Translations of
 MATHEMATICAL MONOGRAPHS

Volume 124

Embeddings and Immersions

Masahisa Adachi

Recent Titles in This Series

124 Masahisa Adachi, Embeddings and immersions, 1993
123 M. A. Akivis and B. A. Rosenfeld, Élie Cartan (1869-1951), 1993
122 Zhang Guan-Hou, Theory of entire and meromorphic functions: Deficient and asymptotic values and singular directions, 1993
121 I. B. Fesenko and S. V. Vostokov, Local fields and their extensions: A constructive approach, 1993
120 Takeyuki Hida and Masuyuki Hitsuda, Gaussian processes, 1993
119 M. V. Karasev and V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization, 1993
118 Kenkichi Iwasawa, Algebraic functions, 1993
117 Boris Zilber, Uncountably categorical theories, 1993
116 G. M. Fel'dman, Arithmetic of probability distributions, and characterization problems on abelian groups, 1993
115 Nikolai V. Ivanov, Subgroups of Teichmüller modular groups, 1992
114 Seizô Itô, Diffusion equations, 1992
113 Michail Zhitomirskii, Typical singularities of differential 1-forms and Pfaffian equations, 1992
112 S. A. Lomov, Introduction to the general theory of singular perturbations, 1992
111 Simon Gindikin, Tube domains and the Cauchy problem, 1992
110 B. V. Shabat, Introduction to complex analysis Part II. Functions of several variables, 1992
109 Isao Miyadera, Nonlinear semigroups, 1992
108 Takeo Yokonuma, Tensor spaces and exterior algebra, 1992
107 B. M. Makarov, M. G. Goluzina, A. A. Lodkin, and A. N. Podkorytov, Selected problems in real analysis, 1992
106 G.-C. Wen, Conformal mappings and boundary value problems, 1992
105 D. R. Yafaev, Mathematical scattering theory: General theory, 1992
104 R. L. Dobrushin, R. Kotecký, and S. Shlosman, Wulff construction: A global shape from local interaction, 1992
103 A. K. Tsikh, Multidimensional residues and their applications, 1992
102 A. M. II'in, Matching of asymptotic expansions of solutions of boundary value problems, 1992
101 Zhang Zhi-fen, Ding Tong-ren, Huang Wen-zao, and Dong Zhen-xi, Qualitative theory of differential equations, 1992
100 V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, 1992
99 Norio Shimakura, Partial differential operators of elliptic type, 1992
98 V. A. Vassiliev, Complements of discriminants of smooth maps: Topology and applications, 1992
97 Itiro Tamura, Topology of foliations: An introduction, 1992
96 A. I. Markushevich, Introduction to the classical theory of Abelian functions, 1992
95 Guangchang Dong, Nonlinear partial differential equations of second order, 1991
94 Yu. S. II' yashenko, 'Finiteness theorems for limit cycles, 1991
93 A. T. Fomenko and A. A. Tuzhilin, Elements of the geometry and topology of minimal surfaces in three-dimensional space, 1991
92 E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, 1991
91 Mamoru Mimura and Hirosi Toda, Topology of Lie groups, I and II, 1991
90 S. L. Sobolev, Some applications of functional analysis in mathematical physics, third edition, 1991

This page intentionally left blank

Translations of MATHEMATICAL MONOGRAPHS

Volume 124

Embeddings and Immersions

Masahisa Adachi
Translated by Kiki Hudson

埋め込みとはめ込み

UMEKOMI TO HAMEKOMI（Embeddings and Immersions）
 by Masahisa Adachi

Copyright © 1984 by Masahisa Adachi
Originally published in Japanese by Iwanami Shoten，Publishers，Tokyo in 1984

Translated from the Japanese by Kiki Hudson

2000 Mathematics Subject Classification．Primary 57R40，57R42；Secondary 58D10．
Abstract．This book provides an introduction to the theory of embeddings and immersions of smooth manifolds and then gives applications of Gromov＇s theorems to foliations and complex structures on open manifolds．

Library of Congress Cataloging－in－Publication Data
Adachi，Masahisa，1932－
［Umekomi to hamekomi．English］
Embeddings and immersions／Masahisa Adachi；［translated from the Japanese by Kiki Hudson］．
p．cm．－（Translations of mathematical monographs；v．124）
Includes bibliographical references and index．
ISBN 0－8218－4612－4
1．Embeddings（Mathematics）2．Immersions（Mathematics）I．Title．II．Series．
QA564．A3313 1993
93－7464
516．3＇5－dc20

AMS softcover ISBN 978－0－8218－9164－3

Copying and reprinting．Individual readers of this publication，and nonprofit libraries acting for them，are permitted to make fair use of the material，such as to copy a chapter for use in teaching or research．Permission is granted to quote brief passages from this publication in reviews，provided the customary acknowledgment of the source is given．

Republication，systematic copying，or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society．Requests for such permission should be addressed to the Acquisitions Department，American Mathematical Society， 201 Charles Street，Providence，Rhode Island 02904－2294 USA．Requests can also be made by e－mail to reprint－permission＠ams．org．
（C） 1993 by the American Mathematical Society．All rights reserved． Reprinted by the American Mathematical Society， 2012. Translation authorized by Iwanami Shoten，Publishers． The American Mathematical Society retains all rights except those granted to the United States Government． Printed in the United States of America．
（ब）The paper used in this book is acid－free and falls within the guidelines established to ensure permanence and durability．
This publication was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-T_{E} \mathrm{X},}$ the American Mathematical Society＇s $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro system．

Visit the AMS home page at http：／／www．ams．org／

Contents

Preface to the English Edition vii
Preface ix
Chapter 0. Regular Closed Curves in the Plane 1
§1. Regular closed curves 1
§2. Regular homotopies 4
Chapter I. C^{r} Manifolds, C^{r} Maps, and Fiber Bundles 7
§1. C^{∞} manifolds and C^{∞} maps 7
§2. Fiber bundles 15
§3. Jet bundles 32
§4. Morse functions 37
§5. The transversality theorem of Thom 42
Chapter II. Embeddings of C^{∞} Manifolds 45
§1. Embeddings and isotopies 45
§2. Two approximation theorems 47
§3. An immersion theorem 49
$\S 4$. Whitney's embedding theorem I: $M^{n} \subset \mathbf{R}^{2 n+1}$ 53
$\S 5$. The theorem of Sard 57
§6. Whitney's theorem on completely regular immersions 60
§7. Special self-intersections 62
§8. The intersection number of a completely regular immersion 65
§9. Whitney's embedding theorem II: $M^{n} \subset \mathbf{R}^{2 n}$ 66
Chapter III. Immersions of C^{∞} Manifolds 75
§1. Immersions and regular homotopies 75
§2. Spaces of maps: The approximation theorem 76
§3. Characteristic classes 79
§4. Immersions and characteristic classes 85
§5. The Smale-Hirsch theorem and its applications 86
§6. C^{r} triangulations of a C^{r} manifold 89
§7. Gromov's theorem 91
§8. Submersions: The Phillips theorem 92
§9. Proof of the Smale-Hirsch theorem 93
§10. The Gromov-Phillips theorem 94
§11. Handlebody decompositions of C^{∞} manifolds 95
§12. The proof of Gromov's theorem 97
§13. Further applications of Gromov's theorem 108
Chapter IV. The Gromov Convex Integration Theory 111
§1. Fundamental theorem 111
§2. Proofs of the Smale-Hirsch theorem and Feit's theorem 114
§3. Convex hulls in Banach spaces 116
§4. Proof of the fundamental theorem 123
Chapter V. Foliations of Open Manifolds 127
§1. Topological groupoids 127
§2. Γ-structures 128
§3. Vector bundles associated with Γ_{q}-structures 128
$\S 4$. Homotopies of Γ-structures 129
$\S 5$. The construction of the classifying space for Γ-structures 129
§6. Numerable Γ-structures 131
§7. Γ-foliations 134
$\S 8$. The graphs of Γ-structures 135
§9. The Gromov-Phillips transversality theorem 136
$\S 10$. The classification theorem for Γ-foliations of open manifolds 137
Chapter VI. Complex Structures on Open Manifolds 141
§1. Almost complex structures and complex structures 141
§2. Complex structures on open manifolds 142
§3. Holomorphic foliations of complexifications of real analytic manifolds 146
§4. The C-transversality theorem 150
§5. Notes 155
Chapter VII. Embeddings of C^{∞} Manifolds (continued) 157
§1. Embeddings in Euclidean spaces 157
§2. Embeddings in manifolds 160
§3. The proof of Theorem 7.2 163
§4. The proof of Theorem 7.3 167
Afterword 177
References 179
Subject Index 181

Preface to the English Edition

For the convenience of readers of this English edition I have replaced the original Japanese references with the appropriate references in English or French. I have also replaced some other references that are hard to obtain with those that are more readily available.

I wish to sincerely thank Professors Kobayashi and Nomizu for their advice. I am very grateful to Dr. Kiki Hudson, who has provided an excellent translation and pointed out misprints in the original edition.

Masahisa Adachi
October 28, 1992

This page intentionally left blank

Preface

Among closed surfaces the torus $T^{2}=S^{1} \times S^{1}$ can be thought of as sitting in three-dimensional Euclidean space \mathbf{R}^{3}, but the Klein bottle K^{2} cannot be realized there. This observation naturally leads us to the question 'can a general n-dimensional manifold M^{n} be smoothly embedded in Euclidean space \mathbf{R}^{p} ?'.

Further, it is possible to embed the circle S^{1} in three-dimensional Euclidean space \mathbf{R}^{3}, but there is more than one way to do so. For example, we cannot move one of the two embeddings below to the other via an isotopy; that is, we cannot undo the knot.

This is generalized to the problem 'are two given embeddings $f, g: M^{n} \rightarrow$ \mathbf{R}^{p} isotopic?' Since the concept of topology was first established, these problems have been in its mainstream, and major contributions to solutions have come from H. Whitney and A. Haefliger. Still further research and development can be expected in this field.

In particular, the problem of classifying embeddings of the circle S^{1} in three-dimensional Euclidean space \mathbf{R}^{3} or the three-dimensional sphere S^{3} through isotopies-a bit different from the isotopies mentioned in the previous paragraph -forms a field in topology called the theory of knots, which even today generates many research activities.

The problem of classifying immersions by regular homotopies is slightly easier than that of classifying embeddings by isotopies. Here is an example. In three-dimensional Euclidean space \mathbf{R}^{3}, is it possible to turn the sphere S^{2} inside out smoothly allowing self-intersections? Think about it for a minute. It hardly seems likely, but a classification theorem for immersions shows that it can be done.

This classification theorem, the so-called Smale-Hirsch theorem, has been generalized step by step by A. Phillips, M. Gromov, A. Haefliger, and so on to the present stage where it now offers us a tool for finding solutions
(or their candidates) to partial differential inequalities or partial differential equations of certain types. It also provides us with a method for eliminating singularites of certain C^{∞} maps. There are further applications of these methods as well.

The aim of this book is to give an introduction to this theory in modern topology and its applications. In accordance with the principle of this series we have tried to make the first three chapters easy enough to understand at the level of lower-division mathematics.

In this book, unless otherwise stated, embeddings and immersions will be viewed in the C^{∞} category. We first explain in detail the classification of regular closed curves in the plane by regular homotopies; this will serve as an intuitive preparation for the contents of the book.

In Chapter I, we give a summary of basic concepts about C^{r} manifolds and C^{r} maps which will be used in Chapter II and beyond.

The discussions in Chapter II evolve around Whitney's theorems. This chapter also serves as a prelude to Chapter VII. We develop Chapter III around the Smale-Hirsch theorem which is generalized to Gromov's theorem.

In Chapter IV we examine the convex integration theory due to Gromov which is another application of the Smale-Hirsch theorem.

In Chapter V we discuss an application of Gromov's theorem, namely, a classification theorem for foliations of open manifolds. In Chapter VI we study complex structures on open manifolds as an application of Gromov's theorem and Gromov's convex integration theory.

We study Haefliger's embedding theorem in Chapter VII, which is a continuation of Chapter II.

Finally, as references we give a list of books and papers we have either used, adapted, or quoted from directly, and also books and papers basic to embeddings and immersions.

The author thanks Kazuhiko Fukui, Shigeo Kawai, and Goo Ishikawa for their valuable help in writing this book.

We are deeply indebted to Professor Itiro Tamura who encouraged us to write this book and gave us valuable advice concerning the first draft.

Last but not least our deepest gratitude goes to Mr. Hideo Arai of Iwanami Shoten Publishers, without whose help this book would never have been realized.

This page intentionally left blank

Afterword

Chapter 0 featured Whitney [C20] as a means for giving the reader an intuitive preview of the book.

In Chapter I we dealt with the fundamentals of differential topology- C^{r} manifolds, C^{r} maps, fiber bundles, and other related concepts; we limited our discussion both in selection and scope to the parts essential for this book. For more in-depth information on the subject, we recommend Differentiable manifolds by Y. Matsushima. ${ }^{1}$)
In Chapter II we discussed embeddings of manifolds, our focal point being Whitney's embedding theorems [C19], [C21]. Here we used, among other references, the book of Tamura. $\left({ }^{2}\right)$ Our topics in this chapter included a method for eliminating double points in completely regular immersions. We saved Haefliger's generalization of this method for Chapter VII.

The theme of Chapter III was immersions of C^{∞} manifolds. Here our discussion centered around the Smale-Hirsch theory-a natural generalization of (the topic in) Chapter 0-and included the theorems of Phillips and Gromov. The theorem of Gromov encompasses the submersion theorem of Phillips and is a generalization of the Smale-Hirsch theorem. Consequently, we presented the proofs of these theorems as corollaries of Gromov's theorem. For the proof of Gromov's theorem we followed Haefliger's presentation of the subject [B3]. We also mentioned that Gromov founded his theorem on Smale's "homotopy covering technique" [C17], "taking an idea out of an old wise man's paper". (*)

In Chapter IV we introduced yet another generalization of the SmaleHirsch theory. Gromov's integration theory [C5], unlike his theorem in Chapter III, does not require openness for the base spaces of jet bundles. This constitutes an essential difference between these two works. Here we used a report paper of Shigeo Kawai. In our opinion this chapter points to a promising future direction for the subject of this book.

We presented in Chapter V an application-Haefliger's classification the-

[^0]orem for foliations of open manifolds-of the theorem of Gromov in Chapter III. We recommend Tamura [A9] for the fundamentals of foliation theory.

We devoted Chapter VI to complex structures on open manifolds as an application of the theorems of Gromov in Chapters III and IV. The integrability of almost complex structures on open manifolds of arbitrary dimensions remains unsolved to date.

We gave an outline of a proof of Haefliger's embedding theorem in Chapter VII. As we mentioned above, we had wished to shed some light on the fact that Haefliger's proof is a natural extension of Whitney's method as used in eliminating double points of immersions; we are somewhat dubious as to what extent we succeeded in doing so. We feel that finding a sufficient condition, independent of connectivity, for the existence of embeddings of manifolds is a major open problem in this field.

We did not mention Haefliger's alternative proof for his embedding theorem [C8]. This is based on the so-called Whitney-Thom theory concerning singular sets of differentiable maps.

We also omitted any solid application of the Smale-Hirsch theory to manifolds; for this we refer the reader to Smale [B9] and James [B4].

From the historical perspective we marvel at the evolution of the simple problem of Chapter 0 as developed throughout our book to its present stage, and we expect further progress in the future.

Addendum. A videotaped version of the main topic of Chapter 0 is available. $\left({ }^{3}\right)$

[^1]
References

A. Books

[A1] M. W. Hirsch, Differential topology, Grad. Texts in Math., vol. 33, Springer-Verlag, Berlin and New York, 1976.
[A2] J. Milnor, Morse theory, Ann. of Math. Stud., vol. 51, Princeton Univ. Press, Princeton, N.J., 1963.
[A3] , Topology from the differentiable viewpoint, The Univ. Press of Virginia, Charlottesville, VA., 1965.
[A4] , Lectures on the h-cobordism theorem, Princeton Math. Notes, Princeton Univ. Press, Princeton, N.J., 1965.
[A5] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Stud., vol. 76, Princeton Univ. Press, Princeton, N.J., 1974.
[A6] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
[A7] N. Steenrod, The topology of fibre bundles, Princeton Math. Ser., vol. 14, Princeton Univ. Press, Princeton, N.J., 1951.
[A8] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
[A9] I. Tamura, Topology of foliations: An introduction, Transl. Math. Monographs, vol. 97, Amer. Math. Soc., Providence, R. I., 1992.

B. Lecture notes, surveys, etc.

[B1] A. Haefliger, Plongements de variété dans le domaine stable, Séminaire Bourbaki 15 (1962-63), Exposé 245.
[B2] , Homotopy and integrability, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1967, pp. 133-163.
[B3] , Lectures on the theorem of Gromov, Lecture Notes in Math., vol. 209, SpringerVerlag, Berlin and New York, 1972, pp. 128-141.
[B4] I. M. James, Two problems studied by Hopf, Lecture Notes in Math., vol. 279, SpringerVerlag, Berlin and New York, 1972.
[B5] M. G. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes Congres internat. Math. 2 (1970), 221-225.
[B6] J. Milnor, Differential topology, Mimeographed Notes, Princeton Univ., Princeton, N. J., 1958.
[B7] A. Phillips, Turning a sphere inside out, Sci. Amer. 214 (1966), 112-120.
[B8] V. Poénaru, Homotopy theory and differentiable singularities, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 106-132.
[B9] S. Smale, A survey of some recent developements in differential topology, Bull. Amer. Math. Soc. 69 (1963), 131-145.
[B10] R. Thom, Le classification des immersions d'aprés Smale, Séminaire Bourbaki, December, 1957, Exposé 157.
[B11] R. Thom and H. Levine, Singularities of differentiable mappings, Lecture Notes in Math., vol. 192, Springer-Verlag, Berlin and New York, 1971, pp. 1-89.

C. Papers.

[C1] M. Adachi, A note on complex structures on open manifolds, J. Math. Kyoto Univ. 17 (1977), 35-46.
[C2] , Construction of complex structures on open manifolds, Proc. Japan Acad. Ser. A Math. Soc. 55 (1979), 222-224.
[C3] S. D. Feit, k-mersions of manifolds, Acta Math. 122 (1969), 173-195.
[C4] M. Gromov, Transversal mappings of foliations into manifolds, Izv. Akad. Nauk SSSR 33 (1969), 707-734; English transl. in Math. USSR-Izv. 3 (1969).
[C5] , Convex integration of differential relations, Izv. Akad. Nauk SSSR 37 (1973), 329-343.
[C6] M. Gromov and Y. Éliaschberg, Removal of singularities of smooth mappings, Izv. Akad. Nauk SSSR 35 (1971), 600-625; English transl. in Math. USSR-Izv. 5 (1971).
[C7] A. Haefliger, Differentiable imbeddings, Bull. Amer. Math. Soc. 67 (1961), 109-112.
[C8] , Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82.
[C9] , Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962), 155-176.
[C10] , Feullitages sur les variétés ouvertes, Topology 9 (1979), 183-194.
[C11] A. Haefliger and M. Hirsch, Immersions in the stable range, Ann. of Math. 75 (1962), 231-241.
[C12] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
[C13] P. Landweber, Complex structures on open manifolds, Topology 13 (1974), 69-76.
[C14] A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171-206.
[C15] , Smooth maps transverse to a foliation, Bull. Amer. Math. Soc. 76 (1970), 792797.
[C16] A. Shapiro, Obstructions to the imbedding of a complex in a Euclidean space, I. The first obstruction, Ann. of Math. 66 (1957), 256-269.
[C17] S. Smale, Classification of immersions of a sphere into Euclidean space, Ann. of Math. 69 (1959), 327-344.
[C17a] , Generalized Poincaré's conjecture in dimension greater than four, Ann. of Math. 74 (1961), 391-406.
[C18] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. 69 (1952), 109-181.
[C19] H. Whitney, Differentiable manifolds, Ann. of Math. 45 (1936), 645-680.
[C20] - On regular closed curves on the plane, Compositio Math. 4 (1937), 276-284.
[C21] _, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math. 45 (1944), 220-246.
[C22] , The singularities of a smooth n-manifold in ($2 n-1$)-space, Ann. of Math. 45 (1944), 247-293.
[C23] W. -T. Wu, Sur les classes caractéristiques des structures fibrées sphériques, Actualités Sci. Indust., vol. 1183 (1952), Hermann, Paris, pp. 1-89.
[C24] , On the imbedding of manifolds in a Euclidean space, Sci. Sinica 13 (1964), 682-683.

Subject Index

Admissible map, 104
Affine
bundle, 112
embedding, 113
Almost complex
manifold, 141
structure, 141
Almost complex structure, 27
Almost contact structure, 109
Almost Hamiltonian structure, 108
Almost symplectic structure, 108
Ample, 112
Atlas, 8
oriented, 8
Base space, 18
Bell-shaped function, 51
Bundle
associated, 28
induced, 27
principal, 28
universal, 31
Bundle map, 20
Bundle space, 18
C-foliation
analytic, 148
C-submersion, 147
C-transversal, 150
C-transversality theorem, 151
C-foliation, 148
Characteristic classes, 84
Chart, 8
Chern class, 83
C^{∞} map, 7
Classification theorem for foliations, 149
Classifying space for $\mathrm{O}(n), 30$
Combinatorial
n-cell, 90
manifold, 90
Compact-open C^{r} topology, 76
Complex manifold, 142
Complex structure, 142, 143
Complexification, 146

Connecting homotopy, 161
Contact
form, 109
structure, 109
Convex hull, 112
Coordinate
functions, 18
neighborhood, 8, 18
system, 8
Coordinate bundle, 18
G-image of, 26
restriction of, 20
smooth, 19
trivial, 22
Coordinate direction, 113
Coordinate transformations, 18 system of, 23
Covering homotopy property, 100
Covering space, 17
Critical point
nondegenerate, 38
Critical value, 13
C^{r} map, 7, 12
Cross section, 20
C^{r} topology, 37
C^{r} triangulation, 90
Curve, 13
Degree
of a map $h: S^{1} \rightarrow S^{1}, 4$
δ-approximation of a map, 49
Diffeomorphism, 12
local, 91
Differentiable
map, 12
map of class $C^{r}, 7$
Differentiable structure, 8
Differential
equation, 111
of a map, 15
relation, 111
Dimension, 80
Direction of dimension, 112

Effective, 18
Embedding, 12
Epimorphism, 93
Epimorphism of vector bundles, 137
Equivalent
atlases, 8
bundles, 19, 22
Equivalent one-cocycles, 128
Equivariant, 160
homotopy, 157, 160
map, 157
Equivariantly homotopic
(equivariant maps), 160
Euler-Poincaré class, 83
Extension
continuous, 92
of local diffeomorphisms, 91
Face
of a simplex, 31
Fiber, 18
Fiber bundle, 19
smooth, 19
Fiber map, 100
Fiber space, 100
Fibration, 100
Γ-foliated microbundle, 135
Γ-foliation, 134
Γ-structures, 128
classifying space for, 130
homotopic, 129
numerable, 131
universal, 131
General position, 31
Grassmann manifold, 29, 79
Gromov's theorem, 92,113
Groupoid, 127
topological, 127
Handlebody, 95
Hessian, 38
Holomorpohic foliation, 147
Homotopic almost complex structures, 142
Immersion, 12
completely regular, 60
Index of nondegenerate critical point, 38
Integrable almost complex structure, 142
Integrably homotopic, 134
almost complex structures, 142
holomorphic foliations, 149
Intersection number of a completely regular immersion, 65
Isotopic embeddings, 45
Isovariant
bundle map, 163
homotopy, 161
Isovariant map, 160

Isovariantly homotopic (isovariant maps), 161

Jet bundle, 36
Jump point, 80
k-connected space, 46
Klein bottle, 16
k-mersion, 116
Knot theory, 46
Lie group, 19
Limit set of a map, 55
Linearly independent points, 31
Möbius strip, 10, 16
Manifold
almost complex, 27
$c^{r}, 8$
differentiable, 8
orientation of, 9
parallelizable, 26
presentation of, 95
smooth, 8
Mapping transformations, 21
Measure zero, 47, 48
Monomorphism of vector bundles, 87
Morse function, 40

Nice function, 96
Nondegenerate critical point, 38
Normal r-framefield, 87
n-simplex, 31
Numerable open covering, 131
Numerably homotopic, 131
One-cocycle, 128
One-to-one immersion, 53
Open manifold, 88
Open submanifold, 9
Orthonormal k-frame, 29
Parallelizable manifold, 88
Polyhedron, 32
Pontryagin class, 83
Principal affine embedding, 113
Principal direction, 113
Problem der gestalt, 46
Problem der lage, 45
Product bundle, 22
Product manifold, 10
Proper map, 41
Pseudogroup, 127
Pseudogroup of local diffeomorphisms, 91
Pullback, 27
Rank
of a differentiable map, 12
Reduction, 26

Regular closed curve
lift of, 1
Regular closed curves
deformation of, 3
equivalence of, 1
regularly homotopic, 3
Regular homotopy, 3, 53
Regular homotopy (between homotopies), 163
Regular value, 13
Regularly homotopic immersions, 53, 75
r-equivalent
jets, 35
maps, 32
r-extension of a map, 36
Riemannian metric, 26
r-jet, 33
of f at $x, 35$
regular, 33
Rotation number, 4
Sard's theorem, 57
Schubert
function, 80
variety, 81
Self-Intersection, 62
of negative type, 65
of positive type, 65
s-handles, 95
Simplicial complex, 32
Skew scalar product, 108
Smale-Hirsch theorem, 87, 114
Stable range, 158
Stably equivalent, 143
Stiefel manifold, 29
Stiefel-Whitney class, 83
Structural group, 18
enlargement of, 26
Subdivision of a triangulation, 90
Submanifold, 10
Submersion, 12
Symplectic transformation, 108
Symplectic structure, 108
linear, 108
standard, 108
System of local coordinates, 8
Tangent bundle, 25

Tangent space, 13
The transversality theorem of Gromov and Phillips, 137
Theorem of Feit, 116
Thom transversality theorem, 42
Topological groupoid associated with $\mathscr{G}, 128$
Topological manifold, 7
Topological transformation group, 17
Topology
fine, 77
strong, 77
Whitney, 77
Torus, 10
Total space, 18
Total Stiefel-Whitney class, 84
Transition functions, 18
Transverse intersection, 60
Transverse map, 42
Transverse to $\overline{\mathscr{F}}$, 134
Transverse to the Γ-foliation $\mathscr{F}, 136$
t-regular map, 42
Triangulated spaces
combinatorially equivalent, 90
isomorphic, 90
Triangulation, 90
Twisted torus, 17
Typical singularity, 114
Underlying almost complex structure, 142
Universal vector bundle, 31
Vector bundle, 30
homomorphism of, 32
Vector field, 26
Weak C^{r} topology, 76
Weak homotopy equivalence, 87
w.h.e-principle, 112

Whitney
duality theorem, 85
topology, 77
Whitney's embedding theorem, 46, 56, 67
Whitney's theorem on completely regular immersions, 60
Whitney-Graustein theorem, 5
\mathbf{Z}_{2}-equivariant, 157,160

This page intentionally left blank

Recent Titles in This Series

89 Valeriĭ V. Kozlov and Dmitriĭ V. Treshchëv, Billiards: A genetic introduction to the dynamics of systems with impacts, 1991
88 A. G. Khovanskiĭ, Fewnomials, 1991
87 Aleksandr Robertovich Kemer, Ideals of identities of associative algebras, 1991
86 V. M. Kadets and M. I. Kadets, Rearrangements of series in Banach spaces, 1991
85 Mikio Ise and Masaru Takeuchi, Lie groups I, II, 1991
84 Đáo Trọng Thi and A. T. Fomenko, Minimal surfaces, stratified multivarifolds, and the Plateau problem, 1991
83 N. I. Portenko, Generalized diffusion processes, 1990
82 Yasutaka Sibuya, Linear differential equations in the complex domain: Problems of analytic continuation, 1990
81 I. M. Gelfand and S. G. Gindikin, Editors, Mathematical problems of tomography, 1990
80 Junjiro Noguchi and Takushiro Ochiai, Geometric function theory in several complex variables, 1990
79 N. I. Akhiezer, Elements of the theory of elliptic functions, 1990
78 A. V. Skorokhod, Asymptotic methods of the theory of stochastic differential equations, 1989
77 V. M. Filippov, Variational principles for nonpotential operators, 1989
76 Phillip A. Griffiths, Introduction to algebraic curves, 1989
75 B. S. Kashin and A. A. Saakyan, Orthogonal series, 1989
74 V. I. Yudovich, The linearization method in hydrodynamical stability theory, 1989
73 Yu. G. Reshetnyak, Space mappings with bounded distortion, 1989
72 A. V. Pogorelev, Bendings of surfaces and stability of shells, 1988
71 A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, 1988
70 N. I. Akhiezer, Lectures on integral transforms, 1988
69 V. N. Salii, Lattices with unique complements, 1988
68 A. G. Postnikov, Introduction to analytic number theory, 1988
67 A. G. Dragalin, Mathematical intuitionism: Introduction to proof theory, 1988
66 Ye Yan-Qian, Theory of limit cycles, 1986
65 V. M. Zolotarev, One-dimensional stable distributions, 1986
64 M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishat•skiĭ, Ill-posed problems of mathematical physics and analysis, 1986
63 Yu. M. Berezanskiĭ, Selfadjoint operators in spaces of functions of infinitely many variables, 1986
62 S. L. Krushkal', B. N. Apanasov, and N. A. Gusevskiĭ, Kleinian groups and uniformization in examples and problems, 1986
61 B. V. Shabat, Distribution of values of holomorphic mappings, 1985
60 B. A. Kushner, Lectures on constructive mathematical analysis, 1984
59 G. P. Egorychev, Integral representation and the computation of combinatorial sums, 1984
58 L. A. Aĭzenberg and A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, 1983
57 V. N. Monakhov, Boundary-value problems with free boundaries for elliptic systems of equations, 1983
56 L. A. Aïzenberg and Sh. A. Dautov, Differential forms orthogonal to holomorphic functions or forms, and their properties, 1983

[^0]: $\binom{1}{2}$ Y. Matsushima, Differentiable manifolds, Marcel Dekker, New York, 1972.
 (${ }^{2}$) I.Tamura, Differential topology, Iwanami Shoten, Tokyo, 1978. (Japanese)
 $\left(^{*}\right)$ Editor's note. The phrase in quotes was added in translation by the author.

[^1]: $\left({ }^{3}\right)$ Regular homotopies in the plane, International Film Bureau Inc., Chicago, Illinois.

