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Preface to the English Edition

The present book is the English translation of my book originally pub-
lished in Japanese by Kinokuniya Company Ltd. in its series “Kinokuniya
Sugaku Sosho” (Kinokuniya Mathematical Series). As mentioned in the Pref-
ace to the Japanese edition, the aim of this book is to present a self-contained
exposition, using as little knowledge of functional analysis as possible, of ex-
istence theorems and results on initial-boundary value problems for parabolic
equations and elliptic boundary value problems described by second order el-
liptic partial differential operators with variable coefficients. The translation
is faithful to the original. However, in the Supplementary Remarks and Ref-
erences at the end of this book, some of the books written in Japanese are
replaced by those written in English.

More than ten years have passed since the original (Japanese) edition was
published. Ordinarily, the translator (in this case the author of the original
book) might add some remarks of criticism to such a classical treatment as
appears in this book, but it is not always easy for an author to criticize his own
work. There is an old Chinese proverb “Mountain dwellers cannot recognize
the shape of the mountain.” The author/translator would appreciate any
helpful criticism by the readers regarding the contents of this book.

The translator wishes to express his appreciation to Professor Katsumi
Nomizu of Brown University for his kind help in the publication of this
translation and to the American Mathematical Society for their efficient han-
dling of the publication. Finally it should be mentioned that the translator
was partially supported by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Science and Culture of Japan.

Seizo Itd

Tokyo
March 1992
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Preface to the Japanese Edition

The theory of partial differential equations is one of the fields of mathe-
matics that have developed most successfully in the recent quarter century.
This development is based on the fact that the theory has been constructed
by using functional analysis and the theory of distributions. Thus, if one
intends to write a book on the theory of partial differential equations or on a
branch of this theory from a modern point of view; then one should expect
the reader to have a strong background knowledge of functional analysis and
distributions, or the writer should devote several pages to a summary of the
necessary prerequisites. On the other hand, some conditions to be set and
some results to be expected in classical problems cannot always be formulated
in the framework of the theory established from a modern point of view (e.g.
in the framework of the function space to which the theory is applicable).

In this book, the author takes diffusion equations as the main theme and
derives the existence theorems and results on initial- and boundary-value
problems for parabolic equations and elliptic boundary-value problems that
are described by using second order elliptic partial differential operators with
variable coefficients. This allows for a self-contained exposition by using as
little knowledge of functional analysis as possible. Since both the differential
operators and the boundary conditions treated in this book contain vari-
able coefficients, it is necessary to carry out some complicated computations
(even to prove some results corresponding to well-known facts in the classi-
cal case of differential operators with constant coefficients); in particular, the
computation to construct the fundamental solution satisfying the boundary
condition (§6) appears as a very tedious task to readers. However, even if
one derived the similar result by means of a ‘modern theory’, one would have
to carry out concrete computations in most cases to derive local properties
such as boundary conditions in classical form (not in the abstract form de-
scribed by using the terminology in functional analysis). Once we foil at the
first step of the construction of the fundamental solution, we can set forward
the arguments thereafter by means of a ‘physically natural’ method from the
viewpoint of diffusion. Examples of such situations will be mentioned in the
next paragraph.

ix



X PREFACE TO THE JAPANESE EDITION

The physical meaning of properties of the fundamental solution is men-
tioned in the Introduction. The dependence of solutions on the domain
where the equation is considered (§11) means that, the nearer the absorbing
barrier is located, the faster the density of the diffusing substance is dimin-
ished. The fundamental solutions in unbounded domains are constructed us-
ing solutions in bounded domains that are gradually enlarged. The existence
of a fundamental solution in an unbounded domain as the limit function
of fundamental solutions in bounded domains and the limit process of the
semigroup property of fundamental solutions can readily be proved since the
fundamental solution grows as the domain is enlarged. From the viewpoint
that the elliptic equation describes the equilibrium state of a diffusion phe-
nomenon, the Green function for the elliptic boundary value problem and
the formula for the solution of the problem are derived from the limit of so-
lutions of the diffusion equation as time ¢ tends to infinity. In most books on
partial differential equations, several expositions and results on equations of
elliptic type are given before treating equations of parabolic type. This book
follows the opposite direction by discussing diffusion equations as the main
theme for the ‘physical reason’ mentioned above. (In this paragraph and also
in the last paragraph, ‘physical’ means ‘in the sense of physical phenomena’
and not ‘in the sense of physics’.)

While this book is written with diffusion phenomena as a main theme, the
contents are purely mathematical. Thus, not only the main results but also
the preparatory propositions are given with proof. (This is a matter-of-course
in a mathematical book; the author mentions it for emphasis.) Though the
author intends to make as little use of functional analysis as possible, in
order to clarify the mathematical argument, he partly applied some basic
facts from the theory of the Lebesgue integral and some very elementary
parts of the theory of function spaces and of integral equations (such as the
definition of Hilbert space, orthogonality, Fourier series, and basic properties
of integral equations with symmetric kernel). For these items the reader may,
if necessary, refer to the books mentioned in the Supplementary Notes and
References at the end of this book. Except for those elementary articles,
proofs of all propositions are given. So it is not necessary for the reader to
refer to more advanced books to understand proofs of important theorems
in this book.

If one observes that, in this book, most of the main classical results on
partial differential equations are generalized to the case of equations with
variable coefficients by using elementary techniques; then one will have gained
much information for applications in several directions.

The author would like to express his appreciation to both Mr. Ken-ichi
Uzuoka and Mr. Hiroshi Mizuno of the Publication Division of Kinokuniya
for their kind help in the preparation of this book.

Seiz6 Ito
In the height of summer 1979



Supplementary Notes and References

The following is a list of books and papers related to this book; it is not
to be considered complete.

The prerequisite for reading this book is some basic knowledge of differ-
ential and integral calculus. For background information on function spaces
used in §§14 and 15, it is sufficient for readers to refer to any one of the books
[1-4]. For the theorems on integral equations quoted in §15, see [4] or [5].

1. S. 1td, Introduction to Lebesgue integral, Shokabo, 1963. (Japanese)

2. H. L. Royden, Real analysis, 2nd ed., Macmillan, New York, 1963.

3. W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New
York, 1974.

4. A. N. Kolmogorov and S. V. Fomin, Reelle Funktionen und Funktional-
analysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1975 (orig-
inal in Russian, 1972).

5. K. Yosida, Lectures on differential and integral equations, Interscience,
New York, 1960 (original in Japanese, 1950).

A brief exposition of the Bessel functions and Legendre polynomials that
appear in the examples of eigenfunction expansions in §16 can be found in
Chapter 1 of [5]; the book [6] is a handy and scrupulous primer to Bessel
functions.

6. F. Bowman, Introduction to Bessel functions, Dover, New York, 1958

(Longmans, Green & Co., 1938).

In this book, in order to make the argument clear, we occasionally quote
basic theorems in the theory of Lebesgue integrals . The reader may glance
over such parts without caring about the conditions stated in integration the-
ory and still understand the subsequent part, and may refer to any one of
[1-4] as necessary.

Among the contents of this book, the “physical background of diffusion
equations” in §0 was written by consulting Chapter 1 of

7. ). Crank, The mathematics of diffusion, 2nd ed., Oxford Univ. Press,

London and New York, 1975.
However, in §1 and thereafter, all of the statements are set in the pure-
mathematical theory. If one is interested in solutions of diffusion equations
from the viewpoint of applied mathematics, see [7].

221



222 SUPPLEMENTARY NOTES AND REFERENCES

Most of this book is constructed by rearranging and elaborating the con-
tents of the papers [20-23], and is illustrated mainly by classical methods—
(partial) differential calculus, estimates of partial derivatives, and integration
by parts, etc.—by using almost no knowledge of modern functional analysis.
The author previously wrote the book

8. S. Ito, Partial differential equations, Baifukan, 1966. (Japanese)

In Chapters 2 and 3 of [8], the author treated the same results as those of
the present work for the diffusion equation of the form du/dt = Au— q(x)u
in bounded domains, and, assuming the existence of a fundamental solution,
mentioned the properties of solutions of the diffusion equation and related
results. In the present work, the form of the partial differential operator (dif-
fusion operator) and also the form of the space-domain are more generalized
than those in [8], the proof of the existence of a fundamental solution is
mentioned in detail, and several results (including those of [8]) are shown in
greater depth.

The theory of the general equation of evolution, including the case of
diffusion equations, is discussed by the method of functional analysis in many
books, e.g.

9. K. Masuda, Equation of evolution, Kinokuniya, Tokyo, 1975. (Japanese)

10. H. Tanabe, Equations of evolution, Pitman, New York and London,
1979 (original in Japanese, 1975).

The theory of nonlinear evolution equations is treated in e.g.

11. I. Miyadera, Nonlinear semigroups, Transl. Math. Monographs, vol.
109, Amer. Math. Soc., Providence, RI, 1992 (original in Japanese,
1977).

There are several references in which the theory of elliptic and/or parabolic
equations (and also equations of the other types) is fully discussed, though
not necessarily in relation to diffusion equations directly. Here we list some
of them.

12. N. Shimakura, Partial differential operators of elliptic type, Transl. Math.

Monographs, vol. 99, Amer. Math. Soc., Providence, RI, 1992 (origi-
nal in Japanese, 1978).

13. H. Kumano-go, Partial differential equations, Kyoritsu-Shuppan, Tokyo,
1978 (Japanese).

14. 1. G. Petrovskii, Lectures on partial differential equations, Interscience,
New York, 1954 (original in Russian, 1953).

15. A. Friedman, Partial differential equations of parabolic type, Prentice-
Hall, Englewood Cliffs, NJ, 1964.

16. S. Mizohata, Theory of partial differential equations, Cambridge Univ.
Press, London and New York, 1973 (original in Japanese, 1965).

17. O. A. Ladyzhenskaia, V. A. Solonnikov, and N. N. Ural'ceva, Linear
and quasilinear equations of parabolic type, Transl. Math. Monographs,
vol. 23, Amer. Math. Soc., Providence, RI, 1968 (original in Russian,
1967).
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For the ergodic theory related to the contents of §20 of this book, readers
may refer to:

18. H. Totoki, Introduction to ergodic theory, Kyoritsu-Shuppan, Tokyo,

1971. (Japanese)
19. Y. Ito and T. Hamachi, Ergodic theory and von Neumann algebras,
Kinokuniya, Tokyo, 1992. (Japanese)
Chapter 1 of this book is due to [20] and [21]; most of Chapters 2, 3, and
4 are written following [22] and [23].
20. W. Feller, Zur Theorie der stochastischen Prozesse, Math. Ann. 113
(1936), 113-160.

21. F. G. Dressel, The fundamental solution of the parabolic equation, 1,
Duke Math. J. 7 (1940), 186-203; II, Duke Math. J 13 (1946), 61-70.

22. S. 1td, Fundamental solutions of parabolic differential equations and
boundary value problems, Japan. J. Math. 27 (1957), 55-102;

23. S. Itdé, On Neumann problem for nonsymmetric second order partial
differential equations of elliptic type, J. Fac. Sci., Univ. Tokyo, Sec. I,
10 (1963), 20-28.

The Strong maximum principle for diffusion equations mentioned in §10
was originally proved (by an entirely different method) in

24. L. Nirenberg, A strong maximum principle for parabolic equations,

Comm. Pure Appl. Math. 6 (1953), 167-177.
The author intended to add some topics on superharmonic functions and
the unique continuation theorem for solutions of elliptic equations to the
contents of this book (the original Japanese edition), but he had to give this
up for want of space. Some basic properties of superharmonic functions are
treated in:
25. S. Itd, Superharmonic functions and ideal boundaries, Kinokuniya,
Tokyo, 1988. (Japanese)
The book [25] was written just after the publication of the original
(Japanese) edition of the present work. For the unique continuation the-
orem, readers may refer to §5.6 of [13] or any one of the following papers.
26. N. Aronszajn, A unique continuation theorem for solutions of elliptic
equations or inequalities of second order, J. Math. Pures Appl. 36
(1957), 235-249.

27. H. O. Cordes, Uber die eindeutige Bestimmtheit der Losungen ellip-
tischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad.
Wiss. Gottingen Math.-Phys. Kl. I1a, 11 (1956), 239-258.
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COPYING AND REPRINTING. Individual readers of this publication, and non-
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