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Introduction

Ordinarily in any local classification problem interest focuses on the generic
case: classification of germs of a generic object on a manifold (generic func-
tion, vector field, differential form, etc.). Usually the orbit of the germ of a
generic object at a generic point is an open and everywhere dense set in the
space of germs. Nongeneric points (for which this property is violated) are
said to be singular. When classifying germs of a generic object at singular
points, we study typical singularities. Roughly speaking typical singularities
are irremovable under a small perturbation while nontypical singularities may
be eliminated by a suitable small perturbation (they decompose into typical
ones).

In this monograph we deal with typical singularities of differential 1-forms
and Pfaffian equations. Pfaffian equations in modern terms are modules of
differential 1-forms generated by one differential 1-form. Local equivalence
of differential 1-forms corresponds to the action of the group of local dif-
feomorphisms (reversible coordinate transformations). The classification of
Pfaffian equations may be considered to be the classification of differential
1-forms: in addition to a change of coordinates we can multiply a 1-form by
a nonvanishing function.

The problem of classifying differential 1-forms and Pfaffian equations was
formulated by Pfaff at the start of the 19th century (in terms of reduction to
“simplest” forms). The first basic step in this problem was made by Darboux,
whose theorem can be formulated as follows: for a generic differential 1-form
(generic Pfaffian equation) on a manifold M there exists an open everywhere
dense subset M C M such that all germs of the 1-form (Pfaffian equation) at
points of M are equivalent to a standard germ.

Martinet was the first to study singularities (classification of germs at points
of M ) systematically. His results are collected in [Mar] which is both the
starting point and a guide for other studies including the present one. Un-
fortunately I knew Professor Martinet only by correspondence. My wish to
meet him personally will never come true.

Singularities and the classification of 1-forms and Pfaffian equations are
interesting not only as a classical problem but also (and perhaps mainly)
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because of their applications (in contact geometry, the theory of partial dif-
ferential equations, control theory, nonholonomic dynamics, and variational
problems). Some important applications have appeared in the last 10-15
years. Most applications in contact geometry are due to the relative Darboux
theorem, which was proved by Givental in 1982. This theorem states that two
submanifolds of a contact manifold are contactly locally equivalent (i.e., their
germs lie in the same orbit of the group of diffeomorphisms that preserve the
germ of the contact structure) if and only if the Pfaffian equations obtained by
the restriction of the contact structure to the submanifolds are locally equivalent
(with respect to the action of the complete group of diffeomorphisms).

Classification results for Pfaffian equations can be reformulated as those
for submanifolds of a contact manifold. The classification of Pfaffian equa-
tions also leads to the classification of first-order partial differential equations
since the latter may be considered as hypersurfaces in a contact manifold of
1-jets.

An application to control theory is associated with the fact that a Pfaffian
equation generated by a 1-form w defines a module of vector fields v such
that w(v) = 0. On the other hand, a differential 1-form w defines an
affine module of vector fields v such that w(v) = 1. Such modules may be
interpreted as control systems, linear with respect to the control.

In this monograph we collect results on the geometry of singularities and
classification of differential forms and Pfaffian equations. We also present
applications and closely related classification problems. All the results are
given with proofs. In the proofs we use the technique of jets on a manifold,
the homotopy method and its modifications, the transversality theorem, the
necessary and sufficient conditions for a germ’s stability and finite determi-
nacy, the relative Darboux theorem and related results, and theorems by
Belitskii and Roussarie on the solvability of equations with respect to germs
of flat functions. In Chapter II we collect the relevant material and the ba-
sics of singularity theory. In Chapters III-V we discuss differential 1-forms,
and odd-dimensional and even-dimensional Pfaffian equations. At the end
of each chapter we summarize the main results, tabulate the singularities,
and list the normal forms. The main results of the book are also collected in
Chapter 1. In Appendices A, B, and C we apply the results respectively to the
classification of the first-order partial differential equations, to the study of
the geometry of submanifolds of a contact manifold, and to some problems
of control theory. Our main results hold relative to the C°-equivalence or
C'-equivalence for arbitrary r < co. Nevertheless, we also dwell (on the level
of formulation, conjecture, and brief discussion) on analytic and topological
classification problems (Appendices D and F). We present some classification
results for distributions, differential systems (modules of vector fields), and
closed differential 2-forms (Appendices E and G).
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Some of the results in the book are due to Martinet (degenerations of
codimension 1: first occurring singularities of 1-forms and odd-dimensional
Pfaffian equations [Mar]), some to Lychagin (point singularities in the even-
dimensional case associated with the vanishing of 1-forms; such singulari-
ties correspond to first occurring singularities of first-order partial differen-
tial equations [L1]), other results were obtained by the author (degenera-
tions of codimension > 2, in particular, first occurring singularities of even-
dimensional Pfaffian equations [Z3, Z4, Z8, Z9]). Some of the results are
published for the first time (not taking into account the preprint [Z14]). The
results in this monograph give complete answers to the principal questions
of the problems of local classification.

I would like to express my profound gratitude to Professor V. Arnold,
to my teacher Professor G. Belitskii, to Professors Yu. II’yashenko and V.
Lychagin, with whom I discussed both some of the concrete results and the
book as a whole. I am very thankful to Professor D. Leites who published the
preliminary text [Z14] in the transactions of his Seminar on Supermanifolds
and called my attention to related classification questions in superanalysis in
his introduction to the text.
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APPENDIX A

Local Classification of First-Order
Partial Differential Equations

1. In this appendix we give some results of [L1] where first-order partial
differential equations are considered as hypersurfaces in the contact space of
1-jets. These results can be obtained as corollaries of the classification of
1-forms and Pfaffian equations.

2. A germ of a first-order partial differential equation

ou ou
F cee s s Uy 3 eee s =
(xl ’ Yo U dx, 6xn) 0
is treated as a germ of the hypersurface E: {F(x,,... , X,, 4, Y, ... ,,) =

0} in the contact space (]R(Z”+l , @), where @ =du— ) y;dx;. Two germs

E, and E, are said to be equivalent if there exists a germ of a contactomor-
phism sending E, to E,. By Theorem 7.1 they are equivalent if and only if
the germs {w)| E, = 0} € PW(2n) and {w)| E,= 0} € PW(2n) are equivalent.

3. Assume that the plane of w at 0 € R**! is transverse to an equation

Ec R, w),ie, (dF Aw)|, # 0. Then cl{w|, = 0} = 2n — 1, and
the germ {w|; = 0} is equivalent to the germ du —y,dx, — y;dx; —--- —

y,dx, (in the coordinates u, X,, X,, ¥, X3, V3, --- » X, , ¥, ). Therefore,
by Theorem 7.1 the germ E is reducible to the normal form
ou
y,=0 or — =0. (A.1)
! dx,

4. Singularities in the problem occur at points where dF A w = 0, or,
equivalently, where the restriction @ = w|; vanishes. The germ {® = 0} at
other points satisfies the Darboux condition @ A (d ?7))”"1 #0.

Let w|, = 0. Then the germ of @ at 0 can be an arbitrary germ of a 1-
form belonging to Wz‘; and satisfying the condition rankda|, = 2n. Thus,
the classification of singularities of first-order partial differential equations
is reduced to the classification of the germs {w = 0} € PW(:, , such that
rankdw|, = 2n. The following theorem is a corollary of the results in §13,
and §29.

153



154 APPENDIX A. LOCAL CLASSIFICATION

THEOREM A.l. A generic germ at 0 € R+ of a first-order partial differ-

ential equation F (x1 yeee s X, U, 0U[OX, ..., 8u/8xn) = 0 satisfying the
condition dF|,Adu =0 is reducible to the form

n n au
u— E Axy; =0 (u = E lixiﬁ) (A.2)
1 1 i

(generally speaking, in complex coordinates, see § 13) . Here A, are moduli(l),
i.e., two different normal forms (A.2) are not equivalent.

Notice that 4, = 1/2 + u; (see Corollary 13.1).
Since codim PW;; = 2n, we can formulate the following result.

THEOREM A.2. A germ of a generic first-order partial differential equation
on a manifold M (considered as a hypersurface in the set of 1-jets on M)
is either stable (at generic points) and equivalent to the normal form (A.1) or
unstable but 2-determined (at isolated points) and equivalent to the normal
form (A.2).

The case of nongeneric germs from Wz(i, and nontypical singularities of
first-order partial differential equations is considered in [Z1, Z5, Z6].



APPENDIX B

Classification of Submanifolds
of a Contact Manifold

Appendix A is concerned with the classification of hypersurfaces in a con-
tact space. In this appendix we consider submanifolds of codimension > 2.
The notion of equivalence of submanifolds of a contact manifold is given in
§7.

The following theorem shows that singularities from PW;” +11 and PW2” 3
are realized as restrictions of a contact structure on submanifolds in a contact
space.

THEOREM B.1. For an arbitrary germ e € P%ip+11 (e € Pszlf’ '3) and

an arbitrary contact 1-form w € W(2n + 1), n > p, there exists a manifold
E C R*™ such that the germ of the restriction {w = 0}|; Is equivalent (o
the germ e.

PRrROOF. We can assume that o=dz+xdy +--+x,dy,. By Theo-

rem 16.3 the germ e € PWPY s equivalent to the germ

2p+1
1
e:{dz+xdy +--+x, dy, \+fdy,=0}, jf=0
(in the coordinates z, x,, y,, ... , X, ¥, ). By Theorem 24.1 the germ e €
P szp” =3 is equivalent to the germ
1
e,: {dz +x,dy, +---+xp_2dyp_2 + & dyp_l + gzdyp =0}, Jj&=0

(coordinates z, X, ¥, ... , Xy 15 V15 ).

Let E, be a manifold given by the equations
{x Xpg2 = Vpp2 = =X, =Y, = =0, Xpr1 = f-x ’-p+l=y1)}
and let E, be a manifold given by
{ p+2 p+2 =xn=y 0 xp+l gl p 1° p:g2’yp+1:yp—l}'

Then {colEl =0} =e,, {colE2 =0}=e¢,. Q.ED.
The following statements are corollaries of Theorem B.1, Theorem 7.1,
and classification results in Chapters IV and V.
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156 APPENDIX B. CLASSIFICATION OF SUBMANIFOLDS

THEOREM B.2. Let [>2, n>[. The germ of a generic (2[+1)-dimensional
submanifold E of the contact manifold (R, dz + x,dy, +---+x,dy,)
at a generic point « € E is stable and equivalent to the germ of one of the
Jfollowing manifolds :

(l) {x1+1 =V = =X=Y, =O};

) X == =x,=y,=0, X, :xlz“xl’ym =y}

) X =Vp==x%,=y,=0, X, =x, +x12y1_xl’y1+1 =y}

}(4) X =V ="=x,=y,=0, x, =x1yl+x13/3+x,y12—x1, YVigr =
Yis-

Nongeneric points form a set of codimension > 4 in E.

THEOREM B.3. Let [ > 3, n > 1. The germ of a generic 2p-dimensional
submanifold of the contact manifold (R*"*', dz + x,dy, +---+x,dy,) at
a generic point of this submanifold is stable (relative to C’-equivalence for an
arbitrary r < oo ) and equivalent to the germ of one of the following manifolds

M {x,=x,,=y,u==x,=y,=0}
(2) {xp+2=yp+2=”'=xn=yn=0’
Xpi1 = Xp1Vp = Xp_1> Vpr1 = Vp-1>
X, :xp_lyp_l(l +A+x,)} (A€(0,1));
(3) {xp+2:yp+2='”:xn=yn:0’
X =X, Y, +x, v, ;2A+x)—x, ,,
X, = xp_lyp(Zl-l—xl) =X, Vo153 Vi =yp_1} (A€ (0, 00)).

Nongeneric points form a set of codimension > 4.

We can formulate other corollaries, for example, the normal forms of 3-
and 4-dimensional submanifolds of a contact manifold can be distinguished.



APPENDIX C

Feedback Equivalence of Control Systems

Consider a system of ordinary differential equations
k
X =F(x)+ ) u,(x)G(x), (C.1)
1

where x, F(x), G;(x) € R", u,, ..., u, are scalar functions (controls) the
choice of which must ensure some properties of system (C.1). When studying
qualitative local properties of a control system it is expedient to replace it by
an equivalent simpler system. The introduction of new controls v, ... , v;,
ie.,

k
u,=B(x)+ Y h(xyw,, i=1,...,k, det(h;) #0, (C.2)
j=1

and new coordinates
!

x=®(y), @(0)#0, (C.3)

leads to another system

k
y=F@)+>_ v,0)G,») (C.4)
1

that is also linear with respect to controls.

Control systems (C.1) and (C.4) are said to be feedback equivalent if there
exist transformations of the form (C.2), (C.3) sending (C.1) to (C.4).

This definition can be simplified by passing to invariant terms. A control
system of form (C.1) defines an affine module of vector fields

k
V= {f+ Y g, u; € c°°(n)} , (C.5)
1
where the field f corresponds to the system X = F(x) and the fields g;
correspond to the systems X = G,(x), i=1,... , k.

THEOREM C.1 [J]. Two control systems of the form (C.1) are locally feed-
back equivalent if and only if the corresponding affine modules of vector fields

157



158 APPENDIX C. FEEDBACK EQUIVALENCE OF CONTROL SYSTEMS

are equivalent, i.e., there exists a diffeomorphism sending each vector field of
the first module into a vector field of the second one.

Using this theorem we can apply classification results for differential 1-
forms to control systems of the form (C.1) for the case k =n — 1. Assume
that Kk = n—1 and a system of form (C.1) is nondegenerate, i.e.,

dim(F(x), G,(x), ... ,G,_(x))=n, Xx€ R".
An affine module (C.5) corresponding to such system can be defined as
V = {v € Vect(n)|w(v) = 1},

where o is a differential 1-form such that w(f) =1, w(g,) =0, i =
1,...,n—1. There exists a unique 1-form w satisfying these properties.
Now, using Theorem (C.1) and results of Chapter III we obtain the following
result.

THEOREM C.2. Let k = n — 1. A germ of a nondegenerate control system
(C.1) at a generic point x € R" is stable and feedback equivalent to one of
the germs

(X, =u;, y,=u(i=1,...,k), z=1=x0 — - — X1}
(n=2k+1);
{szuj,yi=(1+xl)ﬁi G=1,...,k,i=2,...,k),
z=(+x)u, y,=1/(1+x;) =Xty — -+ — X U, £ zu}
(n=2k+1);
(=u, 9= +x)iI, G =1,... .k, i=2,... k),
V=11 +x)) =Xty — - — X 1y }
(n=2k);
(=u (i=1,...,k),9,=0£x)i (j=2,...k),
. 2 ~ ~
yy=1/(1£x])—xu, — - —x, 1.}
(n=2k);

where u, u,, U, are functional control parameters (functions in n variables).

Nongeneric points form a set of codimension 2. Each stable (with re-
spect to the feedback equivalence) germ of a nondegenerate control system
is feedback equivalent to one of the germs given above.



APPENDIX D

Analytic Classification of Differential
Forms and Pfaffian Equations

1. In this appendix we consider germs of real-analytic and holomorphic
1-forms and Pfaffian equations, i.e., germs of the form

W= Zai(x) dx;, e: {Z a,(x)dx; = 0},

where the a;(x) are germs of functions in n variables x = (x,, ..., X,)
that are real-analytic at 0 (of functions in » complex variables, holomorphic
at 0).

Two analytic (holomorphic) germs of 1-forms are said to be equivalent
if there exists a germ at 0 of an analytic (holomorphic) diffeomorphism,
sending one germ into another. Two analytic (holomorphic) germs of Pfaffian
equations {w, = 0}, {w, = 0} are said to be equivalent if there exists a
germ H at 0 of an analytic (holomorphic) function such that the forms Hw,
and w, are equivalent.

For the analytic case all the singularity classes considered in Chapters

III-V are defined. For the holomorphic case the classes PI/VZZ,(’:L_Il L2 and
PI/szkk:ll’l’e coincide.

2. The Darboux and Martinet analytic classifications coincide with the
smooth classification. We mean that Theorems 12.1, 12.2, 17.2, and Darboux
theorems (§§10, 16, 24) hold also in the analytic category. The holomorphic
classification is the same, but the normal form w” is equivalent to the normal
form @  (see Theorems 12.1 and 12.2).

The results on the preliminary normal forms (Theorems 10.2, 16.3 and
24.1) hold for analytic and holomorphic cases as well.

Proofs of all these statements are exactly the same as for the smooth case.

3. Analytic and holomorphic classifications of singularities from the
classes P%Zkk:ll" and Pszkk_3 differ essentially from the smooth classi-

fication. First let us consider the singularity class PW31 1

159



160 APPENDIX D. ANALYTIC CLASSIFICATION

THEOREM D.1. For an arbitrary holomorphic germ X of a vector field on
a plane with 3-jet of the form

. 2 .0 .
(ix +x y)ﬁ - zya, (D.1)
1,1

there exists a germ of a holomorphic Pfaffian equation e € PW, " such that

X, = X (to within orbital equivalence).

Theorem D.1 shows that the holomorphic classification of singularities
from PW31 ! includes the holomorphic orbital classification of germs of res-
onance vector fields on a plane with a 3-jet of form (D.1). Such classification
was obtained in [MarRa], [EI]. It follows from these works that the orbits
of the holomorphic classification are parametrized not only by a real num-
ber (the only invariant of the formal and smooth classifications), but also
by functional moduli. We do not know if these functional moduli, together
with the mentioned invariant of the smooth classification, give a complete
system of holomorphic invariants of germs of Pfaffian equations belonging
to PW3l 1 supposedly, this is true.

We have obtained the following result.

THEOREM D.2. None of the germs from the singularity class PW3"1 is
finitely determined (in the holomorphic category).

This statement holds in the real-analytic category as well.

4. Let us consider the singularity class PVI/22kk+_11 1 , k > 2. For the smooth
classification, there exist stable normal forms (18.1), (18.2). We announce
the following result.

THEOREM D.3. None of the germs from the singularity class PW22kk+_11 s
finitely determined (in the analytic or holomorphic category).

The scheme of the proof is as follows.

(1) If agerm e € P%i’:l s finitely determined in the analytic (holo-
morphic) category, then by Theorem 18.1 the germ (18.1) or the germ (18.2)
is 3-determined in the analytic (holomorphic) category.

(2) Let {@ = 0} be the normal form (18.1) or (18.2). If the germ {® = 0}
is 3-determined in the analytic (holomorphic) category, then the infinitesimal
equation (6.2) with w = @ has an analytic (holomorphic) solution (4, v)
for each right-hand side with vanishing 3-jet.

Arguments proving this statement are close to those used in [11].

(3) The infinitesimal equation (6.2) with @ = @ is unsolvable in the
analytic (holomorphic) category.

To prove statement (3) we reduce the infinitesimal equation to an equation
of the form Xu+ bu = t, where X is a vector field, b and t are function-

germs, and u is the unknown function-germ. Such a reduction was realized
i 10Q
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It is noteworthy that for a generic germ e € PVVZZ,::1 ! the corresponding
vector field X, in suitable coordinates looks like

X =——X i+xx —+:- OF X, ——X —a—+(x2+x2)i+~~
ox, “%ox, “17%ox, lox, "20x, 1727 9x, ’
(D.2)
where --- denotes terms of the form xfz’gf(xl yeer s X)), at+f > 3. These

terms can be “killed” in the smooth category; but for the analytic or holo-
morphic classification of germs (D.2), one can point out functional moduli
close to those obtained in [MarRa], [EI], [She] (S. M. Voronin, private com-
munication). This can be done by reduction to the problem that was solved
in [Vo].

5. Now consider the case of 1-forms w, w|, = 0. Using the notation of
§13 we state the following result.

THEOREM D.4. Suppose that for some constants C,v > 0 the invariants
Ai=3+u,i=1,...  k,and A;=%—p,, i=k+1,...,2k, of the 1-jet
of an analytic (holomorphic) 1-form w € er( satisfy the estimate

(A + - +aydy — 1) > Cle|™” (D.3)

Jor all integers o; > 0 such that |a| = o+ - +a,, > 3. Then w is equivalent
to the normal form (13.1) (for the holomorphic case w is equivalent to the
normal form (13.3)).

This result was announced in [Z4], where the case w € VVZ?( +1 Was consid-
ered as well. A similar result in terms of 1-order partial differential equations

was proved by Webster [W]: if the invariants {4,, ... , 4, } ={1/2+u,, i=
1,..., k} of a 2-jet of a holomorphic partial differential equation
F(x,,...,x.,u,0u/ldx,...,0u/dx,)=0

(see Appendix A) satisfy the estimates (D.3) for some C, v > 0, then the
equation is reducible to the form u =4,x, 0u/dx, +--- +4,x, 0u/dx, .



APPENDIX E

Distributions and Differential Systems

Let w € A'(M ) be a 1-form which does not vanish at any point of M .
Then a germ of a Pfaffian equation {w = 0} can be treated as a germ of
an (n — 1)-distribution in R” (n = dim M) [VG1]. An (n — 1)-distribution
in R” can be given by (n — 1) vector fields X,, ..., X, , in R" such
that w(X;) =0 and rank (X,|,, ... , X,,_,|,) = n—1 for each point «. For
example, one can treat the contact structure (]Rzk+l , dz+x,dy+--+x,.dy,)
as a modulus of vector fields over a ring of smooth functions; this modulus
is generated by the 2k vector fields

9 I 9 L9
ox,> """ 0x, By, 19z’ 8y, “koz

Similarly, the quasicontact structure (RZk , dy,+x,dy,+---+x, dy,) is the
distribution generated by

o o 8 _,9 o .0
ox,’ """’ ox, 0y, "oy, oy, “koy,’
and the normal form (18.1) can be treated as a distribution generated by
9 9 9 .9 R Ay N
ax,’ " 0x, By, 2oy, oy, Koy oz TRy
For n =3 and n =4 the Darboux condition (cl{w = 0} = maximum =
3) can be formulated in terms of vector fields. Let X,,..., X,_, be an
arbitrary system of vector fields such that w(X;) =0, i=1,... ,n-1,
and rank (X[, ,...,X,_,|,) = n— 1. Let us denote by V{w=0} =V the

modulus consisting of germs of vector fields of the form ) g, X, where B,
are arbitrary functions. Then V = (V| } where V C T R" is a hyper-
plane. We use [V, V] to denote the modulus generated by vector fields
[v,,v,],v,,v, € V. For n=3 and n = 4 the Darboux condition can be
formulated as
dim[V, V]|, = n.

In terms of vector fields we can formulate other conditions for a germ

{w = 0} to belong to various singularity classes:

{w=0}€ PW3l 0 if S(w) is transversal to Viw=oy at 0,
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1
{w =0} € PW,

Re Y PW41’ m If D(w) is transversal to V{ w=0} At 0.

Here S(w) and D(w) are the first degeneration manifolds.(l)

At the same time, for n > 5 even the Darboux condition cannot be for-
mulated in terms of the growth vector of a distribution [VG1].

It is also interesting to consider differential systems V = (X, ... , X, ;)
which differ from distributions only by the possibility of linear dependence
of X,|,,...,X,_,|, at some points o € M. Various questions connected
with singularities of differential systems were studied in [JP2, Morl1-Mor3,
MorRo]. A 2-tuple of vector fields in R’ and 3-tuple of vector fields in R*
were studied in detail. Here we formulate two classification results from the
mentioned works. Let S, be the set of germs at 0 € R" of differential
systems V = (X, ..., X,_,) such that rank (X,]|;, ... , X,_,l) =n—2.

THEOREM E.1 [JP2]. A generic germ V € S, is reducible to the normal
form (8/0x,xd/8z+20/dy).

THEOREM E.2 [MorRo]. 4 generic germ V € S, is reducible to the normal
form (8/0x,d/0y,xd/0z+yd/du).

The problem of the classification of germs of k-distributions in R” is
not “wild” only for the following three cases: k = 1 (a direction field),
k =n—1 (Darboux’s case), and k = 2, n = 4. The normal form of generic
germs of 2-distributions in R* was obtained by Engel in 1889 [En] (see also
[VG2]). The work [Z10] is devoted to the classification of singularities of
2-distributions in R*. If 2<k <n—2 and (k, n) # (2, 4), then the orbit
of a generic germ of a k-distribution in R” has an infinite codimension.(2 )
Preliminary normal forms with functional moduli can be found in [Z11]. The
classification of germs of regular distributions with a fixed (but not generic)
growth vector [VG1] can be found in [KR], [Z12]. For the growth vector
(k,k+1,k+2,...,n),n—k <3, agerm is reducible to a stable normal
form. If the growth vector has another form, then the classification problem
remains “wild”.

Singularities of differential systems (X
in [JP2].

/> --- » X;) in R" were considered

()ie. the manifolds {a € M|dim[V{,_q; , V(yegjlla =7 — 1}
(Z)This fact was proved in [JP2], then also in [VG2]; moduli appear not only in formal series
but also in the C 1-classiﬁcation, see [Va).



APPENDIX F

Topological Classification of Distributions

Consider a k-distribution E in R" (it can be given either by (n—k) differ-
ential forms w,,...,w,_, orbya k-tuple of vector fields V' = (X,..., X,)).
A differentiable curve y = y(¢) such that y(¢) € £ (i.e., 7(¢) € Ker wilym &
p(t) € spanVly(t)) is said to be a trajectory of E. Two germs E,, E, of
k-distributions are said to be topologically equivalent if a germ of a home-
omorphism maps the germs of the trajectories of E, into the germs of the
trajectories of E, [JP2].

In [JP1,JP2] the classes of the topological equivalence were discussed. We
announce the result for 2-distributions in R’.

THEOREM F.1. The germ at each point of a generic 2-distribution on a 3-
manifold is topologically stable and topologically equivalent to one and only
one of the germs

a 0 a
(1) {dZ+Xdy=0}<=> <5;,8-);—X8—Z—> ;

2 o 0 20\ .

(2){dy+x dZ—O}(—‘—?('é;,E—X b-y:),
2V dz = 9 9 _ 2,9,
3){dy+(xy+x z)dz—O}ﬁ(ax,az (xy+x Z)6y>’

3 3
x 2 B a 0 x 2\ 0
(4) {dy+(xy+—3 +xz ) a’z_O}@(ax ' 532 <Xy+T+XZ )5)

In order to prove Theorem F.1 it suffices to prove the topological equiv-
alence of germ (19.1) to germ (3) and of germ (19.2) to germ (4) (for an
arbitrary b € R).

As for the global classification of 2-distributions on a 3-manifold, it was
shown in [Ben] that there exists a contact structure (IR3 , w) which is not
equivalent to the standard contact structure (]R3 ,dz+xdy).
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~ APPENDIX G

Degenerations of Closed 2-Forms in R

In this appendix we give the list of normal forms of closed 2-forms in
R , k > 2. The normal form of first occurring singularities

x dx, ANdy, +dx, Ndy,+---+ dx, Ndy, (G.1)

was obtained by Martinet [Mar] who also announced the normal forms for
the next degeneration (of codimension 3):

2 3 k
d (xl - xz—z) ANdy, +d (xlx2 +y,y, - %2) ANdy,+ Z dx; N dy,. (G.2)
i=3
The theorem on reduction to these normal forms was proved by Roussarie
[Ro]. The germs, corresponding to the next degeneration (of codimension 4)
are unstable [GT2] and, supposedly, they are not finitely determined.

At generic points of a 2k-dimensional manifold a germ of a generic closed
2-form is stable and equivalent either to the standard Darboux model dx, A
dy, +---+ x,dy, , or to the germ (G.1), or to the germ (G.2); nongeneric
points form a set of codimension > 4.

The description of degenerations can be found in [AG, Mar, Ro, GT2].
The Darboux and Martinet normal forms hold in the analytic (holomorphic)
category as well. At the same time, analytic germs that are C*-equivalent to
the germ (G.2) are not (generally speaking) analytically equivalent to (G.2)
(arguments are similar to those used in Appendix D).
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