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Preface

“When I was a student, during the First World War,” recalls F. Klein,
“Abelian functions were considered (under the influence inherited from
Jacobi) to be the indisputable pinnacle of mathematics. Each of us, natu-
rally, had some ambition to make an advance in this area on his own. But
now? It is doubtful whether the younger generation is familiar with Abelian
functions at all.”(l)

More than half a century has passed since the time of this quotation and the
interest in the “temporarily outdated” (as Klein called it) theory of Abelian
functions is again on the rise. However, today it has become quite different
from the theory that Klein was discussing. It is considered not as a chapter of
the theory of functions, but rather as a chapter or even an area of application
of the ideas and methods of commutative algebra, algebraic geometry, and
complex analysis. A typical example of such interpretations is the book “In-
troduction to Algebraic and Abelian Functions” by the algebraist S. Lang.(z)
We may also mention several books, for example: “Introduction a I’étude des
variétés kahleriennes” by André Wei1(3) (mainly Chapter VI) and “Abelian
Varieties” by D. Mumford(4) (in collaboration with K. P. Ramanujan).

With all due respect to these excellent monographs, we still would like to
offer the reader a different exposition of the subject. Our exposition is based
on the ideas and methods of the classical theory of functions. Here the
reader is assumed to know only a minimal number of facts about functions
of several variables, such as are commonly presented in a standard university
course on the theory of analytic functions. All the additional material that
will be needed is given in the appropriate parts of this book.

Our exposition is distinguished by a detailed historical introduction (Chap-
ter I), covering the period up to the middle of the nineteenth century during
which the initial accumulation of the ideas and facts took place. In the next

(')F. Klein, Vorlesungen tiber die Entwicklung der Mathematik im 19. Jahrhundert, Part 1,
Springer, 1926.
(Z)S. Lang, Introduction to algebraic and Abelian functions, Addison-Wesley, 1972.

(J)A. Weil, Introduction a I'étude des variétés kihleriennes, Actualités Sci. Indust., no. 1267,
Hermann, Paris, 1958.
(A)D. Mumford, Abelian Varieties, Oxford Univ. Press, 1970.

vii
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three chapters we present a systematic construction of the foundations of
the theory of Abelian functions as considered as a study of meromorphic
functions of p complex variables with the maximum number ( 2p ) of inde-
pendent periods. This theory includes as a special, and in some sense trivial,
case the theory of elliptic functions (p = 1). In the three main chapters
we have been considerably influenced by Fabio Conforto’s book “Abelsche
Functionen und algebraische Geometry,” edited by W.Grobner, A. Andreotti,
and M. Rosati.(s) This book was published in 1956 in the series “Grundla-
gen der mathematischen Wissenschaften” in which Klein’s lectures also ap-
peared. We note that an exposition which is similar in spirit can be found in
C. L. Siegel’s book “Analytic functions of several variables”(ﬁ) (Chapters IV-
IX). The contents of this book which we now offer to readers (undergraduate
and graduate students, as well as to university teachers of mathematics) was
the subject of a course given in the fall semester of 1976/77 in the Depart-
ment of Professional Development of University Instructors at the Moscow
State University.

In conclusion I thank my daughter L. A. Markushevich, who assisted me
in the preparation of the manuscript for publication.

A. Markushevich

(*)See footnote (!8) on page 44.

(G)C. L. Siegel, Analytic functions of several complex variables, Institute for Advanced Study,
Princeton, N. J., 1950; Russian transl., IL, Moscow, 1954,



Appendix

§A. Skew-Symmetric Determinants
A.1. The Pfaffian. A matrix
A=(ay), j, k=1,...,n, (A.1.1)
is called skew-symmetric if
a,=-a, (in particular, a, = 0). (A.1.2)

The corresponding determinant |A4| is also called skew-symmetric.
The equalities (A.1.2) can be written in the form

A=-A. (A.1.2)

This means that |/I| = (-1)"|4| for the determinant |4|. On the other
hand, |/ﬂ = |4|. Hence |4| = (=1)"|4] and therefore when n is odd we
have 4] =0.

Let n =2m —1. Consider the minors M x and M, of the determinant.
If we transpose M, ;> We geta minor of the matrix 4 with index Jj, k.

Because of (4.1.2') it follows that M, = (—1)""M1k =M, . Thus
M,=M,, j,k=1,...,2m-1 (A.1.3)

We denote by A Jk the term corresponding to the entry a k in the expan-

sion for the determinant |A4|. Then A, = (-1 kM & » and under the same
conditions we have

A=A, j, k=1,...,2m~-1. (A.1.4)
Since |A4| = 0, it follows in addition that
2 .
A“Akk—Ajkzo, j, k=1,...,2m-1. (A.1.5)

In fact, if the rank of the matrix A4 is less than n» — 1 = 2m — 2, then all
A = 0 and (A.1.5) obviously holds. If, on the other hand, this rank is equal

to n — 1, we conclude, on the basis of the equations ZZ:I ajkAjm =0,

153



154 APPENDIX

which hold for each m = 1,..., n, that the n-dimensional vectors with
coordinates A4,, , ..., 4,, are collinear so that
%:‘:Zk =.--=j"k; (A.1.5)
1] 2y nj
and in particular
A _ Ay
AJ! Ak]

By (A.1.4), it follows from this that (A.1.5) is true.

We now turn to the case » = 2m and prove that in this case there exists a
form P of degree m in the elements of the determinant of A, all of whose
coefficients are integers, and with the property that

14| = #°. (A.1.6)

This form can be constructed explicitly in terms of the entries of the matrix
A . Itis called the Pfaffian after Johann Friedrich Pfaff (1765-1825), an older
contemporary of Gauss. However, we will not give the actual construction
of the Pfaffian here and will limit ourselves to proving the theorem stated
above.

It is most easily proved by induction. In the case n =2 we have

0 a,
-a, 0

2

4] = =4

and we can set & = a,,. Assume that the theorem has been proved for
n=2m-2 (m >2). We consider a determinant B of order 2m — 1 which

is a minor of the entry a,, ,, in |4]:
|B| = al,l a4 am-1 l
Dm-1,1 " Ym—1,2m-1
It is obvious that |B] is skew-symmetric simultaneously with |4|. Since the
principal minors 4, (r =1, ..., 2m — 1) of the latter determinant are also

skew-symmetric and their order is 2m — 2, by the inductive assumption we
get
A =P

. -, r=1,...,2m-1, (A.1.7)
where #_ is a form of degree m —1 in the corresponding elements a, ) with
integral coefficients.

Assume that among the forms % there is at least one which is not iden-
tically zero. Without loss of generality, we can assume that it is &, . The
equality 4,, = 9‘7]2 is satisfied by the two forms &, and —-&, . We choose
one of them and denote it by &, . We now choose &, , ..., %, . (ateach
step we select one of the two forms which differ only by the factor —1) in
such a way that we have

A, =P £, r=1,...,2m-1,
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by (A.1.5). Now by (A.1.5") we have
ApA, — A, 4, =0, P4 =PPP,

1s%rl —

and since &, # 0 we have
=P, r,s=1,...,2m-1. (A.1.8)

We notice, that in the case when &%, ..., %, | are all identically zero,
all 4, are also zero and hence all 4, are also zero, as follows from (A.1.5).
Therefore the equalities (A.1.8) hold in this case.

Turning now to the determinant |4|, we expand it by the entries of the
last column and then we expand each of the minors of these elements (except
the principal one, which is equal to |B| = 0) by the elements of the last row.

We get

2m-—1
IA| Zarnns rs_zarnsn rs?
r,s=1 r,s=1

or, by substituting for A4,  their expressions (A.1.8),

2
4] = Za,,,a“g’,@ @ P+ +a,_, P,_). (A.1.9)
I‘S-—
It remains only to set
92’=a1,n9’1+---+an_1,n5"n_1. (A.1.10)
As an illustration, we consider the case n = 4. Here
e 0 e 0 a»
|4| = and |B|=| —a 0 c]|.
-b —-c 0 f b —c 0
-d —-e f 0}
In our case
0 ¢ 2 0 b 2 0 a 2
A, = —¢ ol=¢ Ay = b 0=b, Ay = —a 0|=¢"

We set &, = c. Since 4,, = bc and A4,; = ac, we have %, = b and

P, = a. Therefore, according to (A.1.9), we have

|4| = (a'c+eb+fa) ie., L =cd+ be+af.

A.2. The Frobenius Theorem. Let P be a skew-symmetric (2p, 2p) ma-
trix, all of whose entries are integers, and with |P| # 0. For each unimodu-
lar (2p, 2p) matrix M with integral entries we can construct a transformed
matrix

P = MPM. (A.2.1)
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It is obvi~ous that the intries of the matrix P* are also integers. Moreover,
P*=MPM = -MPM = -P" , ie., P* is skew-symmetric and (because of
(A.2.1)) we have

~% I~ 2
|P"| = M| |P||M| = |P||M|" =|P|.

It is easy to check that the relation between the skew-symmetric (2p, 2p)
matrices P and P* with integral entries and nonzero determinants, given
by an equation of the form (A.2.1), is an equivalence relation. In partic-
ular, if we start with P and perform, one after another, the transforma-
tions of the form (A.2.1) which are determined by the unimodular matrices
M,, ..., M,, where n is any natural number, we stay in the same equiv-
alence class. It is natural to try to select a matrix of the simplest structure
from each class in order to have a representative of the class. This is made
possible by the following statement.

THE FrROBENIUS THEOREM (1878). For each skew-symmetric (2p, 2p) ma-
trix P with integral entries and nonzero determinant, there exists a unimod-
ular (2p, 2p) matrix M with integral coefficients for which

P*=MPM=Diag{ﬂl(_? é),...,ﬂp(_? (1))} (A.2.2)

where B,, ..., B are positive integers such that
1 P

By1Byl 1B, I (A.2.3)

ProOF. The transformation we are looking for can be obtained step by
step by applying unimodular matrices of a particular form. We show that it
suffices to use three kinds of matrices.

(A) The matrix M is derived from the unit matrix E, by permuting the
jth and kth rows (or by permuting the jth and kth columns). In this case
the matrix P* = MPM differs from P only by having jth and kth rows
permuted and at the same time its jth and kth columns permuted.

(B) M is derived from the unit matrix by multiplying the jth diagonal
entry of the unit matrix by —1. As a result, P* will differ from P by the
signs of the entries in its jth row and jth column (note that the entry which
belongs both to the jth row and jth column is zero).

(C) M is derived from the unit matrix by substituting an integer / for
the zero at the intersection of the jth row and kth column. As a result
P* = MPM is obtained from P by adding to the entries of the jth row the
corresponding entries of the kth row multiplied by / and then performing
the same operation on the entries of the jth and kth columns. We note that
we then get the following entry at the intersection of jth row and jth column
of the product M PM:

2
a, +lajk +lakj +1a,.
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But this entry is equal to zero, as it should be in a skew-symmetric matrix,
since a,=ay = 0 and a,=-a,.

Thus, the equivalence class to which the matrix P belongs contains all
matrices which can be obtained from P by combining, in any way, a finite
number of the elementary transformations just described. We will show that
by performing them in an appropriate order we can arrive at the required
result.

Let & be the least absolute value of all nonzero entries of all matrices P
which belong to the same equivalence class and let P* be a matrix containing
the entry 6 . By using the operations (B) we arrive at the case when the en-
tries equal to J occur among the entries of P*. Let J be at the intersection
of the j'th row and k'th column, i.e., a,, = 6. We show that the rest of
the entries of P* are integral multiples of ¢, 1i.e.,  is the greatest common
divisor of all the entries of P*.

Indeed, if we assume, for example, that ay (j # j') is not divisible
by ¢, then a, = a(=1l) + 6’ where / and &' are integers and moreover
0 < 6’ < 6. By applying an appropriate operation (C) we get an entry J'
in place of the entry a oy which contradicts the definition of ¢ as the least
possible entry. Thus, first of all, the entries of P* which are in the same row
or in the same column with J§ are divisible by it. It follows from this that
by applying operations (C) to them again we can make them equal to zero
(except the entry ¢ itself, of course). Assume that after this we can find an
entry a,, (j # ',k # k") which is not divisible by d . Then, by means of
an operation (C) we can get a new matrix whose jth row is the sum of the
jth and j'th rows of the matrix P*. Moreover, the former entry a & will
occur in the same row as J and will have to be divisible by . Thus we
have again obtained a contradiction.

We now notice that the common divisors of the entries of P are obviously
preserved by the operations (A), (B), and (C) and hence the g.c.d. of the
entries of P 1is also preserved by these operations. But the g.c.d. of the
entries of the matrix P” that occur in the Frobenius Theorem is equal to
B,. Thus B, =96.

By changing the notation, if necessary, we can assume that the matrix P
is, from the very beginning, in the form where at least one of its entries is
equal to 6 = B, and all the others in the row and the column to which B,
belongs are equal to zero. Applying an operation (A) we can make the entry
B, occur second in the first row. Then —p, will be the first entry on the
second row (because of skew-symmetry) and therefore the matrix P must be
in the form

(A.2.4)
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The matrix denoted by P, has the same properties as the matrix P, but its
order is the order of P minus two. Since B, is the g.c.d of all entries of P,
each entry of P, is divisible by g, . Hence if we denote by S, the g.c.d of
all the entries of P,

B, |8,

It is clear that those transformations of the matrix P of types (A), (B),
and (C) which do not change its first two rows and first two columns play the
same role with respect to P, as they played with respect to the entire matrix
P . Hence, merely by the preceding transformations, we transform P, to the

form
0 B :
0
P = | ,
: —B_ 0 _
0 :Pz
and we transform the entire matrix P to the form
0 B 0 0
-, 0 0 0!
o
P=1 0o o 0 8|
0 _0_ -5 _0,__
| P,

By repeating these steps p times we get P into the form (A.2.2).

In the main part of this book we have, however, used a somewhat differ-
ent form for a skew-symmetric matrix. By repeatedly moving the rows and
columns of the matrix (A.2.2) (i.e., by applying operations {A) repeatedly) we
obtain the following representation of P which lies in the same equivalence

class: o B
P= <—B 0) , (A.2.5)
where B is the diagonal matrix
B, 0 - 0
g0 B - 0 (A.2.6)
0 0 B,

Recall that B,, B, > 1, is the g.c.d of all entries of a given (2p, 2p)
matrix P and B, is the g.c.d of all entries of a (2p — 2, 2p — 2) matrix P,
which satisfies (A.2.4), and so on. We also note that

\P|= B> =B/ B; B, (A.2.7)

This consequence of the Frobenius Theorem would allow us to avoid re-
ferring, in the main part of the book, to the possibility of representing a
skew-symmetric determinant as a square of the corresponding Pfaffian.
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¢B. Divisors of analytic functions

B.1. General theorems. In section II.1 we have already discussed the
relation of divisibility between analytic functions. Here we show how the
main properties of divisibility can be derived from more general algebraic
theorems. These can be found in B. L. Van der Waerden’s Algebra.

Since the notion of divisibility of analytic functions involves the function
in a neighborhood of a given point a € C?, we will, without loss of generality,
take a = 0 in this section. We denote by m, the set of functions of u
which are meromorphic at the origin, i.e., which are representable in some
neighborhood of the origin as a quotient of two analytic functions. We denote
by £, the set of functions analytic at the origin. 9, _, and §,_, denote
analogous sets of functions of p — 1 variables (u,, ..., up) ='u.

We form two rings of polynomials in u, with coefficients in M, , and
$,_, respectively: 9, [u,] and £, [u,] . It is obvious that the pseu-
dopolynomials defined in section II.1 belong to f’)p_l[ul] .

The ring m,_,[u] is a Euclidean ring since the following relations hold
for any two of its nonzero elements f and g:

(1) the degree of the product fg is not less than the degree of f;

(2) the representation f = gh + r exists when either r = 0 or the degree
of r is less than the degree of g (division algorithm).

It follows from this that the elements f and g have a g.c.d., and it
can be represented in the following form by means of consecutive divisions
(Euclidian algorithm):

(f,g)=gcd. (f,g)=1f,+88,

where f| and g, are elements of the same ring.

Furthermore, each nonzero element of 9, [u,] can be uniquely decom-
posed (up to unit factors) into a product of prime elements. In particular, it
follows from this that Euclid’s theorem holds.

If flgh and (f, g)=1, then f|h.

We note that, according to the general theory, the units of our ring are ex-
actly the elements & which belongto 2, [u,] together with ™' It follows
from this that only a polynomial of a nonzero degree can be a unit of the
ring: the set of all units of ‘JJIp”l[ul] coincides with the set of meromorphic
functions in m,_, which are not identically zero.

This means that a theory analogous to the theory of divisibility of poly-
nomials in one variable with rational coefficients (in this case all nonzero
rational numbers form the set of units) holds for the ring m,_[u] .

In order to move from the ring Smp_l[u]] to the ring 53,7-1[“1] and then
to the larger set 9, of functions of p variables which are analytic at the
origin, we use induction on the number of variables. Note that in the case of
one variable the prime elements are reduced (up to multiplication by units)
to a single function ¢(u,) = u, and hence the decomposition of f(u,) € 9,
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into prime factors has the form f(u,) = u'{g(ul) where v >0 and g(0) #0
(compare with section II.1).

Assume now that the theorem about the uniqueness of decomposition into
prime factors and all its consequences is true for LS Let ¢(u,) be a
nonzero polynomial in ﬁp_l[ul] . It is called primitive if the g.c.d of the
set of its coefficients is equal to 1 (it is enough that the coefficient of the
highest power is a nonzero constant and therefore all pseudopolynomials are
primitive). If f(u,) is any nonzero polynomial in $,_,[u,] and d=d(u)
is the g.c.d of its coefficients, then f(u,) can be represented in the form

fw) =d(weu,), (B.1.1)
where ¢(u,) is a primitive polynomial.

We have the following general facts.

(I) The product of two primitive polynomials is a primitive polynomial
(an analog of the Gauss lemma).

(D) If f(u;) € M, _,[u,], there exists a primitive polynomial ¢(u;) €
f)p_,[ul] such that
d('u)

f(ul) - g(/u)

In order to establish this under our conditions it is enough to find a com-
mon denominator g('u) of the meromorphic coefficients of the polynomial
f(u,) and then to apply a representation of the form (B.1.1) to the numera-
tors.

(III) The polynomial ¢(u,) in the formula (B.1.2) is uniquely determined
by f(u,) up to unit factors from N, 1 Analogously, f(u,) is uniquely de-
termined by the primitive polynomial ¢(u,) up to unit factors from m, ;.

(IV) The relation between the polynomials in M,_,[u,] and the primitive
polynomials in $ p-1luy] associates with a product of two primitive polyno-
mials ¢,(«,) and ¢,(u,) the product of the polynomials f(%,) and f,(u,)
corresponding to them (and conversely). Hence if the polynomial f(u,) is
prime in imp_l[ul], then ¢(u,) is also prime in LR UN (and conversely).

The following important corollary follows from the facts listed above: un-
der the inductive assumption the theorem about the uniqueness of the decom-
position into prime factors is valid for the ring 5, 4[u] .

In particular, any pseudopolynomial P(u,) € $,-4[u] decomposes into
prime factors in a unique way. It follows from this, in view of the Weierstrass
preparation theorem, that the theorem about uniqueness is valid in 9, as well,
i.e., it is valid for functions of p variables that are analytic at the origin. This
completes the construction of the theory of divisibility for analytic functions
of several variables.

We will discuss a consequence of this theory. The derivation of this con-
sequence requires the use of the simplest properties of the resultant of two
polynomials.

o), g,des, | (B.1.2)
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Consider two pseudopolynomials
Pu)=u] + 44 4.+ 4,
-1
Q) =ul + By +---+ B,

We will not use the restriction on their lower orders (see the definition of
a pseudopolynomial in section II.1). The fact that P(u;) and Q(u,) are
primitive polynomials in .ﬁp_l[ul] is sufficient. Eliminating u, from P
and Q, we obtain their resultant d in the form of a determinant whose
entries are coefficients of the polynomials P and Q. It is obvious that,
under our conditions, d belongs to the set 1 The main property of
the resultant states that it is identically equal to zero if and only P and
QO are not relatively prime, i.e., they have a common divisor different from
a unit of ﬁp_l[u]]. Since the polynomials P and Q are primitive, this
common divisor cannot be a divisor of their coefficients and therefore is a
pseudopolynomial of degree not less than 1.

Hence in the case when P and Q are relatively prime, i.e., when (P, Q) =
1, the resultant is a function of the p—1 variables (u,, ..., up) ="u, which
is analytic at the origin and is not identically zero. Then it follows from
a simple calculation that there exist polynomials P’ and Q' in the ring
$,_,[u,] such that the condition PP’ + QQ' = d holds. Thus the condition
(P, Q) = 1 for pseudopolynomials is equivalent to the existence of polynomials
P' and Q' in 9,1l such that

PP +QQ =d, (B.1.3)
where d =d('u) € $,_, and d 0.

B.2. Continuation of the divisibility relation from a point to a region. The
notion of a divisor of an analytic function depends on the point a € C?
under consideration. If, for example, a function f(u) is a unit at a, i.e.,
f(a) # 0, then it may be prime or may decompose into a product of several
prime functions at a neighboring point b where f(b) = 0. However, of
course, in a sufficiently small neighborhood U of a in which f(u) # 0 it
will remain a unit for any point b€ U .

Consider two functions f(u#) and g(u) that are analytic at a point a. If
they have a common divisor h(u) (h(a) = 0), then in any sufficiently small
neighborhood of a there is a point 4 for which A(b) # 0. Therefore h(u)
is not a common (proper) divisor of f(u) and g(u) at b. At this point
f(u) and g(u) may be relatively prime. However, the relation (f, g) = 1
which holds at some points holds also in a sufficiently small neighborhood of
b . This is the content of the following theorem.

THEOREM B.2.1. If f(u) and g(u) are two functions that are analytic at
a and if (f, g), =1, then there is a neighborhood U(a) of a such that the
condition (f, g), =1 holds for each b € U(a).
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PrOOF. Apply the Weierstrass preparation theorem to the functions f and
g at the point a (if necessary, we begin by performing an appropriate linear
transformation of variables). We get

f=Po,, g=0,v,. (B.2.1)

Here
k k-1
P =(u ~-a) +4,(u —a))

a

+-+ A4,
! -1
Qa=(u‘—al)+Bl(u1—-al) +---+ By,

and moreover in some neighborhood U(a) of the point a the functions
4, Bj are analytic functions of p — | variables u,, ..., u, and ¢,, v,
are analytic functions of p variables u, ..., u, such that ¢, (u) #0 and
w,(u) #0, ie., ¢, and y, are units at each point u € U(a).

Because (f, g), =1 wehave (P, Q,) = 1 and therefore (see B.1.3) there
exist functions P; , Q; ,and d analytic in the same neighborhood U(a) and
such that

PP +Q,0 =d(u). (B.2.2)

Let b be any point in U(a). Assume, contrary to the conclusion of the
theorem, that f and g are relatively prime at this point. Then there exist
functions J,(u), o, (u), and B,(u) analytic at the point b and such that

() = 6,(u)ay,(u),  g(u) =0,(u)B,(u), (B.2.3)

where moreover J,(b) #0.

From (B.2.1) and (B.2.3) we derive analytic representations for the pseu-
dopolynomials P (u) and Q,(u) such that the same representations can also
be used in a neighborhood of a point b:

P =0, (wfw)=9,'as,, Q) =w, B3, (B.2.4)

Hence the pseudopolynomials P,(u) and Q,(u) (like f(u) and g(u)) must
have a common divisor 6, at b. But it follows from (B.2.2) that each
common divisor of P, () and Q,(u) at b must be a divisor of the function
da('u) at the same point, i.e., the common divisor mentioned above does not
depend on u,. However, the existence of such a common divisor for the
pseudopolynomials which become zero at b contradicts the fact that they
remain primitive at . Hence theorem (B.2.1) is proved.

The following important corollary follows from this theorem: the fraction
f(u)/g(u), where f(u) and g(u) are analytic at a, remains irreducible in
some neighborhood of the point a if it is irreducible at the point a itself.

We will prove another theorem of a similar character, which we used in
section IV.3.

THEOREM B.2.2. If ¢(u) # 0 is a Jacobian function which corresponds
to some Riemann matrix Q, then there exist points ¢ € CP such that the
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Jollowing condition holds for the functions ¢(u) and ¢(u + c¢) at all points
uecCr:
(p(u), p(u+c))=1.

Proor. Let us verify that it is enough to prove the theorem for points
which belong to the parallelotope II, of periods determined by the columns
of Q. Indeed, let (p(u), p(u+c)) =1 for each u € I;. If uy ¢ I, then
there are a period @ and a point u; € I1; such that ua = U, + @. By the
definition of a Jacobian function,

¢(u+ w) = exp[l(u) + blp(u),
p(u+c+ w) = exp[l(u+c)+blp(u+c),

where /(u) is a linear function and b is a constant p-vector. It follows that
the values ¢(u) and ¢(u+c) reproduce, in a neighborhood of ug , the values
of the same functions up to unit (exponential) factors in a neighborhood of
u, . Hence there is no common divisor at ug if there is none at u.

Let a = (a,, ..., ap) € II,. We introduce two types of local coordinates
v=u-a and z = .Z(v) in a neighborhood of a. Here .Z, is a linear
transformation needed for an application of the Weierstrass preparation the-
orem. As a result of this transformation, the terms of lowest order occuring
in the expansion of the function

* -1
¢ (z)=9la+Z, (2)l=9(a+v)=09(u)
in a power series in a neighborhood of the origin must contain a term of
the form zf , where k = k(a) is the degree of the homogeneous polynomial

formed by these terms. Then, according to the Weierstrass theorem, we have
the representation

p(u) = p(a+v) = P,(v)f,(v) = P, (2)[;(2), (B.2.5)

where . .
P(2)=z2{+4,(2)z{ '+ +4,(z)=P(v), (B.2.6)
and moreover A4 j('z) (j=1,..., k) are functions analytic at the point z =0

and independent of z, , and fa*(z) isaunitat z=0 (ie., fa*(O) #0).

Let P (v) and f (v) remain analytic at all points of a neighborhood
W(a): |lv]| < r, and moreover let f (v) be nonzero at these points. Denote
by U(a) a neighborhood of the same point with half the radius of the preced-
ing one: |[v|| < (1/2)r, . Thus with each point a € Il, we associate its neigh-
borhoods W(a), U(a) and the linear transformation z = %, (v) = .2 (u—a)
as well as a representation (B.2.5), where all the functions occurring in it are
analytic at W(a).

We select a set of U, forming a finite cover of the parallelotope II, and
let the cover be composed of the neighborhoods U(a’), j = 1,...,n,
which for brevity we denote by U,. The corresponding pseudopolynomi-

als P)(v) = P;m(z) will be distinguished just by their indices j without
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mentioning the point a’: Pj(v) = Pj"(z), j=1,...,n They are all
analytic in the same hyperball

Wilvll <r=min{ru, ..., rm}.

Since no P, is identically zero, one can find points ¢ in any neighbor-
hood of the origin such that all these pseudopolynomials are nonzero at these
points. To do this it suffices to first take a point ¢! such that P, (c“)) #0.

Then, we take another point ¢? in a neighborhood ¥, of the first, such
that V| is small enough to be in W ( ¥, C W) and such that P (v) # 0

for all v € ¥, . The second point is chosen so that Pz(c(z)) # 0 and then
a neighborhood ¥, C V| of it is chosen so that P,(v) # 0 forall v € V.
Continuing this process by choosing a third point, and so on, we get a neigh-
borhood V, of some point M =ce I1, at which none of the functions
P,(v), ..., P (v) is zero. We put one more restriction on c: |[c|| < r/2.
Such a point satisfies the condition of the theorem, as we now prove.

For any point b € I, there is a neighborhood U, (1 < v < n) among
those considered above such that b € U,. We fix this neighborhood. Then
the point u = b + ¢ will lie in a larger neighborhood W, with the same

center, since v =y — a™ for this point and

v 1 1
ol =i +¢)=a” ) < 1o —a” Il +llel < 5r+53r=r.

Hence one can use the same representation of the form (B.2.5) for both of
the functions ¢(u) and ¢(u +¢). This gives us the right to drop the indices
which show the point at which a representation is formed and to which the
linear transformation of local coordinates z = .%(v) corresponds.

For u € U, we have

p(u) = p(a+v) = Pv)f(v) =P (2)f (2), (B.2.5")
pu+c)=p@+v+c)=Plv+c)f(v+ec)
=P (z+9)f (z+7), (B.2.5")
where y = .Z(c). Moreover,
P(z)=zf+ 4,27+ + 4, = P(v) (B.2.6")
is a primitive pseudopolynomial of degree k. It is obvious that
P(z+y) =z + Bz, '+ + B, =P(w+c) (B.2.6")

is also a primitive pseudopolynomial (it is obtained by substituting z, +
Piseees 2+ 7, for z,..., z, in (B.2.6') and then grouping the terms
with the same power of z,). We have z = Z(v) = 0 when v = 0, from
which it follows that

P’(0)=P(0) and P’(y)=P(c)#0;
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and therefore the pseudopolynomials P*(z) and P*(z + y) are relatively
prime at the point z = 0. It follows from this that there are a function
d('z) (which does not depend on z,) and pseudopolynomials R(z) and
S(z) such that the following identities of the form (B.1.3) hold:

R(z)P"(z) + S(z)P"(z +y) = d( 2). (B.2.7)

Since R(z), S(z), and d('z) are obtained from P*(z) and P*(z +y) by
entire rational operations (see the end of the section B.1), they are (like
P*(z) = P(v) and P*(z+7y) = P(v +¢)) analytic at all points of the neigh-
borhood of the origin that is the image of the hyperball W under z = Z(v).

Assume that, contrary to the statement of the theorem, ¢(u) and ¢(u+c)
have a common (proper) divisor at a point b € U, . Since these functions dif-
fer from the corresponding pseudopolynomials P*(z) = P(v) and P*(z+7y)
= P(v + ¢) only by factors which remain units over the entire neighbor-
hood U, , it follows from the last assumption that the pseudopolynomials
P*(z) and P*(z + y) must have a common (proper) divisor d(z) at the
point f when g corresponds to the point b under the transformation
z =LWw) =Lu-a), ie, when f = Z(b— a). But it follows from
(B.2.7) that (z) is also a divisor of d('z), i.e., that &(z) does not depend
on z,. We have arrived at a contradiction since the primitive polynomials
P*(z) and P*(z + y) cannot have a common divisor d(z) which does not
depend on z, and at the same time is not a constant.

B.3. Poincaré-Cousin theorem. It is well known that a meromorphic func-
tion of one complex variable can be defined in two ways. It is, on the one
hand, a function which does not have any singularities in the finite plane
except poles; and on the other hand, a function which can be expressed as
a quotient of two entire functions. The equivalence of these two definitions
was established by Weierstrass in 1876. The corresponding assertion for two
complex variables was first stated and proved by Poincaré in 1883.

THEOREM OF POINCARE. Ifa function f(u,, u,) of two complex variables
can be represented as a quotient of two functions M, (u, , u,) and N (u,, u,)
in a neighborhood of each point (a,, a,), where a, and a, are any com-
plex numbers and the functions M, (u,, u,), ¥, (u,, u,) are analytic at the
point, there exist two entire functions G,(u,, u,) and G,(u,, u,) such that
Sf(u,, u,) is their quotient for any u, and u,.

Of course this theorem is quite analogous to the theorem of Weierstrass.
Indeed, if a function of one variable f(u) can be represented in the form of
a quotient .#, (u)/#,(u) in a neighborhood of a and if ./Z,(u) and .7 (u)
are analytic at a (. (u) # 0), then a is either a regular point or a pole
of f(u). The converse is also true. Hence in the case of one variable the
question is resolved in a simple manner. It is enough to construct an en-
tire function G,(u) which has zeros at the poles of f(u) and moreover
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whose zeros are of the same multiplicity as the corresponding poles of f(u).
Then the function f(u)G,(u) = G,(u) is also entire, from which we get
f(u) = G,(u)/G,(u). The construction of G,(u) is made by means of an
infinite product. However, this method is not applicable to a larger number
of variables since the denominator of the fraction ./ (u,, u,)//4, (4, u,) in
the statement of the theorem of Poincaré is zero not at isolated points but
on a manifold N, (u,, u,) =0 containing a.

The proof of the theorem of Poincaré was quite complicated and did not
allow a natural generalization when the number of variables is more than 2.
A simple and at the same time general (for any p ) proof was given by the
French mathematician P. Cousin in his doctoral thesis (1894). This proof
serves as the basis for our exposition.

Everything is reduced to the following statement.

THEOREM OF COUSIN. Associate with each point of the space C° a function
g,(u) which is analytic in some neighborhood U(a) of this point. Also let the
Jfollowing coherence conditions hold for each point b € U (a“))ﬂ U(a(z)) , Where
aV and a? are different points of C” : g(u) and g o (u) differ at this
point only by a unit factor (i.e., g,|8,0 and g,|g,» atthe point b). Then
there exists an entire function G(u) such that

G(u) = g,(u)e,(u), (B.3.1)
where e_(u) is a unit at the point a (a is any point of C”).
The following theorem is a corollary.

THE POINCARE-COUSIN THEOREM. If a function f(u) can be represented
in the form
M, (1)
f(u) - -ﬂ/a-(u) )
in a neighborhood of each point a € C*, where #,(u) and N (u) are func-

tions which are analytic at the point a, then there exist entire functions G,(u)
and G,(u) such that

G, ()

at all points of C”. Moreover, we can require that the condition (G,(u),
G,(u)) =1 holds for each u.

Exactly this form of the theorem was used in Chapters II-IV of this book.

We will show that it indeed follows from the Cousin theorem. We start by
finding for each point a € C? the g.c.d of the functions M, (a) and A (u)
at that point and then we divide the fraction .Z, (u)/.#,(u) by this g.c.d. We
obtain a local representation of f(u) in the form of an irreducible fraction
S(u) = u,(u)/v,(u). Since it is irreducible at a point a, it is also irreducible
at each point of some neighborhood V(a) of the point a (Theorem B.2.1).
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Now we apply Cousin’s theorem to the case g, (u) = v, (u). We check that
the coherence condition holds here. Indeed, if b € V. NV, then in a
sufficiently small neighborhood of this point we have

B (u) — pye(u)
va(u)  vo(u)’

fu) =

from which we get

ﬂam(u)uam(u) = uam(u)uam(u) , (B32)

and moreover
(o), vo(u), =1 and (u,0u), ve(u)),=1. (B.3.3)
Because of (B.3.2), by Euclid’s theorem (section B.1) we have
v,oWlv,e(u) and vou)lv,n(u),

at the point b and this is then the coherence condition. Hence there exists
an entire function G,(u) which differs from v, (u) only by a unit factor
e,(u) : G,(u) = v,(u)e,(u) in a neighborhood of each point a. It follows
from this that the function f(u)G,(u) = e,(u)u,(u) is an analytic function
in a neighborhood of each point a and therefore it is an entire function
G,(u).

It only remains to note that it follows from the equalities

G\(u) = p,(we,(u),  Gy(u) =v,(u)e,(u)

and from the condition (u,(u), v,(u)) =1 that (G,, G,) =1.
Thus everyting is reduced to the proof of Cousin’s theorem. We precede
it with two simple lemmas.

LEMMA 1. Let C, be the p-disk lujl <n, j=1,...,p. In order to
establish the truth of the Cousin theorem it suffices to prove that for each
natural number n there exists a function G,(u) that is analyticon C, , and
satisfies the conditions (B.3.1) at every point a € C,_, .

PROOF. Assume that the conditions of the lemma hold. Then the function
G,, (4)/G,(u) can be represented at each point a € C, , (by (B.3.1)) in the
form of a ratio of two units and therefore is an analytic function, different
from zero.

We define a single-valued analytic function H,(u) on C, , by
0
Hn(u) =Ln -G—n(il)_ s (B.34)
which is subject, for example, to the following condition at the point u =0:
Gpin(0)

H”(O) =In W.
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This function has, in a neighborhood 9_f the point ¥ = 0, a power series
expansion that converges uniformly on C, . Hence there exists a polynomial
P (u) (a partial sum of the series) such that

|H, (u) — P (u)| < — uE C,. (B.3.5)
We show that the function
G(u) = G,(wexp Y [H,(u) — P, ()] (B.3.6)
1

is one of the entire functions mentioned in Cousin’s theorem.

First, the series Y [H,(u)—P,(u)] converges uniformly in the p-disk C N
(by the conditions (B.3.5)) and therefore represents an analytic function on
C, (the theorem is proved by using Cauchy’s integral formula for a p-disk
in the same way as for one variable). Therefore the function (B.3.6) is at
least analytic on C,. But it can be continued analytically to C, for any
natural number N since (because of (B.3.4)) we have

G(u) = exp{ [L,,Gl (u) + Ln G(W) ., pn Gn® }

G,(u) Gy_,(u)
+ Y [H,(u) - P,(w)] - ZP}
N

N-1
= Gy (u) exp {Z [H,(u) - P,(w)] - Y Pn(u)} . (B.3.7)
N 1

Hence G(u) is an entire function. Finally, the last formula shows that G(u)
differs from the function G, (u) only by a unit factor at each point u € C,
and therefore G(u) also satisfies the conditions (B.3.1).

LEMMA 2. Let | be a directed line segment with initial point a and end
point b, let g be a region containing [, and let h(z) be a function that is
single-valued and analytic in this region. Then the integral

I(z) = 1 [h()d{
h 2ni ), (-2

(B.3.8)

of Cauchy type defines an analytic functzon on the z-plane, with the two branch
points a and b. Moreover, 1,(z) has the representation

1
I(z) = —mh(z)Ln(a -z)+¢,(2) (B.3.9)
in a neighborhood of a and the representation

I,(z) = 2—:t7h(z)Ln(b~z)+(02(z), (B.3.10)
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in a neighborhood of b, where ¢,(z) and ¢,(z) are analytic at the corre-
sponding points.

PrOOF. It is obvious that (B.3.8) is a single-valued analytic branch of some
function on the plane with a cut along /. In a neighborhood of /, i.e., for
z€ g, I,(z) can be represented in the form

Ih(z)=-2-1—h(z)LnZ—"—Z-+i/1Mdc, (B.3.11)

i -z 27 {—-=z

from which the assertion of the lemma follows, since the function defined
by the integral on the right-hand side is regular at each point of /. It also
follows from this that the single-valued branches which are obtained by an-
alytic continuation of the function across the cut differ from each other at
the points of g by integral multiples of A4(z). In fact, when z moves from
the left edge to the right edge (i.e., when z goes around the point @ in the
positive direction) the function increases by h(z).

Now we can establish Cousin’s theorem. We replace the p-disks C, of
Lemma 1 by p-disks of the form D, : |x]{ <n, D’,l <n, j=1,...,p,
where X, and y , are the real and imaginary parts of u ) Since C, C D,
for any n, the conclusion of the lemma still holds.

Proor ofF CousiN’s THEOREM. We associate with each point, not only the
neighborhood U(a): {lu, - ajl <r,,j=1,...,p} which appeared in the
hypotheses of the theorem, but also a concentric neighborhood V, (u): {|u,—
al< ir,} of radius r,/2. With n fixed, we cover D,,, by a finite number

of neighborhoods V,, ..., V, with centers at the points aV . a™ . we
denote the corresponding analytic functions g,(u) by g,(u), ..., gy(u). If
r=r,=min{r,n, ..., rm}, we dissect the large squares 7, : {|x | <n+
1,y ]l <n+1}, j=1,..., p, into equal squares, with sides parallel to the

coordinate axes, so small that the diagonal of each one is less than r. Then
the region D, is broken into a finite number of elementary parallelotopes
each of which is the topological product of p small squares taken from the
p partitions T, (j=1,...,p). If at least one point of a parallelotope 7
belongs to a neighborhood V, , then the entire parallelotope will be inside U,, :

|u - aﬁ")l <rwm, j=1,...,p,and therefore the corresponding function
g,(u) will be defined and analytic inside 7 and on its boundary. Of course,
7 can be contained in some other neighborhood U u related to the function
gﬂ(u). However, because of the coherence condition we have gu(u)lgu(u)
and g, (u)|g,(u) at all points of T (i.e., inside 7 and on its boundary).

We also notice that if ¢ and 7 are different parallelotopes which have
at least one common boundary point b, and if the point b belongs to the
neighborhood V, , then it follows that ¢ and 7 are contained entirely in the
same U, and hence the same function g, (u) is defined at ¢ and 7.

We now need to construct a function G, () that is analytic in the p-
disk D, , and satisfies the conditions (B.3.1) at all points of D, . This
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construction starts from a finite number of functions g (u), v=1,..., N;
a significant role in this construction is played by Lemma 2. The easiest way
to make this construction is by induction on the number of variables.

For each elementary parallelotope t we select one of the functions g (u)
which are defined on it, and denote this function by g (%) . Then we will have
a locally analytic function ®(u) on the region D, . This function is single-
valued and analytic inside each 7, where ®(u) = g (u). As for boundary
points common to two or more parallelotopes, the function is multiple-valued
at these points. However, if, for example, a point 4 is commonto 7 and o,
then there is a neighborhood of this point in which the coherence condition
g, (u)|g,(u) and g_(u)|g,(u) holds. For brevity, we denote such a relation
by g (u) ~ g,(u) and say that g (u) and g_(u) are equivalent (at the point
b).

We separate the variables u,, ..., u, into two groups 4 and B: Uy 'seens
u, and u o Uy, (k +1 = p) in such a way that each variable belongs
to one and only one group. The inductive assumption will be that the locally
analytic function ®(u) is single-valued and analytic at each point u € D, _ |
with respect to all variables of the group 4 when arbitrary fixed values are
assigned to the variables of the group B (the group A may initially be
empty). We will show that we can move from ®(u) to another function
®, which is equivalent to ® at all points D, , in such a way that we add
another variable, for instance u, =v, of group B to group 4.

With this goal in mind, we arbltrarlly fix the values of all variables of the
group A, as well as of group B with the exception of v. Then we obtain
a function of one complex variable v which we still denote by ®(v) and
which is locally analytic on the square T = T . This square was decomposed
into small squares ¢. In each of these squares, ®(v) coincides with the
corresponding single-valued analytic function g, (v). Let ¢z, and 15 be two
squares which have a common side /, 5- We will orient /_ p SO that the square
t, lies to the left of it and the square lg lies to the right of it. Then at all of
its points the functions g_(v) = g,u(v) and g,(v) = glﬂ(v) are analytic and
equivalent. Hence gﬁ(v) /&, (v) is also an analytic zero-free function of v .
Therefore in some region g, 5 which contains / 5 the function

. 8(v)
haﬂ Ln 2.0)
1s determined up to an integral multiple of 27zi, and is single-valued and
analytic.
By Lemma 2 the function

(B.3.12)

1 h,(£)dC
|, =

27i {-v

is then single-valued and analytic on 7" with a cut along /, s - In general, it

I,()= (B.3.13)
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has singularities o and f. We form the sum

A@) =Y "1,,(v), (B.3.14)

by extending it to all pairs of squares ¢, and lg which have a common
side. The function A(v) is analytic inside each square 7, . When we extend
it analytically from ¢, to lgs which has a common side / 5 with ¢_, the
function gains a summand A_ 5 by the lemma. We now select the multiples
of 2zmi which are included in the definition (B.3.12) in such a way that at
each of the common vertices & of the four squares ¢, and ¢

hop(b) + by, (b) + hos(b) + hy, (b)
gﬂ(b) 8,(b)g;(b)g,(b)
g (b)gﬁ(b)gy(b)ga(b)
=0. (B.3.15)

It is obvious that all this is possible if, for example, we traverse the squares
which belong to 7" sequentially along the columns from the bottom up and
move from a completed column to the next, from left to right. The choice
of the multiples 27i for the squares of the first column and for the bottom
square of the second column can be arbitrary. However, the choice for further
steps is forced uniquely by (B.3.15).

Under (B.1.15) the following representation (Lemma 2) exists in a neigh-
borhood of each common vertex b of the four squares :

1,5(0) +Ig,(v) + I5(v) + L5, (v) = 9(v),

where ¢(v) is analytic at b.
This means that the function A(v) is analytic at such a vertex. We will
verify that the function

N

=In +2ni(n, +ng, + 05+ n5,)

D, (v) = P(v) exp[A(v)] (B.3.16)

has the inductive properties needed to complete the proof. Indeed, at the
points of each closed square f, C T we have @ (v) ~ ®(v) = g (v).
Furthermore, it is single-valued and analytic at each boundary point of the
square ?_ since the exponent A(v), i.e., the function (B.3.14), gains A_ 5(V) =
In(g4(v)/8,(v)) from analytic continuation across laﬂ to the adjacent
square ;. Consequently ®,(v) gains the factor gﬂ('u)/ g,(v) and thus,
in the square ¢ >

@, (v) = g5(v) exp[A(v)] = P(v) exp[A(v)], (B.3.16)

which coincides with the definition of &, (v) on this square.

Since the inductive assumption is trivially true when the group of vari-
ables A is empty, the proof of Cousin’s theorem is complete. We proved
by induction that there exists a function G, (u), analytic in D, , and satis-
fying at each point of this region the condition G,(u) ~ g,(u). From this,
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Cousin’s theorem follows by Lemma 1. Hence the Poincaré-Cousin theorem
is established.

§C. A summary of the most important formulas

Jacobi function.

8, (x) = }:(1 242 M sin(2n + 1)mx,

B,(x) = Z 224 cos(2n + 1)7x
0

el 2
By(x) =1+ ZZq" cos27x

2
= Z 1)"2¢" cos2nnx.
1

_ 1 9,(u/(2K)) _\/Eﬁz(u/(ZK))
U= TR B,w/eK) TN T, weK)

9,(u/(2K))
dnu= VK Z IR

e
k*sin® ¢ k’zsm(p

The Weierstrass preparation theorem. If f(u) =X~ pn(u) , where p, (u)
are homogeneous polynomials of degree n and p,(u) = nou"+~ +m,, Ty F
0, v>1, then

KPyk?=1,

f) = Mguy + - +1I0) £, (w);
here I1; = const # 0, II = I1 j(u') , the lower order of I1 . is not less than
J(U=1,...,v),and f(0)#0.

Reduced representations. If f(u) = o(u)/w(u) = 9" (u)/v"(u) are two
reduced representations of a meromorphic function, then there is an entire

function g(u) such that ¢*(u) = exp[g(u)lo(u), v" (1) = exp[g(u)]w(u).

A condition for the degeneracy of a function. A function f(u) is degen-

erate if and only if a p-dimensional vector  #0, 7 = (y,, ..., yp) , EXists
such that f of
0
"1 ou; c’)ul "t hou ou, =0

at each regular point of the function.

Period matrices. If Q = (0", ..., @) and I = (=", ..., 7)) are
two matrices of fundamental periods of the function f(u), then p =r and
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there exists an (r, r) matrix M with integer entries such that |M| = £1 (is
unimodular) and 1= QM .

If the variables u, ..., u, are subjected to a linear transformation u* =
Au, |A| # 0, then the period matrix Q transforms into Q" = 4Q.

Fourier series expansion. If each column of the matrix C=Diag(c,,..., cp),
¢ #0, j=1,...,p,is aperiod of an entire function f(u), then

flu) = Z d, exp(2niyC ' u),
69

where the summation is over all p-vectors y with integral coordinates.

Construction of an entire function from its difference. If f(u) is an entire
function of one variable 7 # 0 and

f(u+1) = f(u) =h(u),

where h(u) =Y o h,u” is an entire function, then
= Z h,t"w, (u/7) + P(u),
0
where
n! / e’ -1 dz
U) = — _, n=0,1,2,...
Vallt) = 327 lzl=@n+1)r € — 1 z"*!
and P (u) is any entire function with period 7.
Riemann matrices. Elementary conditions. If Q = (w(l) ey o )) isa
Riemann matrix and Q' = Re Q and Q" = Im Q, then
Q/
D= Q" #0 and therefore |F|= | l—( 2i pD;éO
Each equivalence class of Riemann matrices contains a matrix of the form
Q= (27tiE , T).
Here |Re 7| # 0. Furthermore, if T = (t(1 , (@ )), there exists a

number a = a(7T) > 0 such that we have, for each p-vector y with integral
coefhicients,
(k)

max pt -1 > a.
lsksplexply I-112a

The first system of difference equations. If f(u) = ¢(u)/w(u) is an
Abelian function with matrix Q = (27tiEp, T), then a reduced represen-
tation

Fu) = 2WexpG) _ 9" (w)
y(u)expG(u)  y*(u)
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exists such that "
p(u+2nie™) = expll,(w)p(u),

w(u+2mie™) = expll,(w)y (u),
h=1,...,p,
where /,(u) are linear functions.
An entire function G(u) satisfies the (first) system of difference equations

G(u+2nie™) -~ Gu) = Hw), h=1,...,p,

where H,(u) are entire functions for which

H,(u+ 2mie™) - H,(u) = H (u+ 2nie™) - H (u),

h,k=1,...,p.
The solution G(u) of the first system is determined up to an additive entire
function P(u) with periods 2nie™ | k=1,..., D.

Jacobian functions. An entire function ¢(u) is called Jacobian with re-
spect to a Riemann matrix Q if for any period w generated by Q we have
¢(u + w) = exp[A(u) + clo(u), where A(u) = A (u) is a linear function and
¢ =c, Is a constant.

Let Q = (2niE,, T). In order to represent an Abelian function f(u) =
9" (u)/w’(u) as a quotient of two Jacobian functions we have to choose a
periodic function P(u) in the expression G(u) = G,(u)+ P(u), where G (u)
is some solution of the first system, and choose it in such a way that the second
system

Pu+t")y—pPwy=H,u), h=1,..,p,

is satisfied. Here I?h(u) are entire functions that satisfy the conditions
H@+")-H@=Hw+")-H@m, hk=1,...,p.

The function P(u) is defined in the form of a Fourier series, up to an additive
constant.

Necessary and sufficient conditions for Q. A (p, 2p) matrix Q is a
Riemann matrix if and only if there exists a principal matrix for it, where
the principal matrix P isa (2p, 2p) matrix with integral entries such that

P=-P, QPO=0, iQPQ>0 (or <O0).
Let ¢(u) be a Jacobian function and let

o(u+ w(k)) =op(u+ E(k)Q) = exp[Znié(k)(]\u + 9], k=1,...,2p.

where ¢* is the kth column of a matrix E2p and y is a 2p-vector (a

parametric vector of the function ¢(u)), and let
A'__(Ajk)$ j,k=1,...,p,
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be the second period matrix. Then
N =QA-AQ

is the characteristic matrix. Its entries are integers which do not depend on
the choice of the function ¢(#). Then nN~' can be taken as the principal
matrix for P, where n is an integer.

Theta function. The matrices Q, N, and A can be expressed in the form
=1 0 B! n
Q=(niB™", 4), N_n(B_l 0 ) ., A= (0,—55‘,) ,
where A is a symmetric (p, p) matrix such that Re 4 = 4" < 0 and
B = Diag(B,,..., B,), nB™' = Diag(d,,...,d,). The natural num-
bers B, d,,!, and n satisfy the following conditions: 1 = BilByl 1B,

6k=ﬂp/ﬁp_k+l, 1=51|62[~--|6p=ﬂp, n=lﬂp=15p, I=1,2,....
We also choose a parametric vector y in such a way that

§=(0, —=—SpA),

27i
where the p-vector Sp A is formed by the diagonal entries of 4. Then
any Jacobian function of the type {Q, A, y} can be represented as a linear
combination of theta functions of order n :

0,[gl(u) = ;exp { <m + %gB) n [A <m + %Bg) + 24 )

Here g is an arbitrary vector with integral coordinates which belongs to
a parallelotope Il constructed from the vectors (n/ p’h)e(h), h=1,...,p.
The summation is taken over all p-vectors m with integral coordinates.

The number of different functions ©,[g](#) is equal to \/|N|, and they
are linearly independent.

Algebraic dependencies. Any p + 2 Jacobian functions of p variables of
the same type are related by an algebraic relation (homogeneous relation).

Any p + 1 Abelian functions of the same field are related by an algebraic
relation.

In any field of Abelian functions there exist p functions which are alge-
braically, and even analytically, independent.
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