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K(p), B
B,(x°)
kg(x°)

Kg(x°, 1%
||
a.e.

du/dN

Symbols

usually a bounded (connected) open set
the closure of Q

the boundary of Q

ACc B means AC B

QccQ

the distance between x and the set A, ie., d(x,4) =
infyeAic?

Q,cQand d(Q,,0Q)=p

d, =d(x,0Q)

d,, =min{d,, d}

usually the cylinder Q x (0, T

the parabolic boundary of Q, ie., 8°Q = Q x {t = 0} U8Q
x [0, T]

Q' CQ and d(Q',8°0)>0

Q,<Q and d(Q,,0°Q)=»

the distance between the point P = (x, t) and 8"Q

a’,,l,,2 = min{d,,I , sz}

a ball with radius p

a ball with radius p, centered at x°, i.e., {x:|x- xol < p}

a square with length 2R, centered at x°=(x? yeus ,x0

) s 1€,

{x:]xi—x?|<R, 1<i<n}

kg(0) x (0, T)

the measure of the set 4, or |4| = meas 4

almost everywhere

empty set

N is the normal at the boundary, du/ON in general is
the normal derivative of u along the boundary; usually we
take N to be the inner one.

the area of the unit sphere in R”

the volume of the unit ball in R”
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lJull,

Ck +a

2,1
C

2 14+4/2
C+l,+/

i“la,g
Iula,Q

SYMBOLS

lull, = (J lul” dx)'”, Q given

u = u(x,,...,x,) is continuously differentiable up to
kth order and its kth derivatives satisfy a Holder condition with
exponent a (0<a<1)

u=u(x,...,X,,t) twice continuously differentiable in

X, ..., X, and continuously differentiable in ¢

u;; (1 <1i,j < n) and u, are Holder continuous in x

ij .
with exponent A and Holder continuous in ¢ with exponent

/2
ueC(Q) (0<axgl), |ul, o is the Holder constant

ueC***Q), 0=Qx (0, T] and
lu(x, ) —u(x', )|
(x = x'|? + |t = £])*

[ul, o =sup

The function space consisting of all functions in Q whose
weak derivatives up to kth order belong to L?(Q)

The closure (under the VV;(Q)-norm) of functions in
ka(Q) which vanish near Q. In other words, it is the
closure of C;°(Q) under ka(Q)-norm

Q = Q x (0, T], the function space consisting of all func-

tions in Q whose weak derivatives in x up to kth order
and weak derivatives in ¢ up to k/2 order (k is even) belong

to LP(Q)
a* = max{a, 0}
a = -min{a, 0}
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Epilogue

Our discussion on quasilinear and fully nonlinear equations is far fromni
complete. Many important aspects, such as the oblique derivative problem
for fully nonlinear equations, as well as the applications of fully nonlinear
equations, are left out. Hopefully they will be covered in a future publica-
tion.
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