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Introduction

This book arose as a result of writing up the lectures of A. T. Fomenko
delivered at the Moscow Mathematical Society (in Moscow University) for
students of mathematics, physics and mechanics (in the framework of the
cycle of lectures “Readings for students™). The writing up of the lectures for
the press has been carried out by A. A. Tuzhilin and A. T. Fomenko.

The reader who wishes to extend his study of the theory of minimal sur-
faces can turn to the following more special books and articles:

H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.

J. C. C. Nitsche, Vorlesugen tiber Minimalflichen, Springer-Verlag, Berlin-
Heidelberg-New York, 1975.

E. Giusti, Minimal surfaces and functions of bounded variation, Birkhauser,
Boston-Basel-Stuttgart, 1984.

A. T. Fomenko, Topological problems in topology. The geometry of length,
area and volume, Moscow University Press, Moscow, 1984; English transl.,
Gordon and Breach, 1990.

A. T. Fomenko, Variational principles in topology, “Nauka”, Moscow,
1982; English transl., Multidimensional minimal surface theory, Kluwer,
1990.

Dao Trong Thi and A. T. Fomenko, Minimal surfaces and Plateau’s prob-
lem, “Nauka”, Moscow, 1987; English transl., Amer. Math. Soc., Providence,
RI, 1991.

Yu. A. Aminov, Minimal surfaces, Kharkov University Press, Kharkov,
1978. (Russian)

R. Finn, Equilibrium capillary surfaces, Grundlehren der Mathematischen
Wissenschaften 284, Springer-Verlag, New York, 1986.

A. T. Fomenko, The Plateau problem, 2 vols., Gordon and Breach, London,
1990.

R. Osserman, 4 survey of minimal surfaces, Van Nostrand Reinhold, New
York-London-Melbourne, 1969.

R. Courant, Dirichlet’s principle, conformal mapping, and minimal sur-
faces, Interscience, New York, 1950.

vii
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APPENDIX

Steiner’s Problem for Convex Boundaries

In Chapter 1 we spoke about Steiner’s problem, which, we recall, consists
in constructing a network of minimal length joining n given points in a
plane. In this Appendix we present recent results of A. O. Ivanov and A.
A. Tuzhilin [41], in which they obtained a classification of nondegenerate
minimal networks without cycles and with convex boundary up to planar
equivalence (Theorems 1 and 2). They discovered that all such minimal
networks can be described as dual graphs to “planar tree tilings”; for the exact
definition of these see below. They also produced an algorithm, realized on a
computer, for calculating all networks of the given type for any fixed number
of boundary points. Also, the authors found several infinite series of minimal
networks with a regular convex boundary and individual interesting examples
of such networks not contained in them. In the latter case it is important
that the set of boundary points of the network is fixed, which considerably
complicates the investigation.

1. General statement of the problem. We shall understand the minimality
of a network in the following sense: any small fragment of the network has
the shortest length. We recall that soap films have a similar property. When it
is a question of shortest length, we need to distinguish the class of admissible
variations of the network. First of all, by analogy with the way we defined
minimal surfaces by means of the variational principle, we restrict the ad-
missible variations just to those that leave fixed the initial points spanned
by the network (henceforth we shall call these points the fixed points of the
network). Two possibilities arise.

The first possibility: under a deformation of the network its vertices do
not split, that is, variations of the type shown in Figure 48a are forbidden. In
this case it can be shown (see [33], for example) that the network is minimal
if and only if for each moving point the sum of the unit vectors having the
directions of the segments going out from it is equal to zero. In this sense the
network given in Figure 48a is minimal. In Figure 48b we give an example
of a network that is not minimal in this sense.

The second possibility. The vertices of the network are allowed to split. In

115
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FIGURE 48aA

/

FIGURE 48B

this case under a deformation of the network in the direction of decreas-
ing length its vertices split intc points of degree at most three, and if three
segments now meet at a vertex, then the angles between them are equal to
120°; if two segments meet at a vertex, then the angle between them is at
least 120° and this vertex is fixed; also, each vertex from which exactly one
segment goes out is fixed.

All these effects can be observed in the following simple experiment. We
take a flat sheet of plexiglass and drill #» small holes in it (Figure 49a). These
holes will correspond to the fixed points of the network. From a piece of string
we cut a set of n—1 segments. On one end of n—2 of the segments we make
a small loose loop. We take the segment without a loop and pass it through
an arbitrary number of loops. We can again pass the ends of the resulting
configuration through a certain number of loops and so on, continuing this

£,
AN
e

&, &)
FIGURE 49A
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FIGURE 498

process until all the segments have been used. We note that the number of
ends of the resulting configuration is equal to the number of holes.

We place our sheet horizontally and pass all the ends of the resulting con-
figuration upwards through the holes so that through each hole strictly one
end passes. To each end we fasten a load, the loads being equal in mass.

After the system arrives at an equilibrium position, the network of string
takes the form of a minimal network in one of the senses described above
(Figure 49b). More concretely, if all the loops are separated, without inter-
fering with one another, we obtain a minimal network in the second sense.
But if at least one pair of loops is coupled, then there is a disallowed vertex
in the resulting network, and the network is minimal only in the first sense.

Henceforth we shall study networks that are minimal in the second sense. In
order to state our problem more precisely, we give the following definitions.

DEFINITION 1. A topological Steiner network is defined as a connected
graph for which the degree of the vertices is at most three.

A realization of a topological network in a plane is called a planar network.
To give a stricter definition we recall that a planar graph is a collection of
curves in the plane that intersect only at their ends.

DEFINITION 2. A planar Steiner network is a planar graph for which there is
a one-to-one correspondence with a topological Steiner network under which
vertices correspond to vertices, curves correspond to edges, and the incidence
relation is preserved.

A set of fixed points of a planar Steiner network is defined as an arbitrary
subset of the set of vertices of the corresponding planar graph in which there
occur all vertices of degree one or two (which agrees with the description of
possible types of vertices of a network that is minimal in the second sense).
Clearly, a set of fixed points of a network is not uniquely defined.

DEeFINITION 3. A planar Steiner network is said to be minimal if it is
minimal for some set of fixed points of it.

THE GENERAL STEINER PROBLEM. Describe the class of Steiner networks
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that can be realized as minimal networks. More precisely, suppose we are
given a class {M} of finite sets M of points of the plane. It is required to
describe all Steiner networks that can be realized as minimal networks with
a set of fixed points lying in this class.

REMARK. In Chapter 1 we talked about closed minimal networks on a
sphere (we needed to study them to prove Plateau’s principles). The prob-
lem of describing closed minimal networks on a closed two-dimensional ori-
entable surface of genus g is an interesting generalization of Steiner’s prob-
lem. A description of special classes of such networks was recently obtained
by Shklyanko [34].

To start with, we consider as the class {M} all possible subsets of points
of the plane.

ProBLEM 1. Describe all Steiner networks that can be realized as minimal
networks.

The class {M} is the widest of all possible classes. However, it is not
possible to realize all Steiner networks even on this. Figure 50a shows an
example of a topological Steiner network that cannot be realized as a planar
network, and hence as a minimal network. Figure 50b shows a planar Steiner
network that cannot be realized as a minimal network. We note that in both
cases all the trouble arises because of the presence of cycles. It turns out that
this is the only obstacle to the realization of a Steiner network as a minimal
network.

FIGURE 50A

FIGURE 50B
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PRrROPOSITION 1. Any acyclic topological Steiner network (Steiner tree) can
be realized as a planar network. Moreover, any planar Steiner tree can be
realized as a minimal network for some set M of fixed points.

We say that a Steiner network is degenerate if it has at least one vertex
of degree two. We note that nondegenerate acyclic Steiner networks, by
definition, are 2-trees. These networks have vertices of degree one, which
we call boundary vertices, and vertices of degree three, which we call branch
points. For such networks it is natural to take the boundary points as fixed,
and we shall do this from now on. Starting from here we shall study acyclic
nondegenerate minimal Steiner networks, that is, minimal 2-trees.

On the set of all planar graphs we can introduce a natural equivalence
relation. We say that two planar graphs are equivalent if there is a homeo-
morphism of the plane onto itself (preserving the orientation) that takes one
planar graph into the other. It is easy to see that there are only finitely many
equivalence classes of 2-trees with a fixed number of boundary points.

The following natural question arises: how many such equivalence classes
are there for a given number n of boundary points? From Proposition 1 it
follows that there are exactly as many of them as there are equivalence classes
of 2-trees. The number of the latter was calculated in 1964 by Brown [35] in
implicit form. The numerical results for n < 23 can be found in [36].

We note that to solve this problem, instead of planar trees we can consider
the dual objects, namely triangulations by diagonals of convex n-gons. Let
us describe in more detail the correspondence between planar 2-trees and
triangulations.

Suppose we are given a 2-tree with n boundary points. Consider a convex
n-gon. We number the boundary points of the 2-tree in succession, going
around anticlockwise, for example. Similarly we number the sides of the
polygon. These numberings generate a natural one-to-one correspondence
between the vertices of the 2-tree and the sides of the n-gon.

Obviously, the boundary points incident with the same branch point have
consecutive numbers. For each pair of such points we consider the corre-
sponding pair of sides of the n-gon and construct a triangle on these sides,
drawing a diagonal of the polygon (this can always be done, since these sides
are adjacent).

We cut out all the triangles obtained in this way and simultaneously discard
from the 2-tree all the edges going out from the boundary points. Obviously,
we again obtain a convex polygon and a 2-tree, and the number of vertices
and the number of boundary points, respectively, are equal.

Between the boundary points and sides of the resulting objects there is
a natural one-to-one correspondence, which is obtained directly from the
correspondence established at the previous stage.

We repeat the procedure just described until the 2-tree is exhausted. (The
last stage is a little more delicate, but it does not present any essential diffi-
culty, so we leave the details to the reader.)
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As a result we obtain a partition of the convex n-gon into triangles, which
is called a triangulation by diagonals corresponding to a planar 2-tree.

Conversely, if we are given a triangulation of a convex n-gon by diagonals,
it is easy to construct the corresponding 2-tree. As boundary points of such a
tree we can take the midpoints of the sides of the n-gon, as branch points the
centers of the triangles of the triangulation, and as edges the segments joining
the centers of adjacent triangles and also the segments joining the midpoints
of the sides of the n-gon to the centers of the triangles constructed on these
sides.

Two triangulations are said to be equivalent if they are equivalent as planar
graphs. In each equivalence class it is convenient to choose as a representative
the corresponding triangulation of a regular polygon inscribed in the unit
circle. Two triangulations of such regular polygons are equivalent if they are
obtained from each other by a motion of the plane. It is easy to see that
equivalent planar 2-trees correspond to equivalent triangulations of convex
n-gons by diagonals and conversely.

Thus, the following proposition is true.

PROPOSITION 2. The equivalence classes of planar 2-trees with n bound-
ary points are in one-to-one correspondence with the equivalence classes of
triangulations of convex n-gons by diagonals.

Figure 51 shows all possible triangulations in the cases when n =3, 4, 5,
6. We note that for n < 6 the triangulation by diagonals is unique (up to
equivalence), but for n = 6 there are three different triangulations.

Another natural class {M} of boundary points of networks is the class of
extremal sets. We recall that a set is called extremal if it lies on the boundary
of some convex set. If the set of boundary points of a network is extremal,
such a network is called a network with convex boundary .

A
A
n =3 n =4 n=>5
/NN

n==~

FIGURE 51
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PrOBLEM 2. Describe all minimal Steiner networks with convex boundary.

REMARK. This problem can be generalized. For this we need the following
definition.

DEFINITION 4. Suppose we are given an arbitrary finite set M of points
of the plane. We split it into classes, which we call levels of convexity.

In the first level of convexity we put all points lying on the boundary of
the convex hull of M . Consider the set M’ obtained from M by discarding
all points of the first level.

The second level of convexity contains the points of the first level of con-
vexity for the set M’ (if M’ is not empty).

Continuing this operation until all the original set M is exhausted, we
obtain the necessary partition.

We observe that extremal sets, and only they, have exactly one level of
convexity.

ProBLEM 2’ . Describe all minimal Steiner networks for which the number
of levels of convexity of sets of boundary points does not exceed some fixed
number.

Below we give a complete solution of Problem 2 for 2-trees.

One more important variant of the general Steiner problem is obtained if
for the class {M} of sets of boundary points of networks we consider the
class consisting of exactly one set.

PrOBLEM 3 (the classical Steiner problem). Describe all minimal Steiner
networks whose set of boundary points is fixed.

An interesting variant of this problem is the following.

ProBLEM 3'. Describe all minimal Steiner networks whose set of bound-
ary points consists of the vertices of a regular polygon.

Below we give some results of A. O. Ivanov and A. A. Tuzhilin, devoted
to investigations of Problem 3’ again for 2-trees.

In connection with the statement of the general Steiner problem, the fol-
lowing interesting question arises: is there a set M consisting of n points
on which all equivalence classes of planar 2-trees with n boundary points
can be realized as minimal networks? For n = 3,4, 5 we can take as such
a set the vertices of the corresponding regular n-gon. For n > § this is not
so. From Proposition 3 (see below) it follows that, generally speaking, such
a set M must have quite a complicated structure (for example, it cannot be
extremal).

2. Classification of minimal 2-trees with convex boundary. An important
role in the classification of minimal 2-trees with a convex set of boundary
points is played by the so-called twisting number; we begin this section with
a definition of it.

For each branch point of a planar 2-tree there is a circular neighborhood
whose intersection with the tree consists of three smooth nonclosed curves
going from its center, not having any other points of intersection, and going
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out to the boundary of this neighborhood. Clearly, the intersection of the
boundary of the neighborhood (the circle) with the tree consists of three
points. We choose one of these curves and call the edge, of which it is a part,
incoming. We call the remaining two edges outgoing. We call the partition
of the edges incident with a point into incoming and outgoing an orientation
of the neighborhood of the branch point.

Now suppose that the plane is oriented. Then we are given a positive
direction for motion along each circle lying in this plane. This gives the
possibility of naturally ordering a pair of outgoing edges in such a way that
a motion along the circle from the first edge to the second along an arc that
does not intersect an incoming edge takes place in the positive direction. We
assign the number —1 to the first outgoing edge, and +1 to the second.
An oriented neighborhood of a branch point together with these numbers is
said to be clothed, and the numbers themselves are called clothings of the
corresponding edges of the tree.

We recall that a path joining a pair of edges of a planar 2-tree is defined as a
minimal connected subtree containing these edges. We now give a definition
of the twisting number between a pair of edges of a planar 2-tree.

Let a and b be a pair of edges of a planar 2-tree. We choose a path y
joining a and b. We orient the path y from a to b. Consider all branch
points lying inside y. The orientation of y canonically specifies orientations
of small neighborhoods of these branch points; for each point we shall take as
incoming an edge for which the point is an end. We fix a certain orientation
of the plane and clothe the neighborhoods of all the branch points under
consideration. A path y together with clothings of all its edges will be called
clothed.

DEFINITION 5. The twisting number tw(a, b) of an ordered pair (a, b) of
distinct edges of a 2-tree is defined as the sum of the clothings of all outgoing
edges of the oriented path y going from a to b. We take tw(a, a) to be
Zero.

For the edges a and b of the 2-tree shown in Figure 52a the twisting
number tw(a, b) is five, while for the tree in Figure 52b it is zero.

~ S~
E I
tw(a,b) = 5 tw(a,b) = 0

FIGURE 52a FIGURE 528
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Let us mention a property that the twisting number has (we leave the proof
to the reader as a useful exercise):

SKEW-SYMMETRY: tw(a, b) = —tw(b, a).

DEFINITION 6. The twisting number tw(D) of a planar 2-tree D is defined
as the largest twisting number of all possible ordered pairs of edges of this
tree:

tw(D) = maxtw(a, b).

The next proposition is a key result in obtaining a complete classification

of minimal 2-trees with convex boundary.

PROPOSITION 3. The twisting number of a minimal Steiner 2-tree with con-
vex boundary is not greater than five.

REMARK. From the classification theorems (see below) it follows that this
bound is exact: any planar 2-tree with twisting number not greater than five
can be realized as a minimal tree with an extremal set of boundary points.

It is convenient to state the classification theorem in the language of tilings.
We define a (triangular) tiling of the plane as a canonical partition of the
plane into regular congruent triangles, which we call the cells of the tiling.
This partition can be obtained as follows.

Let A and B be families of equally spaced parallel lines, and suppose that
the angle between the directions of the lines of 4 and B is 60°. Through
the points of intersection of lines of 4 and B we can uniquely draw a third
family C of parallel lines so that together the families 4, B, and C give a
partition of the plane into regular congruent triangles. We call these lines the
directrices of the tiling of the plane, and the six possible directions of these
lines the directions of the tiling.

DEFINITION 7. We define a tiling as an arbitrary collection of cells of a
tiling of the plane.

In exactly the same way as from a triangulation of a convex polygon by
diagonals, from the tiling we can construct a planar graph, which we call
the dual graph of this tiling. We call a tiling connected if its dual graph
is connected. The tilings corresponding to the connected components of
the dual graph are called the components of the tiling. Henceforth we shall
almost always be dealing with connected tilings, so we shall omit the word
“connected” provided it does not lead to misunderstanding.

We note that the dual graph of an arbitrary (connected) tiling is actually
a minimal Steiner network.

DEFINITION 8. A tiling whose dual graph is a 2-tree is called a tree tiling.

In fact, not every equivalence class of planar 2-trees has as its representa-
tive the dual graph of some tree tiling. Nevertheless, the following proposition
is true.

PrOPOSITION 4 (on a tiling realization). Any planar 2-tree with twisting
number no greater than five can be realized as the dual graph of some tree
tiling.
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FIGURE 53

REMARK. Although some 2-trees with twisting number greater than five
can be realized as the dual graph of a tree tiling (construct an example), the
bound on the twisting number given in Proposition 4 is exact. Figure 53
shows an example of a planar 2-tree with twisting number equal to six that
cannot be realized as the dual graph of a tree tiling.

Thus, it follows from Propositions 3 and 4 that for a classification of
minimal 2-trees with convex boundary it is sufficient to describe all tree tilings
whose dual graphs have twisting number not exceeding five (henceforth for
brevity we shall call the twisting number of the dual graph of a tree tiling the
twisting number of the tiling itself).

To obtain such a classification we must first of all choose the building
blocks from which all possible tree tilings are formed. We choose three types
of building blocks, which we shall call /inear parts, branch points, and growths.
Roughly speaking, every tree tiling is a collection of linear parts joined to one
another by means of branch points and equipped with growths. We now give
more formal definitions.

DEFINITION 9. We define a snake as a tiling placed between two adjacent
directrices of a tiling of the plane (Figure 54).

An extreme cell is defined as a cell of a tiling, two sides of which do not
lie inside the tiling. An interior cell is defined as a cell, all of whose sides lie
inside the tiling.

DEFINITION 10. We call an extreme cell of a tiling a growth if the only cell

VANERYAVS
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FIGURE 54
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of the tiling adjacent to it is internal. We call the tilings a skeleton if it does
not have growths.

Figure 55 shows a snake with growths.

In order to obtain a skeleton, for each interior cell of the tiling we discard
one of the growths adjoining it (if there are any).

Next, we consider a tree skeleton and cut out from it all internal cells. If
there is at least one internal cell, the skeleton splits into components.

DerFINITION 11. The components into which a tree skeleton splits after
discarding internal cells are called the linear parts of the skeleton. The branch
points are the components into which a tree skeleton splits after discarding
the linear parts.

Let us give a complete list of possible branch points of tree skeletons.

PROPOSITION 5. In tree skeletons there can occur exactly five types of branch
points, shown in Figure 56.

REMARK. We should mention that the linear parts can be fastened to each
branch point in different ways. In all there are 18 ways of fastening (list
them), which we shall call forks. Figure 57 shows the two most important
types of forks, which we shall call T-joints.

We now describe the structure of the linear parts. For this we give the
more general definitions of a linear 2-tree and a linear tiling.

DEFINITION 12. A planar 2-tree is called linear if the triangulation of a
convex polygon corresponding to it has exactly two extreme triangles (an
extreme triangle of a triangulation is a triangle of which two sides coincide
with sides of the polygon).

We note that the triangulation corresponding to a linear 2-tree does not
have internal triangles. Therefore, for such a triangulation there is a natural
linear ordering of its triangles so that the extreme triangles are the first and
last in this order.
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Clearly, there are exactly two possibilities for ordering the triangles of a
triangulation, depending on which of the two extreme triangles is taken as
the first. The choice of one of these two orders is called an orientation of the
linear 2-tree and the triangulation corresponding to it.

Now suppose that the dual tree of some tree tiling is linear. In this case
the tiling is also said to be linear. We note that the linear parts are actually
linear tilings.

We now consider an arbitrary linear tiling and orient it. We then show how
we can split such a tiling into a number of snakes, which we call segments of
the linear tiling.

Similarly we define all the later segments. Thus, we can state the following
result.

PROPOSITION 6. Every linear tiling, in particular, the linear part of an ar-
bitrary tree tiling, is the union of a linearly ordered family of distinct disjoint
snakes (segments of the linear tiling), and the initial cell of each subsequent
snake is adjacent to the end cell of the previous one.

In each nonextreme cell of a skeleton we join by segments the midpoints of
its sides inside the skeleton. In each extreme cell we draw a midline parallel
to the midline of the adjacent cell already constructed.

DEFINITION 13. The spine (vertebra) of a linear part (cell) is the part of
the graph constructed above that is contained in this linear part (cell).

If we allow the twisting number of the skeleton to take only values not
exceeding five, then there arise essential restrictions on the structure of the
linear parts of such a skeleton. Namely, the following proposition is true.

PROPOSITION 7. For each linear part of a tree skelelton with twisting number
not exceeding five there is a directrix of the tiling of the plane on which the
spine of this linear part projects one-to-one. Such a directrix is called a directrix
of the linear part.

REMARK. Generally speaking, a directrix of a linear part is not unique.
For a snake, for example, there are three such directrices. If the twisting
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number of the linear part is greater than five, then such a part does not have
directrices.

DEFINITION 14. A snake is defined as a linear part for which there are three
directrices. A stairs is defined as a linear part for which there are exactly two
directrices. A linear part that has exactly one directrix is called a broken
snake (Figure 58a).

REMARK. A linear part that is a snake in the sense of Definition 9 may not
be a snake in the sense of the last definition. Figure 58b shows an example of
such a part. Of course, it all depends on how the given linear part is fastened
to the branch points.

We have thus described all the building blocks from which all possible
tree tilings are formed. Now, in order to state the classification theorems, it
remains to define the operation of reduction for skeletons of tree tilings with
twisting number not exceeding five. This operation consists in cutting out
certain fragments of the tiling.

Firstly, we can cut from the skeleton any part of a linear part containing
an extreme cell.

Secondly, inside the skeleton we can discard any snake Z consisting of
an even number of cells and occurring in some linear part. We observe that
the snake Z is a parallelogram. Let us consider the pair of sides of this
parallelogram not parallel 1o the spine of this snake. We shall call these sides
the bounding edges of the snake Z . It turns out that the following assertion
is true.

ASSERTION. Let Z be an arbitrary snake consisting of an even number of
cells and occurring in some linear part of the skeleton D with twisting number
AEA
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no greater than five. Let I, and I, be the bounding edges of Z . Let D, and
D, be the connected components into which D splits after discarding Z from
it. Then there is a translation T such that the intersection of D, and t(D,)
is I, = t(l,) . Moreover, D, Ut(D,) is a tree skeleton, whose twisting number
is not greater than the twisting number of D .

We say that the skeleton D, U t(D,) is reduced from the skeleton D by
cutting out the snake Z .

REMARK. By means of the reduction operation we can obtain a stairs from
a broken snake and a snake from a stairs. By reduction we can turn several
branch points into one point (of a different type). This also happens with
forks. Figure 59 shows the reduction of several forks of T-joint type to a
fork of a more complicated form. The reduction operation also enables us
to discard forks (we need to apply reduction several times).

We are now in a position to state a theorem that classifies skeletons of tree
tilings with twisting number not exceeding five.

THEOREM 1 (classification of skeletons) (Ivanov, Tuzhilin). All skeletons
with twisting number not exceeding five are obtained by reduction from the
three canonical types of skeletons given in Figure 60 .

A broken snake is represented by three dashes, and the dashes are parallel
to its directrix.

A stairs is represented by two intersecting dashes, and the dashes are parallel
to its two directrices.
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A snake is represented by one dash, and the dash is parallel to the spine of
the snake.

Forks of T-joint type correspond to points (see Figure 57).

REMARK. If we consider the diagrams of the canonical types as planar 2-
trees, it is easy to observe that they represent all possible planar 2-trees with
six endpoints.

We now describe the possible positions of growths on a skeleton. For this
we need the concept of a profile of a skeleton.

The contour of a tiling is defined as the boundary of the tiling regarded as
a closed subdomain of the plane. Consider an extreme cell of the skeleton
and discard from the contour of the skeleton that edge of it that intersects
the vertebra of this cell. We go through all the extreme cells of the skeleton,

=
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performing the same operation. The contour of the skeleton splits into broken
lines, which we call the profiles of the skeleton. An outer side of a profile is
called an outer side of it with respect to the skeleton (Figure 61).

We note that the profiles of the skeleton of a tiling with twisting number
not exceeding five have the same properties as the spines of the linear parts of
such skeletons. Therefore for the corresponding profiles we keep the names
snake, stairs, and broken snake.

THEOREM 2 (on the position of growths). (Ivanov, Tuzhilin) 1. On a
profile that is a snake we can plant any number of growths (Figure 62a).

2. For a stairs-profile there are two possibilities.

a) The growths are placed arbitrarily only on segments in one direction
(Figure 62b).

b) We are given a partition of the stairs into three successive broken lines,
the middle one of which may be empty. The middle broken line consists of an
even number of links and the angle between the first pair of links, measured
from the outer side, is equal to 120° .

There are no growths on the middle broken line. On the first broken line
the growths can be situated arbitrarily on the segments that have the direction
of its last link, and on the last broken line they can be situated on segments
having the direction of its first link (Figure 62c).
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3. We present a profile that is a broken snake as the union of three parts,
the outer ones of which are maximal possible stairs, and the inner one, which
may be empty, is all the rest. On the middle part we can plant arbitrarily
many growths only on segments parallel to the directrix of the profile. On the
outer stairss we can plant growths as follows.

Consider a segment of the profile adjacent to an outer stairs. If the angle
between it and the neighboring segment a of the stairs, measured from the
outer side of the profile, is equal to 120°, then growths may be fastened only
on segments of the stairs parallel to the segment a. If this angle is equal to
240°, then we can plant growths on the stairs according to rule 2 (Figure
62d, e).

Now the classification of possible minimal 2-trees with a convex set
of boundary points is obtained from Propositions 3 and 4 and Theorems 1
and 2.

We can show that any planar 2-tree that is the dual graph to the tilings
described in Theorems 1 and 2 can be realized as a minimal tree with a
convex set of boundary points. Thus, the resulting classification is complete.

3. Some results from the investigation of minimal networks that span the
vertices of regular polygons. We begin this section with a description of
a simple algorithm: for a given finite set M of points of the plane this
algorithm enables us to construct a minimal network spanning it by means
of compasses and a straight edge (the idea of this algorithm is due to Melzak
[42]). For this it is sufficient to know the structure of this minimal network
as a planar 2-tree and the correspondence between the endpoints of this 2-
tree and points of the set M . Recall, that the vertices of a minimal network
that do not belong to M are called Steiner points. Let us illustrate the idea
behind this algorithm by an example of constructing the minimal network
for the set M of vertices of a triangle 4ABC, none of whose angles exceeds
120°.

We choose any pair of vertices of the triangle, say 4 and B, and construct
an equilateral triangle ABD on the side 4B sothat C and D lie on opposite
sides of 4B . We then describe the circle ABD.

Clearly, the only Steiner point V' of the minimal network lies on the minor
arc d of this circle joining A and B. Moreover, V lies on the ray DC
(prove this). Joining V to the vertices of the triangle ABC we obtain our
minimal network (Figure 63a).

If the triangle ABC has an angle greater than or equal to 120°, then the
corresponding minimal network is not a 2-tree. In this case we can carry out
the same construction, but the angles between the segments joining the point
V of intersection of the ray DC and the circle to the vertices of the triangle
will not be equal.

For a quadrilateral ABCD the construction consists of two similar steps.
Figure 63b shows a minimal network spanning the vertices of a square. We
split the vertices of the square into pairs consisting of bounding vertices of
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the network for which the edges of the network going out from them meet at
one Steiner point, and choose one of these pairs, say 4 and B. We denote
by V the Steiner point at which the edges of the minimal network going out
from A and B meet, and the other Steiner point by W .

On AB we construct an equilateral triangle ABE . We place the vertex
E of this triangle in such a way that £ and V' lie on opposite sides of AB
(Figure 63c).

We now consider the triangle CDE and describe the minimal network for
it in the way described above. The Steiner point of this network coincides
with W .

A minimal network for the vertices of the square 4BCD is obtained as
follows. We describe the circle ABE . The point of intersection of this circle
with the minimal network we have constructed is a Steiner point V' of the
required network (prove this). It remains to join ' to 4 and B.

These ideas are the basis of the algorithm for constructing minimal net-
works with a given set of boundary points. This algorithm has been realized
on a computer. For lack of space we do not give a detailed description of this
algorithm here. Figure 64 gives minimal trees constructed by the computer.

A computer experiment has enabled us to formulate a number of conjec-
tures about the structure of minimal 2-trees spanning the vertices of regular
n-gons. Some of these conjectures have been proved. We give here a small
part of the results we have obtained.



APPENDIX. STEINER’S PROBLEM FOR CONVEX BOUNDARIES 133

@@

/ v
FIGURE 64A FIGURE 64B

ProrosITION 8. For any n, on the vertices of a regular n-gon we can stretch
a minimal 2-tree of snake type uniquely up to a motion (Figure 65).

PROPOSITION 9. For any n = 6k + 3, where k > 0, on the vertices of a
regular n-gon we can stretch a minimal 2-tree of T-joint type (from Figure
57a) uniquely up to a motion (Figure 66). This network is invariant under
rotation about the center of the n-gon through 120°.

FIGURE 65
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FIGURE 66

There is at least one infinite series of minimal trees—these are snakes with
pairs of symmetrical growths situated close to the center of the snake (Figure
67). The authors have obtained estimates for the possible position of these
growths, which we cannot give for lack of space.
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Figure 68 gives representatives of an apparently finite series (as a com-
puter experiment shows) of minimal trees realized on n-gons when n =
24, 30, 36, 42. We note that since the corresponding tilings have one branch
point and six ends, there can be no growths on these networks.

Figure 69 gives an example of a network whose corresponding tiling has
one branch point, four ends, and one growth. A computer experiment shows
that there may exist an infinite series of such minimal trees.

These examples show that the problem of classifying minimal 2-trees whose
sets of boundary points consist of the vertices of regular polygons is nontriv-
ial.
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