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Preface to the English Edition

The theory of commutative fields is one of the basic areas in mathemat-
ics, particularly in algebraic theories including number theory, algebra, and
algebraic geometry. Many books relating to algebraic theories contain some
exposition on commutative fields, but very few books contain sufficient ma-
terial on this area.

The author wrote the first edition of this book in 1966 (in Japanese), with
the aim of producing a useful book on commutative fields containing many
topics. In view of the progress made in the theory of commutative fields, the
author added several new topics and reformulated some results for the new
Japanese edition that appeared in 1985.

The author wishes to express his thanks to the American Mathematical
Society for publishing this English edition, which closely follows the 1985
edition mentioned above.

Masayoshi Nagata
September 1992
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Preface to the New Japanese Edition

It has been 18 years since the manuscript of the original Japanese edition
was completed. After its publication, the author noticed several points that
should be improved. Because of this and in view of the length of time since
the publication of the original edition, the author proposed to write a revision.
The author wishes to express his thanks to the publisher for accepting this
proposal.

The main goal of this new Japanese edition is the same as that of the
original and can be stated in three parts.

(1) The prerequisites should be as few as possible. (The prerequisite results
on set theory are stated in Chapter 0 without proofs.)

(2) All results considered by the author to be important and fundamental
in the theory of commutative fields are included.

(3) Chapter I consists of the basic results on group theory and the theory
of commutative rings that are needed to achieve the purpose stated in (2).

In this new Japanese edition, the author has improved several points in
the first edition and added some new topics.

Masayoshi Nagata
March 1985
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Preface to the Original Japanese Edition

The theory of commutative fields is fundamental in modern algebra. Due
to the fact that algebraic methods are employed not only in algebra but also
in a wide variety of areas, the theory of commutative fields has become one
of the basic areas in modern mathematics.

However, because of the lack of sufficient time in courses for mathematics
students in universities, teachers cannot devote enough time to the theory of
commutative fields, and often they must end with a brief introduction to the
theory of algebraic extensions of fields.

Thus, the author aimed in writing this book to provide a treatise for those
who wish to study the theory of commutative fields on their own and a ref-
erence for those attending lectures on the theory of commutative fields.

To achieve these aims, the author tried especially to have the prerequisites
be as few as possible; the reader is required to have a fundamental knowledge
of set theory and some knowledge of determinants. (These prerequisites are
stated in Chapter 0 without proofs.) To make this book self-contained, the
author included fundamental results on groups and commutative rings.

Thus, the main part of this book consists of what the author judges to be
fundamental in the theory of commutative fields, preceded by a preparatory
part on groups and commutative rings.

For this reason, the presentation does not go more deeply into applications
of commutative rings. In some cases where it seemed better, from the view
point of commutative rings, to treat material under more general circum-
stances, the author chose to present the results under stronger conditions in
order to simplify the presentation.

The author wishes to express his heartfelt thanks to several people for their
help related to the writing and publishing of this book.

Masayoshi Nagata
December 1966
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Answers and Hints

CHAPTER 1

§1. Exercise. () (33313, @ (G339, B (Aiit3).

(4) ( 1234 5)
12534/

§7. Exercise. When H, ..., H are submodules of a module G over a
ring R, then the following is a necessary and sufficient condition for G to be
the direct sumof H,,... ,H . G=H,+---+H_ and (H+---+H,_|)NH,; =
{0} for i=2,...,r.

EXERCISES
81

2. Cf. exercise 1.2.4.

4. Symmetric group of degree 3.

7. Since (ab)” = b™, (b™) = (b), we have (b) C (ab). Similarly, (a) C
(ab) and (a, b) C (ab).

8.1f Z = (a), h = #(Z)/q, then the solutions of x? =1 in Z are a”,

2h h
a’,...,a".

§2

9. Use exercise 1.2.8. Show that if G is solvable and N is a normal sub-
group, then G/N is solvable. As for the solvability of N, consider
G,=6G, G,=1[G6,_,,G,_,]1, Ny= N, N, =[N_,, N,_,], then we
can show N, C G; by induction on i. Note that this proof can be ap-
plied to show that if N is a subgroup of a solvable group, then N is
solvable.

10. The center Z(G, x --- x G,) of G, x---x G, coincides with Z(G,) x
~-xZ(G,) and (G, x---x G )/Z(G, x---xG,)=(G,/Z(G,)) x - x
(G,/Z(G,)).

11.If #(G/H) = 2, then #(H\G) = 2; hence, a € G, a ¢ H implies
G=HUHa=HUagH. Thus aH = Ha.

12. As for (1), use exercise 1.1.7. As for (2), use (1) and the hint.

227
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§3
(1) @) If I, J areidealsof aring R, then (/+J)INJ)CIJCINnJ.
(i) R=(I,+L)’CI}+1, and I’ + I, = R.
(2) Use (1) and an induction argument on #.

§4

3.

2. The rational number field.
85
I.2)If a,b,c,d € R, a#0, b#0,and ab = 0, then, setting [ =
ax+c, g=bx+d,wehave deg fg<1<degf+degg.
(3) deg(f, + f,) < max{deg f|, deg f,} ; if def f| # deg £, , then deg(f, +
f,) = max{deg f, , deg f,} .
86
4. See the proof of Theorem 1.6.4.
87

2. Z/nZ with a natural number n, or a module containing this as a sub-
module.
4. Cf. the Jordan-Holder-Schreier theorem.

5. First take a composition series R, = R,y D R;; D -+ D Rw(l {O}
of Rl.-module R;. Set T, =R, +R,Jrl -+ R, (i=1,2,...,n;
j =0,1,...,c(i). Then conS1der a refinement of R = T}, Tll D

- Tlc(l =Ty2 DTy =T3D---DT,,, ={0}.
REMARK 1. lengthg R, = s,c(i) .
REMARK 2. By using 7, ; as above, we can see that length, R = 3_c(i) =
> length R, R;.

§8

1. The if part is obvious. As for the only if part, when 7, t are odd
permutations, t7', t 't are in A,,and 17 f = f, tf =7 f. Thus,
g = f—1f isindependent of 7,and g =1f—f = —g. Hence, g isan
alternating form. s = f+tf isasymmetric form, and f = (h/2)+(g/2).

6. g/f is expressed in the form k/h with s a symmetric form. Then
k is also a symmetric form. If there is a common irreducible factor
p, then the product of mutually distinct elements of {oplc € S,} is
a common factor and k/h can be reduced. Here is another solution.
(cg)/(cf)=g/f (forall 0 €S,),and weseethat 6 f =c f, 0g =c,g
with ¢, € K. For a, 1€ S,, ¢,, = c,c,. If ois a transposition,
then ¢, = £1, which shows that either both of [, g are symmetric or

alternating. The latter case is impossible by Theorem 1.8.2.
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CHAPTER II. EXERCISES

81
. Cf. Theorem 2.1.4.
.If a € M, then there are ¢, ...,c, € L, a"+cn_‘a"_1+---+cn=0;
hence, [K(a,c,...,c,):K]l=[K(a,c,...,c,):K(c,...,c)IK(c
y.oosC,) i K] < oo. Thus, K(a,c,,...,c,) is algebraic over K and

every element of M is algebraic over K .
. Cf. Theorem 2.1.3.

§2

(1) Q(v/3,v=3) [In finding the roots, the equality x* — x> +4 = (x> +
2)* - 5x% is useful] (2) Q(v=3) (3) (Q(W=3,2)
(1) 4 (2) 2 (3) 6

§3

. (1) It has a multiple root if the characteristicis 2 (1 is a 4-ple root); no
multiple root otherwise. (2) It has a multiple root if the characteristic
is 229 (—4/3 is a double root); no multiple root otherwise. (3) It has
two double roots if the characteristic is 2 (square roots of two roots of
x2+x+1 are the double roots); one multiple root if the characteristic is
3 (1 is a 4-ple root); one double root if the characteristic is 139 (-7 isa
double root); no multiple root otherwise. (4) No double root if d # 0;
it has at least one multiple root of multiplicity > p,if d =0.

. Find a contradiction assuming that "7 e K (1).

. If a is not separable, then the minimal polynomial for a is a polynomial
in xf, so (degree of a”) < (degree of a) , and hence, K(a’) # K(a).
Conversely, if K(a”) # K(a), then a is not separable over K(a’), and
hence, a is not separable over K .

§4

. Take a € Z such that a + pZ is a generator of the cyclic group consist-
ing of nonzero elements of Z/pZ (such an a is called a primitive root
modulo p). Then the order of a + p"Z (in the multiplicative group U
of invertible elements of Z/p"Z) is a multiple of p — 1. Hence, there is
an a € U oforder p—1. Set B = (p+1)+p"Z € U. Then the order of
B is p"'. Since #(U)=p""'(p — 1), we see that af generates U . If
p = 2, then the group is the direct product of the cyclic group (or order
2) consisting of the residue classes of 1, —1 and the cyclic group (or
order 2"?) generated by the residue class of 5.

. Use exercise 1.2.12.

. We define multiplication on the set of 8 elements, the identity 1, i, j, k,
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-1, -i,—j, -k, as follows: i* = j> =k = -1, i* = (=1)i = —i,
P=0j=—j, K =(-Dk =k, ij =k, jk=1i, ki =j,
ji=—k, kj =—i, ik = —j. Then these 8 elements form a group, in
which the solutions of x> =1 are 1 and —1 only.

§5

. Let ¢, u be algebraically independent elements over a field k, of char-

-1 —1
acteristic p # 0, and consider k = k,(, ) and pthroots & , u’ of
—1

t, u. Then k(& ,u l) is an extension of degree p” over k, and is
not a simple extension. For the proof, first show that the extension is of
degree p2 , and then adapt the last part of the proof of Theorem 2.5.5.
For the degree part, cf. the hint for exercise 2.3.3 in the cases:
(i) Apply it to ky(z, u) = k,(¢)(u) and obtain [k (¢, u”"l) dky(t, u)] =
p,
(ii) Apply it to ky(t, u’ ) =ky(u” )(t) and obtain

ey b )iky(t, &’ )] =p.

. Let L = K(a), and consider the minimal polynomial f(x) = H;':I(x—ai)

for a. For each intermediate field M , the minimal polynomial f, (x)
for a over M is a factor of f(x), and the set S,, of roots of f, is
asubsetof {a,,...,a,}. If M # M’ then Sy # S, > and therefore,
the number of intermediate fields < (the number of nonempty subsets
of {a;,...,a})=2"-1.

§6

. (2) Let ¢, u be algebraically independent elements over a field k; of

characteristic p # 0, and set K = k(z, u). For simplicity, we assume
—1

that p # 2. Set L, = K(V7) and L = L((vVt+u)” ). Then L,

is a Galois extension of K and L is purely inseparable over L . But

-1 -1
(—vt+u)’ s a conjugate of (v + u)’ over K and is not in L.
Thus L is not normal over K .

. Assume that L = K(a) and that the minimal polynomial for a over K

is f(x)= ﬂ:;l(x—ai). Then the degree of a, over K(a,...,qa;_ ;) is
atmost n—1+1.

() QW2), {1,0} (6VZ=-V2).

(2) QW2,V3), {l,0,1,0t} (c°=1"=1,01=10; 0V2=—-V2,
oV3=vV3, 1/2=V2, 1/3=-V3).

(3)Q(V2,V=3), {l,0,0°,1,10,16%} (=1, ©* =1, 101 =
o' ovV=3 = V=3, a(¥2) = w(V2) with w = (-1 + V=3)/2,
1(V2)=V2, 1V/=3=—V=3)

4)Q(V2,v=1), {1,0,0%,6°, 7,10, 16°, 16"} (c*=1, =1,
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wr=0""; ov/=1 = V-1, o(¥2) = V2- V=1, 1(¥2) = V2,
/—-1=-v-1)

§7

1. (1) {1}. (2) See exercise 2.6.5, (4). (3) {1} in the characteristic 2
case: {1,0} (02 =1, ox = —x); otherwise. (4) If K has a root
w#1 of x3—1,then {1,0’,0‘2} (a3= 1, ox = wx); otherwise {1}.

2.(1) Q(v2). (2) Q. (3) K(x) in the characteristic 2 case; otherwise
K(x?). (4) K(x*) if K hasaroot w#1 of x’ —1; K(x) otherwise.

3. If we consider the matrix of the transformation with base b{ e b;

instead of b, ..., b,, it is of the form A“lp(a)A with a regular ma-
trix A of degree n. Therefore, the trace and determinant of the trans-
formation matrix do not change (the invariance of the trace follows
from that the trace of p(a) is (the coefficient of x""l) x (—l)"_1 of
det(p(a) —xE) (where E is the unit matrix)). Therefore, we can choose

abase b,...,b, asfollows. Let x" + cl)c'—1 + -+ + ¢, be the mini-
mal polynomial for a over K and let d,,...,d, be a linearly inde-
pendent base of L over K(a) (rv = n). Now, let b,,...,b, be 1,
a,... ,a'_l,dl,dla, ...,dla'_l, co,dad, ... ,d , da, ...,dva’_'.

(5) In the case where L is separable over K, if [L: K] is not a multiple of
the characteristic p of K, then, with nonzero element b of K, we have

Tr, /K b =nb # 0. So we consider the case where [L : K] is a multiple
n—1

of p. Take a such that L =K(a),and let f(x)=x"+cx"" + - +c,
be the minimal polynomial for a over K. The conjugates of a are
ca=a,,...,0,a=a,. Since a is separable, there is one i such that
¢, isnot 0 and i is not a multiple of p. Let j be the smallest such i.

Set p, = af + -+ a’; for k < j. Then, by the relationship between
elementary symmetric forms §) = =€y S5 =Cyyeens 5, = (—1)"cn and
p, (see exercise 1.8.5), we see that p, =0 if kK < j and p; # 0. (We
have another proof by using Lemma 2.9.9.)

§8

1. The inseparable case is obvious. In the separable case, apply exercise
1.2.11 to the smallest Galois extension containing L .

2. (i) In the Q(v/2, V3, V/5) case; the Galois group G = {l,0,1,k, 01,
7K, Ko, 0Tk} is commutative and every element # 1 is of order 2.
Therefore, there are 7 subgroups of order 2, and 7 subgroups of order 4.
By adding the number of {1}, G, total number of subgroups, namely,
the number of intermediate fieldsis 7+ 7+ 2 = 16.

(ii) In the Q(wv2) case, the Galois group is the symmetric group of
degree 3, ie., {1, 0, 02, T, 10, 102} (03 =1, = 1, 101 = a_').
There are 3 subgroups of order 2 and there is only one subgroup of order
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3. The total number of subgroups, namely, the number of intermediate
fieldsis 3+1+2=6.

(iii) In the Q(+v/2) case, the smallest Galois extension containing this field
is Q(v¥2,v—=1), whose Galois group G is {l,0,0°,0°,1,
10,100, 10°} (6'=1, =1, tor=0""; a(vV=1)= V=1, 0(V2) =
V=1-v2, 1(v/=1) = =v/=1, ©(¥/2) = V2). The subgroup H corre-
sponding to Q(v/2) is {1, t}. The subgroups containing H are H, G,
and {1, 7, 7o, tot}. Thus, the answer is 3.

§9

. If we can prove this in the case K = Q (the rational number field), then

the general case can be proved as in Theorem 2.9.4. The K = Q case
follows from Theorem 2.9.5 and exercise 2.4.1. If n = 2° with natural
number s > 2 and if K = Q, then the extension is not cyclic.

. Take a such that L = K(a). Then 1,a,...,a"""' form a linearly
independent base of L over K. On the other hand, det(ai(a’ ) # 0,
because

1 x xlz x:'_l
o I T TR A I | (AR
1 x, xi x,':_l i

. (2) If oyu,...,o,u form a normal base, then ou, ..., o,u form a
linearly independent base of L over K, and hence, det4 # 0 (cf. exer-
cise 2.9.4). Conversely, if det4 # 0, then o,u, ..., g,u form a linearly
independent base; hence, o,u, ..., o,u form a normal base. As for the

existence of a normal base, see exercise 2.9.5.

. i—1 .
. (1) To prove the only if part, set x, =x-(ox)---(6'""'x) (i=1,2,...,

(i<n),x =1, ox =1=x_'xl. By

-1
n). Then ox;, = x 'x "

i+1 ;
Lemma 2.9.9, we see that y = ina’u # 0 for some u € L. Then
oy =yx~', x=y/(oy).

n

(2) To prove the only if part, set x;, = x + ox +--- + ¢ 'x. Then t =

1.
3.

Zaiu # 0 for some u € L. Set z = Zt_lxiaiu. Then z —oz =
Yt 'xolu- Zt‘l(x,.+1 -x)eu=x.
§10

Use exercise 1.2.6.

(2) Let H, be the subgroup of G = G(L"/K) that corresponds to K, .
Then G = Hy, D H D H, D --- D H, 2 {1} is a normal chain and
Neca aHra‘l = {1} . The solvability of G follows from this and the fact
that H,/H,_, is a cyclic group for each i. An example of L*, which
is different from L, is obtained by taking K = Q (the rational number

field), L =Q(V2)=K,, K, =Q(V2).
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4. (1) The direct product of three cyclic groups of order 2.
(2) If n =2, then it is a cyclic group of order 2. In the general case, let
U, be the group of invertible elements in Z/nZ (Z being the ring of
rational integers), and let Z, = {1,b, ..., b"—]} be the cyclic group of
order n. Then the Galois group is isomorphic to the group generated by
U, and Z, with defining relation aba ' =b" if a=d+nZe U,.
(3) The symmetric group of degree 3. [The discriminant of the polyno-
mial is 31, and therefore /31 = (the difference product of the roots) €
the minimal splitting field. Hence, the Galois group cannot be the cyclic
group of order 3. This fact and the irreducibility imply the answer.]
(4) The symmetric group of degree 3 by a similar reason as above.
(5) The cyclic group of order 2. [The minimal splitting field is Q(w)
with an imaginary cubic root @ of unity.]
(6) The direct product of two cyclic groups of order 2. [The minimal

splitting field is Q(w, v—-1) = Q(v/~1, v=3) ]
§11

1. Use Theorem 2.11.5.

3. Consider a factor x’+ax+b of x*+x+1 with a, b ina splitting field.
Then x* +x+1= ()c2 +ax +b)(x2 —ax +b~"); hence, ad=b+b"",
a'=b"'-b. Thus, 2b = a—a! L 207 = @ +a! and therefore,
at—at=4 , a®—44® — 1 = 0. This shows that the minimal polynomial
for a*> is X> —4X — 1. Since 4’ is in the minimal splitting field, the
order of the Galois group must be a multiple of 3.

§12
3. Take a natural number n > 1 and consider finite fields K; such that
#(K,) =p" . Then K, C K, C ---, and K = J, K, is a field such that

1
#(K) = oo. Take a natural number m > 1 which is relatively prime to
n, and let o be an element of degree m over m, then « is not in any

K, , consequently « is notin K. Thus, K is not algebraically closed.

CHAPTER III. EXERCISES

§2

3. To find a counterexample to (iv) implies (iii), take L = K(v/2), M =
K(¢- ¥/2) with the rational number field K , a primitive nth root { of
unity and an odd number n > 1.

§3

2. One remark: It is not a right answer that, considering a prolongation D’
of D to L, we take the restriction of D' to M, because D'M C M
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may not be true.

If M has a separating transcendence base, then the existence of the
required prolongation is obvious. So, the characteristic O case is finished,
and we assume that the characteristic is p # 0. In general, if we fix a
p-base B, then there is a one-to-one correspondence between derivations
of L and elements of Hom_ (B, L) (the set of mappings of B to L).
Now, we choose B so that L’(K) = L?(KnB), L’ (M) =L’ (MNB).
We define a prolongation D' of D by letting D'b be Db if be KNB
and any element of M otherwise.

84

. We can reduce the problem to the case where L,, L, are finitely gener-

ated. Then we can use separating transcendence bases.

. [K, : K] < i(L/K) is easy by considering L ®, K,. i(L/K) < [L:

K(x,, ..., x,)], follows from Theorem 3.4.3 and the fact that [L(Kp_oo):

K (x,,...,x)1>[L:K(x,,...,x,)],. For this last fact, use Theo-
rem 2.7.3, (ii).

85

. To prove sufficiency, note that L is separable because L®, L' is an inte-

gral domain for any purely inseparable extension L'. K is algebraically
closed in L, because L ®, L' is an integral domain even when L' is
separable over K. Cf. Theorem 3.5.2, (ii).

. Use Corollary 3.4.5. (and Theorem 3.5.2, (ii)).
. Use exercise 3.2.2.

§6
. (1) For a counterexample, let x, y be algebraically independent elements
over a field K, and set R = K[x, v, y/x,y/x>, ..., y/x",...]. Then,

y,y/x,...€ xR =1,and R/I = K. (ii) For () in the case I" =
{0}, we shall show that R/I’ is Noetherian by induction on s. It is
so if s = 1, and we assume that s > 1. Let J be an ideal of R/I’
and let ¢ be the natural homomorphism of R/I° to R/I°”'. Then
by our induction hypothesis, J' = ¢J is finitely generated, and there
exist b,,...,b,€J, J =Y ¢(b)R/I’"). Then J = Y b (R/I’) +
(Jn(I*"'/r)). Since I'"'/I° is finitely generated as an R/I-module,
its submodule J N (Is_l/ls) is finitely generated. Thus, J is finitely
generated.

. I is not a primary ideal, because xy €1, x ¢ I, y" ¢ I forall n.
. M/I is the unique prime ideal of R/I. Hence, x ¢ M (x € R) implies

x mod / is invertible in R/I.

.Let I = Q,N---NQ, be a shortest expression of I as an intersection

of primary ideals. For the only if part, P = \/Q, implies there is ¢ €
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Q,N---NnQ,,c¢ Q. Then, I:c=Q,:c and /(Q,:c) = P. Take
d such that d € (Q,:c): P,but d ¢ Q, :c. Then take b = cd. For
the if part, 7:b=()(Q,:b) and there exists i, P=Q,:b.

. (iii) For the only if part, take a set of generators f,..., f, of the
ideal M = Y 7 R, such that every f, is homogeneous. We show
R; C Rylf, ..., f,] by induction on j. This is obvious if j = 0.
Assume that j > 0. g€ R, implies g€ M = g = > f;& with g, ho-
mogeneous. Since deg g, = j—(deg f;) < j,wehave g, € Ry[f,, ..., f,,]
and g € R)Lf), ..., f,].

(iv) For the if part, we show that f, € R;, g, € R;, (L1, fi)(Zj:; g)
€Q, X f; ¢ P implies Zgj € Q by a double induction on s and .
Note that we may disregard those g; which are in Q. The s = 0 case
is easy, because fcgj are in Q. The ¢t = 0 case is similar. So, we

assume that s > 0, ¢ > 0. Since fg, € Q, Y070, g, =Y 4" fg

(mod Q). This implies that (}_, fl.)(Z?:; i fcgj) € Q. By our induction
d+t

on ¢, we have Ejde fcgj € Q, which shows that each f g; € Q; hence

O fi)(zjté g) € Q. If f € P, then we can use this last relation
and an induction on s; otherwise, that fcgj € Q forevery j.

(v) Using the result (iv), adapt our proof of Theorem 3.6.10.
87

. If a prime ideal P of S contains I, then there is a P’, a prime ideal
of R, such that P'NS = P. Applying this to P such that ht/ = ht P,
we have ht/ = ht P = ht P’ > htIR. Conversely, since I CIRN S, we
have ht /R =ht(IRNS)>htI.

. Take a prime ideal P(; of height 0 and contained in P,'l . Then apply
Theorem 3.7.12 to R/P,.

. For the first half, X 2 _ 2 is irreducible over Z[2V2]. But X 2.2 =
(X — V2)(X + V2) over its field of fractions. For the latter half, if
f(X) = [T_,(X — a,) with integral elements o, over R and if f =
g(X)h(X) with monic polynomials g, # over its field of fractions, then
the coefficients of g, s are integral over R, because they are expressed
as polynomials in «; .

. For the first half, if f(x) = (apx™ + -+ +a,)(bex""" + -+ b,_,)

with n > m > 0, then a,...,a,,b,,...,b,_, arein pR, because
f(x) = cOx"( mod p). Then ¢, =a,b,_,, € sz, a contradiction.
§8
. For the last part, we can choose z,, ..., z, from linear combinations of
a,,...,a, with coefficients in X .

. For the first half, assume that P # aR. x € P implies x = ax, (for
some x, € R), so x; € P (because a ¢ P). Thus, P = aP, and
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X = a"xn (x,_, = ax,) (for some x, € R). x;,RC x,RC --- and for
some m, x,R=x, R. Then x, =ax, , =ax,z (for some z € R)
and x,(1—-az)=0. Since aR # R, 1—az # 0, and therefore, x,, =0.
Thus, x = 0. For the latter half, if a = p, ---p,, with prime elements
p; , then there exists an i for which p, € P and P =p,K[X,, ..., X,].

. It is advised to start with the latter half. If P is a maximal ideal, then

consider the field K[X,, ..., X,]/P. Let a; be the residue class of X;
modulo P and set K, = K(a,,...,q,_;). Let f(X) be the mini-
mal polynomial for a;, over K, and let g,(X,, ..., X;) be the monic
polynomial in X, obtained from f; by replacing coefficients by their
representatives in K[X,,..., X;_|] and X by X,. Then P is gen-
erated by g,,..., g,. For the first half, we can assume that r > 0.
Let Y,,..., Y, be the elements obtained by applying Theorem 3.8.2
to K[X] and P. Then K[X] = K[X,,..., X,,Y,,  ,...,Y,] and
PK(Yr+1 , ... Y )[X,,..., X,] is a maximal 1deal We apply the latter
half to this maximal ideal.

JIf I' is a prime ideal, then trans. degy R'/I' = trans. deg, R/(I' N R),

which implies ht!' = ht(I' N R). In the general case, we can adapt our
proof of Corollary 3.7.3.

§9

. R[h] C a 'R and a”'R isa finitely generated R-module.

§10

. For the first half, use the zero-point theorem of Hilbert and the fact that

V(I(A,)+ 1(A4,)) = A, N A, . For the last part, consider the polynomial
ring P = R[x,, ..., x,] (n> 2) over the real number field R. Then,
with 4, =V (x,), 4, =V( x1 +Zl 2xl +1), we have I(4,)+1(4,) =

X1P+(Z?=2X,-2+1)P=*/ ) +1I(4,),but 4, NA, is empty.

.Let W be a component of V' N H, and let 4 be an element which

defines H. We apply Theorem 3.8.7 to Q[X, ..., X,]/I(V), and we
have ht I(W)/I(V) < 1, because I(W)/I(V) is a minimal prime divisor
of the principal ideal generated by # modulo 7(V). Hence, ht (W) <
htI(V) + 1 by Corollary 3.8.5.

. (1) It has sufficiently many points in R if r > 0. If r =0, then there is

no R-rational point. (ii) It has sufficiently many points in R.

§11
. Consider xl2 4+ 4+ xf,.
.Set K =R(¢;,...,t) and L=C(¢,, ..., t;) with algebraically indepen-
dent elements ¢, ..., ¢, over the real number field R. Here C denotes

the complex number field. K is not a C,-field for any n and L is a
C,-field but not a C,_ -field.
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§12

1. Use exercise 3.12.1.

2. For the only if part, if (p, q) isa K-rational point, then K(x, y) = K(¢)
with ¢ = (x—p)/(y—q) . (Indeed, x = p+t(y—q) ; hence, a(p+l(y—q))2+
by2 =c= ap2 + qu. From this relation, we have y € K(¢).) If (p, q)
with p # 0 is a nontrivial solution of ax” + by2 = 0, then (qp_1 ,0)
is a nontrivial solution of a + bY* = cz° (with x = ! , y=xY), we
see the existence of similar ¢ and K(z, Y) = K(x, y). For the if part,
assume that x = f(¢)/g(t), y = h(t)/k(t) with polynomials f, g, &, k.
If for some p € K, g(p) #0, k(p) # 0, then (f(p)/g(p), h(p)/k(p))
is a K-rational point. In the other case, factor g, k as g(t) = tsgl (1),
k(t) = t“k,(t) with g, , k, such that g (0), k,(0) are different from 0.
We can assume that s > u > 0 (> 0 follows from the nonexistence of
p). Then f(0) # 0 and a(f(2)/g,(t))* + b(t “h(t)/k,(1))* = ¢’ . By
setting ¢ = 0, we have a nontrivial solution for ax® + by2 =0.

REMARK. The proof above shows that if #(K) is infinite, then ax2+by2 =
¢ has a K-rational point iff for some t € L. L =K(1).

3. Use the preceeding exercise and the fact that K(z) is a C,-field. (Con-
sider the homogeneous form fl(z)X2+f2(z)Y2—f3(z)U2 in X,Y,U.

§A

1. Take a valuation ring ¥, of K(x,, ..., x,) containing K and such that
V. has prime ideals P, D P, D --- D P, O {0} with the property that
P = xl.(Vx)Pi for each i. Then adapt Lemma 3.A.2, considering V, N
K'(x,...,x,_,).

2. Here is a proof of the theorem stated in the hint. If n = r, then there
is nothing to prove. Assume that n > r. We use the normalization

theorem for polynomial rings using exercise 3.8.1, and we see that there

are linear combinations y,, ..., y,_, of x,, ..., x, with coefficients in
K such that L[x, ..., x,] is integral over L[y,,...,y,_,]. Choose
a,...,a €L suchthat L =K(a,...,a). Then, x,..., x, arein-
tegral over K[a,, ..., s Viseoes Vol There is ¢ € K such that, when
we write a,, ..., a, in fractional forms of x,, ..., x,, no denominator
is divisible by y, —c. Consider the ring V' =K][x,... ’xn]<y,—c)K[x1 x ]
Since a, € V, V contains Kla,,...,a,x,,...,x,]. Set P =
v, — oV nKla,...,a,x,...,x,] and Q = (y, — ¥V n
Kla,,....a,y,,....y,.,1 Since the field of fractions of
R = Kla;,...,a,x,...,x,]/P is V/(y, — )V, we see that
trans.deg, R = n — 1. R is integral over S = K[a,,...,a.,y,,-..,
V,_,] and trans.deg, S = n - 1. Now for T = Kla,,...,a]/

(QNnKla,,...,a]), trans.deg, T > (n — 1) — (n —r — 1), because
y, —c¢ € Q. But, trans.deg, K[a,, ..., a] = trans.deg, L = r, and
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we have QN K[a,,...,a]={0}. Thus, L is regarded as a subfield of
Vip, =)V =E2K(x,, ..., X,_,).

CHAPTER IV. EXERCISES

g1
.(i) a>1. (i) c=1. (iii) ¢>0.
. If a is a nonzero element, then there is a natural number » such that
n
a =1.

§2

. Similar to the proof of Theorem 4.2.1, (ii).
. (ii) Assume that a" + c,a

"_1+---+cn=0, v(c;) < 1. 1If va> 1, then
v(@") > v(c,a"™") and 0=v(a" +¢,a"' +---+¢,) =v(a") > 1, which

is a contradiction.
83

. (1) Let M be a set with at least two elements and let open sets on M be

only the empty set and M itself.

(ii) With M as above, let the open sets on M be M itself and all subsets
not containing a fixed element a.

(iii) Let M be a set containing infinitely many elements and define that
a subset S is an open set iff either S is the empty set or the complement
of S consists of a finite number of elements.

(iv) We fix a line L and a point 4 which is not on L, on the Euclidean
plane P. Then, a new topology is defined on P by letting the following
family C of subsets be a subbase of open sets. C = B, UB, U B,, where
B ={{x}|lxeP, x#4, x ¢ L}, B, ={U|U is an open set in the
usual topology not containing A}, B, = {P - (LUU)|U is the union of
a finite number of circular disks}. Then L is a closed set, and there is
no pair of neighborhoods of L and of 4 separating each other.

(v) On the plane P, we set U(a, b,¢e,d) = {(x,y) € Pla<x<a+
e, b <y < b+ 4} with real numbers a, b, e, . We define a new
topology on P by letting the family of all of such U(a, b, ¢, d) be a
subbase of open sets. Then, on the line L : y = —x, the set E, of
rational points (i.e., E, = {(a, —a)|a is a rational number}) and the set
E, of irrational points (i.e., E, = L — E,) are closed sets. But there is
no pair of neighborhoods of E, and of E, separating each other.

. Use exercise 4.3.3.

§4

. The space is not a T,-space. Indeed, there is P € G, such that P ¢ H,

and any neighborhood U(P) of P meets H. This implies that any
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neighborhood of f(P) contains the identity element.

3. Consider the two-dimensional vector space V = {(a, b)|a, b € R} over
the real number field R. This is a topological group under the usual
topology (as a Euclidean space). H = {(0, b)|b € R} is a closed normal
subgroup. Then the mapping f defined by f(a, b) = a is the one as
stated. F ={(a,b)l0<a<1, b= a_l(l - a)_l} is a closed subset of
V,but fF is not a closed set.

4. Each sU = {su|u € U} is an open set.

§5

3. (i) a,beR,a-ben R (s >1) imply a’—b” € n**' R, and therefore,
e n”"R
(11) If we take a,, b, for a, b € R/nR, as in (i), then a b, is a
representative of (ab)?
(iii) is easy.
(iv) is difficult, and the reader is advised to see some book, for instance,
N. Jacobson, Lectures on abstract algebra, 111.

REMARK. In general, Witt vectors and Witt rings are defined over an ar-
bitrary commutative ring K with f, , g, in (iv), which define the addition
and multiplication. It is known that the Witt ring of length infinity is a
valuation ring if and only if K is a perfect field.

4. Show that m, = 3°7_ a,u; (a; € K) (l =1,2,...) form a Cauchy
sequence which converges to 0 1ff a;; (i , 2, .) form a Cauchy
sequence which converges to 0, for each j = 1,...,n. The if part

follows from ||Ebjuj|| < E||bjuj|': Zv(b )llu;ll (note that the in-
equality follows from the fact that M is a metrlc space). For the only
if part, use an induction argument on n. Assume that a,,, ..., a,, ...
is not a Cauchy sequence converging to 0. Then there is a positive num-
ber ¢ such that v(a;) > ¢ for infinitely many i. Choosing a suitable
subsequence of {m,}, we may assume that v(a; ) > ¢ for all i. Then
{a,._llmi} is a Cauchy sequence converging to 0, where the coefficient of
u, in each term is 1. Thus, we may assume that a;, = a, =--- = 1.
Let ¢(i) be natural numbers such that #(1) < #(2) < ---. Then d;, =
My —m; € Z;’zz Ku,, and {d;} is a Cauchy sequence converging to 0.
Therefore, by our induction hypothesis, {c, ;= Ay aij|i =1,2,...}
is a Cauchy sequence converging to 0 for each j > 2. It follows now that

{a,.jli =1, ..} is a Cauchy sequence. Set a = lim,_, a,; . Then
U, +ayuy+--+au, =lim__m =0, wh1ch contradicts the linear
independence of u,...,u,.

§6

1. Let B be a transcendence base of C over Q. Since #(B) is infinite,
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Q(B) 2 Q(B, t). Hence, there is an injection of C(z) to C.
Either its cardinality is greater than the cardinality of continuum or the
characteristic is different from 0.

§7

. Let R be such a valuation ring, and let P be a nonmaximal, nonzero

prime ideal. Let 0 # a € P, and let b be an element of the maximal
ideal that is not in P. Then b "a € R and aR Cc b 'aR C --- C
b™"aRc b " 'aRc---.

. The intersection of integrally closed integral domains is an integrally

closed integral domain.

.a-beP iffa>b.
. For the first half, use Theorem 4.7.2, (vi) and the fact that RC SNK C

K . For the latter half, show that if P is a prime ideal of R, then
VPSNR=P.

Consider P = {a|lva > h for all h € H} for an isolated subgroup H .
(i) Use exercise 4.7.1 for the only if part.

(ii) For the only if part; take a4, € P, such that a.R P = PiRP,.' For each

1.

. It suffices to show that x,, ..., x

element b of the field of fractions of R, let m,, ..., m, be the integers
such that bRP' = a;"‘ ---a;"'RP' (i=1,...,n). Then the mapping
wb— (m, ..., m,) gives the required isomorphism.

. (i) Use an induction argument on 7. Let w, be the valuation defined by

R P - Let B be a subset of P, such that {w,b|b € B} is maximal among
linearly independent subsets of w,(P;) over Q. Consider the valuation
v defined by R/P,. Our induction hypothesis shows that there is an
order isomorphism ¢, from the value group of v into the (n — 1)-ple
direct sum R&@---®R. Then we define ¢ as follows. Let x be a nonzero
element of K. Since w,x is linearly dependent on {w, b|b € B}, there
is a natural number m such w,(x™)=w,(b'---b") with b, € B. Now
P(wx) = (w,(b) ---b)/m, ¢, (v(x"/b} - b modulo P)))/m).

n (€ R) are algebraically independent
if (i) wx, = -+ = wx, = 0 and x, mod P, ..., x, mod P are alge-
braically independent over k and if (i) wx,, ,,...,wx, are linearly
independent over the rational number field. Assume for a moment that

i [ i I
Zcir--i,,,xx' cexm =0 (Ci.---im € k). Denote .by >, Cfl“-i,,,xll ---x;m the
partial sum on the terms such that w(c; xf‘ . -x:;l") is the least. Then

1 m
.. i i .
we have a contradiction from w(}_, Ciovi x,'---x,m) > w (one term in

this partial sum) (this inequality follows ‘from the fact that wa < wb
implies w(a + b) = wa) .

§8
If i # j, then RI.[RJ.] = K. (In this case, we say that R, ..., R

, (or,
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vy, ..., ",) are independent of each other.)

§9

. We fix an algebraically closed field Q of characteristic O with sufficiently

large cardinality. Consider a subfield M which has a discrete valuation
v,, such that p generates the maximal ideal of the valuation ring R,, of
v,, and such that there is a homomorphism ¢,, from R, to K whose
kernelis pR,, . Let F be thesetofall such (M, v,,, ¢,,). We introduce
anorder > on F by (M, v,,,¢,,)> (M ,v,,,¢,,) if MDM, v,
is a prolongation of v, , and ¢,, is a prolongation of ¢, . Then F is
an inductive set and has a maximal member (M~ , v ym+ > Pa) - Then the
residue class field of v,,. isisomorphic to K . Hence, the completion of
v,,~ 1s the required one.

§10

. Show, on the one hand, that we have a contradiction if thereisa v € V,

such that no member of V' is equivalent to v. Show, on the other
hand, if V' = {vt(v){v € V,} contains v,, v, such that #(v,) # t(v,),
then since the product formula holds with respect to {'ul(”')lv eV}, we
obtain another ¥’ with no member equivalent to v, .

§11

Adapt the proof of Theorem 4.11.5.
(i) Use Theorem 4.11.13.

(ii) Theorem 4.11.13 shows that such a valuation ring R’ contains R =

w b W -

—

K[[X]] or is contained in R. If R’ contains R properly, then R’ =
K((X)). R, in the latter case, is obtained as {a,+a,Xla, € R, a, € R}
with a Hensel valuation ring R, of K.

0 b

CHAPTER V. EXERCISES

81

.When b>0, d >0, wehave a/b > c/d iff ad > bc.

.1>0 because 1> =1. Consequently, every natural number > 0.
. Cf. the proof of Theorem 4.7.5.

.(1) xeK,aeL, a>x<0 implies x € R.

(ii) (a+ P) < (b + P) implies thereisa d € L such that b—a >d > 0.

. Use Exercise 5.1.6.

§2

. Cf. Theorem 5.2.9.
. For the first half, let L and K be the real number field and Q(v2) (Q
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being the rational number field). Let K be an ordered field with an order
such that v2 < 0.

84
Adapt the proof of Theorem 5.4.2.

CHAPTER V1. EXERCISES

§3

. Let x, y be algebraically independent elements over a field k of charac-

teristic # 3, and set K = k(x,y), R =k[x, y]. Let z be an algebraic
element over K defined by 22+xz+y =0,andset L =K(z) =k(x, z),
R, =k[x,y, z] = k[x, z].
(i) P=(x-1)R,, P'=(x—1)R, +zR, .
(ii) P =(z-ax)R, witharoot o of X+ X+1 , and we assume that
ack, P'=xR, +zR, .

84

. The condition (i) implies that the order of the Galois group G is a mul-

tiple of 3 and the condition (ii) implies that #(G) is an even number.
Since G is a subgroup of S;, we have G =S;,.

85

An example is f(x) =x +6x*—12x> +15x* = 17x+ 14 from x°+x—-1
(mod 3), x(x*+x+1) (mod 2) and (x’—x+3)(x+1)(x—1)x( mod 7).
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segment, 208
direct sum, 15, 19
tensor product, 83
direct product, 2, 15, 19, 118, 183
local tensor product, 84
ideal quotient, 98
(e.g., Rg) ring of fractions, 101
radical, 98
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Abelian group, 7
Act, 55
Addition, 7
Additive group, 7
Additive valuation, 154
Adjoined, 43
Affine space, 113
Algebraic, 44
closure, 71
extension, 44
integer, 71
number, 71
Algebraic set, 113
-irreducible, 115
irreducible, 114
Algebraic variety, 114
Algebraically closed, 71
Algebraically dependent, 24
Algebraically independent, 24
Algebraically solvable equation, 63
Alternating form, 34
Alternating group, 36
Antirational, 125
Apparent degree, 23
Approximation theorem, 159
Archimedean ordered field, 211
Artin
module, 33
ring, 33
Associated, 25
Associated prime ideal, 100
minimal, 100
Associative law, 7
Automorphism, 10, 17
inner-, 10
outer-, 10
Automorphism group, 11

Base, 30

Base of open sets, 183
Bilinear mapping, 83
Binary operation, 7

Cardinality, 2

Subject Index
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comparability theorem for, 2
of continuum, 2
Cauchy sequence, 149
regular, 149
Center, 13
Centralizer, 38
Chain, 32
normal, 40
Chain condition
ascending, 3
descending, 3
Characteristic, 16
Chinese Remainder Theorem, 20
Cj-condition, 118
C!-field, 118
C/-condition, 118
C,‘-ﬁeld, 118
Class, 4
representative of, 4
Closed set, 140
Closure, 53, 144
Commutative, 7
field, 17
group, 7
ring, 16
Commutator, 12
group, 12
Compact, 145
Complete, 149, 184
Complete system of conjugates, 77
Completion, 149, 184
Complex number field, 17
Composite, 158
Composite of mappings, 2
Composition series, 32, 41
Conductor, 131
Congruent, 14
Conjugate, 10, 48, 116
Continuous, 143, 145
Converge, 149
Coordinate, 113
ring, 115
Coset, 8
Countable, 2
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Countably infinite, 2 cyclotomic, 59
Curve, 115 finite, 44
Cyclic permutation, 35 noncommutative, 17
Cyclotomic polynomial, 60 of fractions, 22
skew, 17
Defined, 115 topological, 148
Degree, 9, 23, 36, 44, 75, 115, 165 Field of definition, 115
Dense, 144 smallest, 116
Derivation, 87 Finite intersection property, 145
partial, 88 Finitely generated, 82
Derivative, 49 Formal power series, 184
Derived group, 12 ring, 185
Derived series, 12 Formally real, 191
Descending central sequence, 12 Fractional ideal, 111
Difference product, 35 Free, 86
Dimension, 31, 81, 113, 114 base, 30
Direct product, 15, 19, 183 module, 30
Direct sum, 15, 19 Frobenius mapping, 186
Discrete, 145, 187 Full matrix algebra, 17
Discriminant, 65 Function filed, 115
Distance, 142 Fundamental system of neighborhoods of
function, 142 the identity, 146
Distributive law, 16 symmetric, 148
Divisible, 187, 210
Divisor, 25 Galois
Dual, 183 extension, 54, 55
fundamental theorem of, 58, 217
e-neighborhood, 142 group, 55, 65
Eisenstein Galois extension, 105
irreduciblity theorem of, 130 Galois group, 105
Elementary symmetric forms, 34 Generated, 8, 19, 43
Endomorphism, 17 Generated, 18
Equivalence relation, 4 Going-down theorem, 106
Equivalent, 136, 149, 155, 159 Going-up theorem, 104
Euclidean ring, 26 Greatest element
Euler function, 51 greatest, 3
Extension, 88, 149 Group, 7
Abelian, 59 cyclic, 8
algebraic, 44 finite, 9
by radicals, 63 nilpotent, 12
cyclic, 59 solvable, 12
Galois, 54, 105
inseparable, 48 -homomorphism, 17
integral, 102 Hausdorff space, 141
Kummer, 78 Height, 105
normal, 54, 105 Hensel ring, 173
purely transcendental, 81 Hensel’s lemma, 172
regular, 94 Henselization, 175
separable, 49, 91 Hilbert
simple, 51 zero-point theorem of, 113
transcendental, 44 Hilbert’s 17th Problem, 202
Hilbert’s Theorem 90, 79
Factor, 53 Homeomorphic, 143
separable, 53 Homeomorphism, 143
Factor group, 11 Homogeneous form, 23
Factor spaces, 216 polynomial, 23
Factor theorem, 24 Homomorphism, 10, 17, 29
Field, 16 onto, 10

commutative, 17 Hyperplane, 115



Hypersurface, 115

-isomorphism, 17
Ideal, 18
fractional, 111
generated by, 18
left, 18
maximal, 21
primary, 97
principal, 19
product of, 19
right, 18
two-sided, 18
Ideal quotient, 98
Idempotent, 39
Identity, 7, 16
Image, 1

Independence theorem of valuations,

Independent, 241
Index, 9
Induce, 55
Induced topology, 142
Inductive set, 4
Inertia
field, 219
group, 219
ring, 219
Infimum, 4
Infinite field, 44
Injection, 10, 17
Inner-automorphism group, 12
Inseparable, 48, 49
Integral, 44, 102
Integral closure, 103
Integral domain, 20
Integrally closed, 103
integral domain, 103
Invariant, 55
Inverse, 7
Invertible, 16
Irreducible, 25, 114, 115
component, 114
Irredundant expression, 99
Isolated subgroup, 187
Isomorphic, 10, 17, 191
Isomorphism, 10, 17
Isomorphism theorem, 12, 30

Jacobian matrix, 89
Jacobson radical, 167
Jordan-Holder-Schreier Theorem, 32

Kernel, 10, 17

Krull dimension, 105

Krull-Azumaya
lemma of, 167

Lagrange resolvent, 61
Length, 31, 33, 35, 185

SUBJECT INDEX

Lexicographical order, 4
Lie, 104
Limit, 149
Line, 115
Linear variety, 115
Linearly disjoint, 84
Linearly independent, 30
base, 30
Linearly ordered, 3
Locus, 37
Liiroth
theorem of, 122
Lying-over theorem, 104

Mapping, 1

one-to-one, 1

onto, 1

161 Maximal completion, 207

Maximal element

maximal, 3
Maximal ideal, 21

with respect to, 21
Maximally complete, 207
Maximum condition, 3
Metric space, 142

complete, 149
Minimal element, 3
Minimal polynomial, 46
Minimal prime divisor, 100
Minimum condition, 3
Minus, 7
Module, 7, 29

finite, 30

finitely generated, 30

left, 29

right, 29
Modulo, 8, 14, 18
Monic, 23
Monomial, 23
Multiple, 25, 29
Multiplication, 7
Multiplicative group, 17
Multiplicatively closed, 21
Multiplicity, 29

Nakayama'’s lemma, 167
Natural homomorphism, 11
Natural mapping, 84
Neighborhood, 140

open, 140

system of, 140
Nilpotent, 12, 20
Noether

normalization theorem of, 108
Noetherian

module, 96

ring, 96
Nontrivial solution, 118
Norm, 77
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Normal base, 79 Prolongation, 149
Normal ring, 103 Purely inseparable, 48, 49
Normal space, 141 Purely transcendental, 81
Normalization theorem
for a finitely generated ring, 108 Radical, 98
for a polynomial ring, 108 Radicals
of Noether, 108 expressed by, 63
Normalizer, 38 extension by, 63
Normally algebraic, 116 Ramification
Null sequence, 150 field, 219
Number of variations of signs, 198 group, 219
ring, 219
Open set, 140 Ramification exponent, 165
Operation, 7 Rank, 155
Order, 3, 9 Rational function field, 81
isomorphism, 191 Rational number field, 17
Order of inseparability, 93 Rational point, 114
Ordered additive group, 154 Rational rank, 188
Ordered field, 191 Real closed, 191
Ordered set, 3 Real closure of, 196
Real number field, 17
p-adic, 136, 158 Refinement, 32
p-basis, 90 Regular, 94
p-group, 12 Regular space, 141
p-independent, 90 Relation ideal, 24
Partition Remainder theorem, 24
disjoint, 4 Residue class, 8
Perfect, 49 ring, 18
Permutation field, 155
cyclic, 35 group, 184
even, 36 module, 11
group, 9 Restriction, 208
odd, 36 Resultant, 170
Place, 158 Ring, 16, 17, 20, 25, 148
Plane, 115 of rational integers, 17
Point, 113, 140 of total fractions, 22
Polynomial, 23 Ring of fractions, 101
Polynomial ring, 24, 72 Root, 29
Primary ideal, 97, 98 -ple, 29
Prime Roots
field, 43 of unity, 59
integral domain, 43
Prime divisor, 100 Same signs, 203
minimal, 100 Segment, 208
Prime element, 25 Separable, 48, 91
Prime ideal, 20 algebraic closure, 71
Primitive, 27 closure, 53
Primitive root, 229 factor, 53
Primitive root of unity, 59 Separation, 141
Principal ideal, 19 axiom of, 141
domain, 26 Shortest extension, 99
ring, 26 Simplest alternating form, 35
Product, 7, 19 Smallest element, 3
of cardinalities, 2 Splitting
of mappings, 2 group, 175, 225
of sets, 118 ring, 175
Product formula, 168 Splitting field, 47
Product space, 143 minimal, 47

Projection, 2 Standard sequence, 197
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Stronger, 144 Transcendental, 44
Sturm extension, 44
sequence, 198 Transposition, 35
theorem, 198 Triangle inequality, 135, 142
Subfield, 17 Trivial extension, 88
Subgroup, 8 . .. .
normal, 10 Unique factorization domain, 25
Submodule, 8, 29 Unit, 16 ,
Subring, 17 Universal domain, 114
Subspace, 142 Unramified, 165
Sufficiently large algebraic extension, 48 Valuation, 135, 154
Sum, 7, 19 p-adic, 158
Supremum, 4 additive, 154
Sylow ? Archimedean, 135

subgroup, 14 discrete, 187
theoremp(,)f 13 equivalent, 136, 155
ic for ideal, 139, 155
Symmetric form, 3 multiplicative, 135

Symmetric group, 9 non-Archimedean, 135

p-adic, 136

Ti-space, 141 ring, 139, 155, 206
Tensor product, 83 trivial, 135

local, 84
Theorem of Liiroth, 122 Value group, 135, 154
Topological

group, 146 Weaker, 144

ring, 148 Well-ordered, 4
Topological space, 140 Witt

compact, 145 ring, 185
Topology, 140 vector, 185

determined by, 148

discrete, 145 Zariski-Castelnuovo theorem of, 133
Trace, 77 Zero, 7
Transcendence Zero point, 113

base, 81 Zero-divisor, 20

degree, 81 Zorn’s lemma, 4
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