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Preface to the English Edition

For the convenience of readers of this English edition I have replaced the
original Japanese references with the appropriate references in English or
French. I have also replaced some other references that are hard to obtain
with those that are more readily available.

I wish to sincerely thank Professors Kobayashi and Nomizu for their ad-
vice. I am very grateful to Dr. Kiki Hudson, who has provided an excellent
translation and pointed out misprints in the original edition.

Masahisa Adachi
October 28, 1992
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Preface

Among closed surfaces the torus T? = S'xS' canbe thought of as sitting
in three-dimensional Euclidean space R? , but the Klein bottle K? cannot
be realized there. This observation naturally leads us to the question ‘can a
general n-dimensional manifold M” be smoothly embedded in Euclidean
space R’ 7.

Further, it is possible to embed the circle S' in three-dimensional Eu-
clidean space R} , but there is more than one way to do so. For example, we
cannot move one of the two embeddings below to the other via an isotopy;

that is, we cannot undo the knot.

This is generalized to the problem ‘are two given embeddings f, g : M" —
R? isotopic? Since the concept of topology was first established, these prob-
lems have been in its mainstream, and major contributions to solutions have
come from H. Whitney and A. Haefliger. Still further research and develop-
ment can be expected in this field.

In particular, the problem of classifying embeddings of the circle S 'in
three-dimensional Euclidean space R’® or the three-dimensional sphere s?
through isotopies—a bit different from the isotopies mentioned in the previ-
ous paragraph —forms a field in topology called the theory of knots, which
even today generates many research activities.

The problem of classifying immersions by regular homotopies is slightly
easier than that of classifying embeddings by isotopies. Here is an example.
In three-dimensional Euclidean space R’ , is it possible to turn the sphere s?
inside out smoothly allowing self-intersections? Think about it for a minute.
It hardly seems likely, but a classification theorem for immersions shows that
it can be done.

This classification theorem, the so-called Smale-Hirsch theorem, has been
generalized step by step by A. Phillips, M. Gromov, A. Haefliger, and so
on to the present stage where it now offers us a tool for finding solutions
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(or their candidates) to partial differential inequalities or partial differential
equations of certain types. It also provides us with a method for eliminating
singularites of certain C° maps. There are further applications of these
methods as well.

The aim of this book is to give an introduction to this theory in modern
topology and its applications. In accordance with the principle of this series
we have tried to make the first three chapters easy enough to understand at
the level of lower-division mathematics.

In this book, unless otherwise stated, embeddings and immersions will be
viewed in the C™ category. We first explain in detail the classification of
regular closed curves in the plane by regular homotopies; this will serve as an
intuitive preparation for the contents of the book.

In Chapter I, we give a summary of basic concepts about C’ manifolds
and C" maps which will be used in Chapter II and beyond.

The discussions in Chapter II evolve around Whitney’s theorems. This
chapter also serves as a prelude to Chapter VII. We develop Chapter III
around the Smale-Hirsch theorem which is generalized to Gromov’s theorem.

In Chapter IV we examine the convex integration theory due to Gromov
which is another application of the Smale-Hirsch theorem.

In Chapter V we discuss an application of Gromov’s theorem, namely, a
classification theorem for foliations of open manifolds. In Chapter VI we
study complex structures on open manifolds as an application of Gromov’s
theorem and Gromov’s convex integration theory.

We study Haefliger’s embedding theorem in Chapter VII, which is a con-
tinuation of Chapter II.

Finally, as references we give a list of books and papers we have either
used, adapted, or quoted from directly, and also books and papers basic to
embeddings and immersions.

The author thanks Kazuhiko Fukui, Shigeo Kawai, and Goo Ishikawa for
their valuable help in writing this book.

We are deeply indebted to Professor Itiro Tamura who encouraged us to
write this book and gave us valuable advice concerning the first draft.

Last but not least our deepest gratitude goes to Mr. Hideo Arai of Iwanami
Shoten Publishers, without whose help this book would never have been re-
alized.

Masahisa Adachi
May 1983
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Afterword

Chapter 0 featured Whitney [C20] as a means for giving the reader an
intuitive preview of the book.

In Chapter I we dealt with the fundamentals of differential topology— C”
manifolds, C" maps, fiber bundles, and other related concepts; we limited
our discussion both in selection and scope to the parts essential for this book.
For more in-depth information on the subject, we recommend Differentiable
manifolds by Y. Matsushima.( ')

In Chapter II we discussed embeddings of manifolds, our focal point being
Whitney’s embedding theorems [C19], [C21]. Here we used, among other
references, the book of Tamura.( 2) Our topics in this chapter included a
method for eliminating double points in completely regular immersions. We
saved Haefliger’s generalization of this method for Chapter VII.

The theme of Chapter III was immersions of C° manifolds. Here our
discussion centered around the Smale-Hirsch theory—a natural generaliza-
tion of (the topic in) Chapter 0—and included the theorems of Phillips and
Gromov. The theorem of Gromov encompasses the submersion theorem of
Phillips and is a generalization of the Smale-Hirsch theorem. Consequently,
we presented the proofs of these theorems as corollaries of Gromov’s theo-
rem. For the proof of Gromov’s theorem we followed Haefliger’s presentation
of the subject [B3]. We also mentioned that Gromov founded his theorem
on Smale’s “homotopy covering technique” [C17], “taking an idea out of an
old wise man’s paper”.(*)

In Chapter IV we introduced yet another generalization of the Smale-
Hirsch theory. Gromov’s integration theory [C5], unlike his theorem in
Chapter III, does not require openness for the base spaces of jet bundles.
This constitutes an essential difference between these two works. Here we
used a report paper of Shigeo Kawai. In our opinion this chapter points to a
promising future direction for the subject of this book.

We presented in Chapter V an application—Haefliger’s classification the-

( ! ) Y. Matsushima, Differentiable manifolds, Marcel Dekker, New York, 1972.

( 2 ) LTamura, Differential topology, Iwanami Shoten, Tokyo, 1978. (Japanese)
(*) Editor’s note. The phrase in quotes was added in translation by the author.

177
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orem for foliations of open manifolds—of the theorem of Gromov in Chap-
ter III. We recommend Tamura [A9] for the fundamentals of foliation theory.

We devoted Chapter VI to complex structures on open manifolds as an ap-
plication of the theorems of Gromov in Chapters III and IV. The integrability
of almost complex structures on open manifolds of arbitrary dimensions re-
mains unsolved to date.

We gave an outline of a proof of Haefliger’s embedding theorem in Chap-
ter VII. As we mentioned above, we had wished to shed some light on the
fact that Haefliger’s proof is a natural extension of Whitney’s method as
used in eliminating double points of immersions; we are somewhat dubious
as to what extent we succeeded in doing so. We feel that finding a sufficient
condition, independent of connectivity, for the existence of embeddings of
manifolds is a major open problem in this field.

We did not mention Haefliger’s alternative proof for his embedding the-
orem [C8]. This is based on the so-called Whitney-Thom theory concerning
singular sets of differentiable maps.

We also omitted any solid application of the Smale-Hirsch theory to man-
ifolds; for this we refer the reader to Smale [B9] and James [B4].

From the historical perspective we marvel at the evolution of the simple
problem of Chapter 0 as developed throughout our book to its present stage,
and we expect further progress in the future.

Ad(;endum. A videotaped version of the main topic of Chapter O is avail-
able.(”)

( 3 ) Regular homotopies in the plane, International Film Bureau Inc., Chicago, Illinois.
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