighborhood . Clearly , th e intersectio n o f th e 
boundary o f th e neighborhoo d (th e circle ) wit h th e tre e consist s o f thre e 
points. W e choose one of these curves and call the edge, of which it is a part, 
incoming. W e call the remaining two edges outgoing.  W e call the partitio n 
of the edges incident with a point into incoming and outgoing an orientation 
of the neighborhood of the branch point. 

Now suppos e tha t th e plan e i s oriented . The n w e ar e give n a  positiv e 
direction fo r motio n alon g eac h circl e lyin g i n thi s plane . Thi s give s th e 
possibility o f naturall y ordering a  pair of outgoin g edges in such a  way that 
a motion along the circle from the first edge to the second along an arc that 
does not intersect an incoming edge takes place in the positive direction. W e 
assign th e numbe r - 1 t o th e first  outgoing edge , an d + 1 t o th e second . 
An oriented neighborhood o f a  branch point together with these numbers is 
said t o b e clothed,  an d th e number s themselve s ar e calle d clothings  of th e 
corresponding edges of the tree. 

We recall that a path joining a pair of edges of a planar 2-tree is defined as a 
minimal connected subtree containing these edges. W e now give a definition 
of the twisting number between a  pair of edges of a  planar 2-tree. 

Let a  an d b  b e a  pair of edge s o f a  planar 2-tree . W e choose a  path y 
joining a  an d b.  W e orient the path y  fro m a  t o b . Conside r al l branch 
points lying inside y  . The orientation of y  canonicall y specifies orientations 
of small neighborhoods of these branch points; for each point we shall take as 
incoming an edge for which the point is an end. W e fix a certain orientation 
of th e plan e an d cloth e th e neighborhood s o f al l th e branc h point s unde r 
consideration. A  path y  togethe r with clothings of all its edges will be called 
clothed. 

DEFINITION5. Th e twisting number tw(<z , b) o f an ordered pair (<z , b) o f 
distinct edges of a 2-tree is defined as the sum of the clothings of all outgoing 
edges of th e oriente d path y  goin g from a  t o b . W e take tw(<2 , a) t o be 
zero. 

For th e edge s a  an d b  o f th e 2-tre e show n i n Figur e 52 a th e twistin g 
number tw(a , b)  i s five, while for the tree in Figure 52b it is zero. 

i." 
x 

tw(a,b) =  0 

FIGURE 52 B 



APPENDIX. STEINER'S PROBLEM FOR CONVEX BOUNDARIES 12 3 

Let us mention a property that the twisting number has (we leave the proof 
to the reade r as a useful exercise) : 

SKEW-SYMMETRY: tw(a , b)  =  -  tw(& , a) . 

DEFINITION 6 . Th e twisting number tw(D ) o f a planar 2-tree D  i s defined 
as the larges t twistin g numbe r o f al l possibl e ordere d pair s o f edge s o f thi s 
tree: 

tw(D) =  maxtw(<2 , b). 
The nex t proposition i s a key resul t i n obtaining a  complete classificatio n 

of minimal 2-tree s with convex boundary . 

PROPOSITION 3 . The  twisting number of  a minimal Steiner  2-tree  with con-
vex boundary is not greater than five. 

REMARK. Fro m the classification theorem s (se e below) i t follows tha t thi s 
bound i s exact: an y planar 2-tre e wit h twistin g number no t greate r than five 
can be realized a s a minimal tre e with a n extremal se t of boundary points . 

It is convenient to state the classification theorem in the language of tilings. 
We defin e a  (triangular ) tilin g o f th e plan e a s a  canonica l partitio n o f th e 
plane int o regula r congruen t triangles , whic h w e cal l th e cells  of th e tiling . 
This partition ca n be obtained a s follows . 

Let A  an d B  b e families o f equally spaced parallel lines, and suppose that 
the angl e between th e direction s o f th e line s of A  an d B  i s 60° . Throug h 
the points of intersection o f lines of A  an d B  w e can uniquely dra w a third 
family C  o f parallel lines so that together the families A,B,  an d C  giv e a 
partition o f the plane into regular congruent triangles. W e call these lines the 
directrices of th e tiling o f th e plane , an d th e si x possible direction s o f thes e 
lines the directions  of the tiling . 

DEFINITION 7 . W e defin e a  tiling  a s a n arbitrar y collectio n o f cell s o f a 
tiling of the plane. 

In exactl y th e sam e wa y a s fro m a  triangulatio n o f a  conve x polygo n b y 
diagonals, fro m th e tilin g w e ca n construc t a  plana r graph , whic h w e cal l 
the dual  graph  o f thi s tiling . W e cal l a  tilin g connected  i f it s dua l grap h 
is connected . Th e tiling s correspondin g t o th e connecte d component s o f 
the dua l grap h ar e calle d th e components  o f th e tiling . Hencefort h w e shal l 
almost alway s be dealin g wit h connecte d tilings , s o we shal l omi t th e wor d 
"connected" provided i t does not lead to misunderstanding . 

We note tha t th e dua l grap h o f a n arbitrar y (connected ) tilin g i s actuall y 
a minimal Steine r network . 

DEFINITION 8 . A  tiling whose dual graph i s a 2-tree i s called a  tree  tiling. 
In fact , no t ever y equivalence clas s of planar 2-tree s has as its representa -

tive the dual graph of some tree tiling. Nevertheless , the following propositio n 
is true. 

PROPOSITION 4  (o n a  tilin g realization) . Any  planar  2-tree  with  twisting 
number no  greater than  five can  be  realized  as  the  dual  graph  of  some  tree 
tiling. 
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REMARK. Althoug h som e 2-tree s wit h twistin g numbe r greate r tha n five 
can be realized as the dual graph of a tree tiling (construc t an example), the 
bound o n the twisting numbe r give n i n Proposition 4  i s exact . Figur e 5 3 
shows an example o f a planar 2-tree wit h twisting numbe r equal to six that 
cannot be realized as the dual graph of a tree tiling. 

Thus, i t follow s fro m Proposition s 3  and 4 tha t fo r a  classificatio n o f 
minimal 2-trees with convex boundary it is sufficient to describe all tree tilings 
whose dual graphs have twisting number not exceeding five (henceforth for 
brevity we shall call the twisting number of the dual graph of a tree tiling the 
twisting number of the tiling itself) . 

To obtai n suc h a  classification w e must first  of al l choos e th e building 
blocks from which all possible tree tilings are formed. W e choose three types 
of building blocks, which we shall call linear parts, branch points, and growths. 
Roughly speaking, every tree tiling is a collection of linear parts joined to one 
another by means of branch points and equipped with growths. W e now give 
more formal definitions . 

DEFINITION 9 . W e define a  snake as a tiling placed between two adjacent 
directrices of a tiling of the plane (Figure 54). 

An extreme cell  is defined a s a cell of a tiling, two sides of which do not 
lie inside the tiling. A n interior cell is defined as a cell, all of whose sides lie 
inside the tiling. 

DEFINITION 10 . We call an extreme cell of a tiling a growth if the only cell 
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of the tiling adjacent to it is internal. W e call the tilings a  skeleton if i t does 
not have growths. 

Figure 5 5 shows a snake with growths. 
In order to obtain a skeleton, for each interior cell of the tiling we discard 

one of the growths adjoining it (i f there are any). 
Next, w e consider a tree skeleton and cut out from i t all internal cells . I f 

there is at least one internal cell , the skeleton splits into components. 
DEFINITION 11 . Th e component s int o whic h a  tree skeleto n split s afte r 

discarding internal cells are called the linear parts of the skeleton. Th e branch 
points ar e the components int o which a  tree skeleton split s afte r discardin g 
the linear parts. 

Let us give a complete lis t of possible branch points of tree skeletons. 
PROPOSITION 5. In  tree skeletons there can occur exactly five types of branch 

points, shown in Figure 56 . 
REMARK. W e should mention that the linear parts can be fastened to each 

branch poin t i n differen t ways . I n al l ther e ar e 1 8 way s o f fastenin g (lis t 
them), whic h w e shal l cal l forks. Figur e 5 7 show s th e tw o mos t importan t 
types of forks, which we shall call T-joints. 

We now describ e th e structur e o f th e linea r parts . Fo r thi s w e giv e th e 
more general definitions o f a linear 2-tree and a linear tiling. 

DEFINITION 12 . A  planar 2-tre e i s calle d linear  if th e triangulatio n o f a 
convex polygo n correspondin g t o i t ha s exactl y tw o extrem e triangle s (a n 
extreme triangle o f a  triangulation i s a triangle o f which tw o sides coincid e 
with sides of the polygon). 

We note tha t th e triangulatio n correspondin g t o a  linear 2-tre e doe s no t 
have internal triangles . Therefore , fo r such a triangulation there is a natural 
linear ordering of it s triangles so that the extreme triangles are the first and 
last in this order. 
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Clearly, ther e ar e exactl y tw o possibilitie s fo r orderin g th e triangle s o f a 
triangulation, dependin g o n whic h o f th e tw o extrem e triangle s i s take n a s 
the first . Th e choice of one of these two orders is called an orientation  o f the 
linear 2-tre e an d the triangulation correspondin g to it . 

Now suppos e tha t th e dua l tre e o f som e tree tilin g i s linear . I n thi s cas e 
the tiling is also said t o be linear . W e note tha t th e linear part s ar e actuall y 
linear tilings. 

We now consider an arbitrary linear tiling and orient it. W e then show how 
we can spli t such a tiling into a number o f snakes, which we call segments of 
the linear tiling . 

Similarly we define al l the later segments. Thus , we can state the followin g 
result. 

PROPOSITION 6 . Every  linear  tiling,  in  particular, the  linear  part of  an ar-
bitrary tree  tiling, is  the union of  a linearly ordered family of  distinct disjoint 
snakes {segments  of  the  linear  tiling),  and  the  initial  cell  of each  subsequent 
snake is  adjacent to  the end cell of the previous one. 

In each nonextreme cell of a skeleton we join by segments the midpoints of 
its sides inside the skeleton . I n each extreme cel l we draw a  midline paralle l 
to the midline o f the adjacen t cel l already constructed . 

DEFINITION 13 . The spine  {vertebra)  o f a  linea r par t (cell ) i s the par t o f 
the graph constructe d abov e tha t i s contained i n this linear par t (cell) . 

If w e allo w th e twistin g numbe r o f th e skeleto n t o tak e onl y value s no t 
exceeding five,  then ther e aris e essentia l restriction s o n th e structur e o f th e 
linear parts of such a  skeleton . Namely , the following propositio n i s true. 

PROPOSITION 7. For  each linear part of a tree skelelton with twisting number 
not exceeding  five there  is  a  directrix  of  the  tiling  of  the  plane on  which  the 
spine of this linear part projects one-to-one. Such a directrix is called a directrix 
of the linear part 

REMARK. Generall y speaking , a  directri x o f a  linea r par t i s no t unique . 
For a  snake , fo r example , ther e ar e thre e suc h directrices . I f th e twistin g 
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number of the linear part i s greater than five, then suc h a part does not have 
directrices. 

DEFINITION 14 . A  snake is defined a s a linear part for which there are three 
directrices. A  stairs is defined a s a linear part for which there are exactly two 
directrices. A  linear par t tha t ha s exactly on e directrix i s calle d a  broken 
snake (Figur e 58a). 

REMARK. A  linear part that is a snake in the sense of Definition 9  may not 
be a snake in the sense of the last definition. Figur e 58b shows an example of 
such a part. O f course, it all depends on how the given linear part is fastened 
to the branch points . 

We hav e thu s describe d al l the buildin g block s fro m whic h al l possibl e 
tree tilings are formed. Now , in order to state the classification theorems , it 
remains to define the operation of reduction for skeletons of tree tilings with 
twisting numbe r no t exceeding five.  Thi s operatio n consist s i n cuttin g ou t 
certain fragment s o f the tiling. 

Firstly, we can cut from th e skeleton an y part o f a linear par t containin g 
an extreme cell . 

Secondly, insid e th e skeleton w e can discard an y snake Z  consistin g of 
an even number o f cells and occurring in some linear part . W e observe tha t 
the snak e Z  i s a  parallelogram . Le t us conside r th e pai r o f side s o f thi s 
parallelogram no t parallel to the spine of this snake. We shall call these side s 
the bounding  edges  of the snake Z  .  It turns out that the following assertio n 
is true. 

ASSERTION. Let  Z  be  an arbitrary snake consisting  of an even  number of 
cells and occurring in some linear part of the skeleton D  with  twisting number 

\ 

/ 

7 

FIGURE 58 A 



128 APPENDIX. STEINER'S PROBLEM FOR CONVEX BOUNDARIES 

A A A 
V V 

FIGURE 58 B 

FIGURE 5 9 

no greater than five. Let l x and  l 2 be  the bounding edges of Z  . Let D x and 
D2 be  the connected components into  which D splits  after discarding Z  from 
it. Then  there  is a translation r  such  that  the  intersection of D { and  r(D 2) 
is l x = T(/ 2) .  Moreover,  D { U r(D2) is  a tree skeleton, whose  twisting number 
is not greater than the  twisting number  of  D. 

We say that the skeleton D x U r{D2) i s reduced from the skeleton D  b y 
cutting out the snake Z  . 

REMARK. B y means of the reduction operation we can obtain a stairs from 
a broken snake and a snake from a stairs. B y reduction we can turn several 
branch point s int o on e point (o f a different type) . Thi s als o happens wit h 
forks. Figur e 5 9 shows the reduction o f severa l fork s o f T-join t typ e to a 
fork o f a more complicate d form . Th e reduction operatio n als o enable s us 
to discard forks (w e need to apply reduction severa l times). 

We are now in a position to state a theorem that classifies skeletons of tree 
tilings with twisting number not exceeding five. 

THEOREM 1  (classification o f skeletons) (Ivanov , Tuzhilin) . All  skeletons 
with twisting  number  not  exceeding five  are  obtained by  reduction from the 
three canonical types of skeletons given  in Figure 60 . 

A broken  snake is  represented by three dashes, and the dashes are parallel 
to its directrix. 

A stairs is represented by two intersecting dashes, and the dashes are parallel 
to its two directrices. 
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A snake is  represented by one dash, and the dash is  parallel to the spine of 
the snake. 

Forks of T-join t typ e correspond t o points (se e Figure 57). 
REMARK. I f we consider the diagrams of the canonica l type s as planar 2-

trees, it is easy to observe that they represen t al l possible planar 2-tree s with 
six endpoints . 

We now describe the possible positions of growths on a skeleton. Fo r this 
we need the concept of a profile o f a skeleton. 

The contour  of a tiling is defined a s the boundary o f the tiling regarded as 
a close d subdomai n o f the plane. Conside r a n extreme cel l of the skeleton 
and discar d fro m th e contour o f the skeleton tha t edg e of i t that intersect s 
the vertebra o f this cell . W e go through al l the extreme cell s of the skeleton , 
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performing the same operation. Th e contour of the skeleton splits into broken 
lines, which we call the profiles of the skeleton. A n outer side of a profile is 
called an outer side of it with respect to the skeleton (Figur e 61). 

We note that the profiles o f the skeleton of a tiling with twisting number 
not exceeding five have the same properties as the spines of the linear parts of 
such skeletons . Therefor e fo r the corresponding profile s we keep the names 
snake, stairs, and broken snake. 

THEOREM 2  (o n the position o f growths) . (Ivanov , Tuzhilin ) 1 . On  a 
profile that is a snake we can plant any  number of growths {Figure 62a). 

2. For  a stairs-profile there are two possibilities. 
a) The  growths are placed arbitrarily  only  on  segments in  one direction 

{Figure 62b). 
b) We  are given a partition of  the stairs into  three successive broken lines, 

the middle one of which may be empty. The  middle broken line consists of an 
even number of links and the angle between the first pair of  links, measured 
from the  outer side, is equal to 120°. 

There are no growths on the middle broken  line. On  the first broken line 
the growths can be situated arbitrarily on the segments that have the direction 
of its last  link,  and on the last broken  line they can be situated on  segments 
having the direction of its first link {Figure  62c). 
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3. We  present a  profile that is  a broken snake as  the union of  three parts, 
the outer ones of which are maximal possible  stairs, and the  inner one, which 
may be  empty,  is  all  the  rest.  On  the  middle  part  we  can plant arbitrarily 
many growths  only on segments parallel to the directrix of the profile. On  the 
outer stairss we can plant growths  as follows. 

Consider a segment of  the  profile adjacent to  an  outer  stairs. If  the  angle 
between it  and  the  neighboring  segment a  of  the  stairs,  measured  from the 
outer side of  the profile, is equal to 120° , then  growths may be  fastened only 
on segments of  the  stairs parallel to the  segment a.  If  this  angle  is  equal to 
240°, then  we  can plant growths  on the  stairs  according  to rule  2  (Figure 
62d, e) . 

Now th e classificatio n o f possibl e minima l 2-tree s wit h a  conve x se t 
of boundar y point s i s obtaine d fro m Proposition s 3  and 4  and Theorem s 1 
and 2 . 

We ca n sho w tha t an y plana r 2-tre e tha t i s th e dua l grap h t o th e tiling s 
described i n Theorem s 1  and 2  ca n b e realize d a s a  minima l tre e wit h a 
convex set of boundary points . Thus , the resulting classification i s complete. 

3. Som e result s fro m th e investigation o f minimal network s that span th e 
vertices o f regula r polygons . W e begi n thi s sectio n wit h a  descriptio n o f 
a simpl e algorithm : fo r a  give n finite  se t M  o f point s o f th e plan e thi s 
algorithm enable s u s t o construc t a  minima l networ k spannin g i t b y mean s 
of compasses and a  straight edge (the idea of this algorithm is due to Melzak 
[42]). Fo r thi s i t i s sufficient t o know the structur e o f thi s minimal networ k 
as a  planar 2-tre e an d th e correspondenc e betwee n th e endpoint s o f thi s 2 -
tree and points of the se t M . Recall , that the vertices of a  minimal networ k 
that d o not belong to M  ar e called Steiner  points.  Le t u s illustrate th e ide a 
behind thi s algorith m b y a n exampl e o f constructin g th e minima l networ k 
for th e se t M  o f vertices o f a  triangle ABC , non e o f whose angles exceeds 
120°. 

We choose any pair of vertices of the triangle, say A  an d B , an d construc t 
an equilateral triangle ABD  o n the side AB  s o that C  an d D  li e on opposite 
sides of AB . W e then describ e the circle ABD . 

Clearly, the only Steiner point V  o f the minimal network lies on the minor 
arc d  o f thi s circl e joining A  an d B . Moreover , V  lie s o n th e ra y DC 
(prove this) . Joinin g V  t o the vertices o f the triangl e ABC , w e obtain ou r 
minimal networ k (Figur e 63a) . 

If the triangle ABC  ha s an angle greater than o r equal to 120° , then th e 
corresponding minima l network is not a  2-tree. I n this case we can carry ou t 
the same construction, bu t the angles between the segments joining the poin t 
V o f intersection o f the ray DC  an d the circle to the vertices of the triangle 
will not be equal . 

For a quadrilateral ABCD  th e construction consist s of two similar steps . 
Figure 63 b shows a minimal networ k spannin g th e vertices o f a  square . W e 
split th e vertice s o f th e squar e int o pair s consistin g o f boundin g vertices o f 
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the network for which the edges of the network going out from them meet at 
one Steiner point, and choose one of these pairs, say A  an d B  . We denote 
by V  th e Steiner point at which the edges of the minimal network going out 
from A  an d B  meet , an d the other Steiner point by W . 

On AB  w e construct a n equilateral triangl e ABE . W e place the vertex 
E o f this triangle in such a way that E  an d V  li e on opposite sides of AB 
(Figure 63c) . 

We now consider the triangle CDE  an d describe the minimal network for 
it in the way described above . Th e Steiner point o f this network coincide s 
with W . 

A minimal networ k for the vertices of the square ABCD  i s obtained as 
follows. W e describe the circle ABE . Th e point of intersection of this circle 
with the minimal networ k we have constructe d is a Steiner point V  o f the 
required network (prov e this). I t remains to join V  t o A  an d B . 

These idea s are the basis o f the algorithm for constructing minima l net -
works with a given set of boundary points. Thi s algorithm has been realized 
on a computer. Fo r lack of space we do not give a detailed description of this 
algorithm here. Figur e 64 gives minimal tree s constructed by the computer. 

A computer experiment has enabled us to formulate a  number of conjec-
tures about the structure of minimal 2-tree s spanning the vertices of regular 
«-gons. Som e of these conjecture s have been proved. W e give here a small 
part of the results we have obtained. 
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PROPOSITION 8. For  any n , on  the vertices of a regular n-gon we can stretch 
a minimal  2-tree  of snake type  uniquely  up  to a motion {Figure  65) . 

PROPOSITION 9 . For  any n  =  6k  +  3 , where  k  >  0 , on  the  vertices  of a 
regular n-gon  we  can stretch a minimal  2-tree  of T-joint  type  {from  Figure 
57a) uniquely  up  to  a motion  {Figure  66) . This  network  is  invariant  under 
rotation about  the  center of the n-gon  through 120° . 

FIGURE 6 5 
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There is at least one infinite series of minimal trees—these are snakes with 
pairs of symmetrical growths situated close to the center of the snake (Figure 
67). Th e authors have obtained estimate s for the possible positio n of these 
growths, which we cannot give for lack of space. 

n =  3 0 

FIGURE 6 7 
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Figure 6 8 gives representative s o f a n apparently finite  serie s (a s a com-
puter experimen t shows ) o f minima l tree s realize d o n A2-gon s when n  = 
24, 30 , 36, 42. We note that since the corresponding tilings have one branch 
point and six ends, there can be no growths on these networks. 

Figure 69 gives an example of a network whose correspondin g tilin g has 
one branch point, four ends, and one growth. A  computer experiment shows 
that there may exist an infinite serie s of such minimal trees. 

These examples show that the problem of classifying minimal 2-trees whose 
sets of boundary points consist of the vertices of regular polygons is nontriv-
ial. 
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