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PREFACE

There are very many books on linear algebra, among them many really wonderful
ones (see the list of recommended literature). One might think that no more books on
this subject are necessary. Choosing the words more carefully, it is possible to deduce
that these books contain all that one needs and in the best possible form, and therefore
any new book will, at best, only repeat the old ones.

This opinion is manifestly wrong, but nevertheless almost ubiquitous.

New results in linear algebra appear constantly and so do new, simpler and neater
proofs of the known theorems. Besides, more than a few interesting old results are
ignored by textbooks.

In this book I tried to collect the most attractive problems and theorems of linear
algebra still accessible to students majoring in mathematics.

The computational aspects of linear algebra were left somewhat aside. The major
part of the book contains results known from journal publications only. I believe that
those results will be of interest to many readers.

I assume that the reader is acquainted with the main notions of linear algebra: linear
space, basis, linear map, and the determinant of a matrix. Apart from this, all the
essential theorems of the standard course of linear algebra are given here with complete
proofs, and some definitions from the above list of prerequisites are recollected. I
placed the prime emphasis on nonstandard neat proofs of known theorems.

In this book I only consider finite dimensional linear spaces.

The exposition is mostly performed over the fields of real or complex numbers. The
peculiarity of the fields of finite characteristics is mentioned when needed.

Cross-references inside the book are natural: 36.2 means subsection 2 of §36;
Problem 36.2 is Problem 2 from §36; Theorem 36.2.2 stands for Theorem 2 from 36.2.

ACKNOWLEDGMENTS. This book is based on a course I read at the Independent
University of Moscow, 1991/92. T am thankful to the participants for comments and
to D. V. Beklemishev, D. B. Fuchs, A. I. Kostrikin, V. S. Retakh, A. N. Rudakov, and
A. P. Veselov for fruitful discussions of the manuscript.

For the second printing (1996), the author added the proof of the Kronecker
theorem for pairs of linear maps (Sec. 12.6) and corrected several small errors.

Xv
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MAIN NOTATIONS AND CONVENTIONS

an Aln
A=\ ... ... ... | denotesamatrix of size m x n; we say that a square n x n

ami .- Amn
matrix is of order n;

a;j, sometimes denoted by a; ; for clarity, is the element or the entry from the
intersection of the ith row and the jth column;

(a;j) is another notation for the matrix 4;
|| @i ”Z still another notation for the matrix (a;;), where p < i, j < n;
det(4), |4| and det(a;;) all denote the determinant of the matrix 4;

|a;j|p is the determinant of the matrix ||a;;|

n .
p 3
E;j — the (i, j)th matrix unit — the matrix whose only nonzero element is equal to
1 and occupies the (i, j)th position;
AB — the product of a matrix 4 of size p x n by a matrix B of size n X ¢ — is the
n
matrix (c;;) of size p x ¢, where c;x = 3 a;;bjk, is the scalar product of the ith row

of the matrix A4 by the kth column of th]e rlnatrix B;

diag(4y, ..., An) is the diagonal matrix of size n x n with elements a;; = 4; and zero
offdiagonal elements;

I = diag(1,...,1) is the unit matrix; when its size, n x n, is needed explicitly we
denote the matrix by I;

the matrix al, where a is a number, is called a scalar matrix;

AT is the transposed of 4, AT = (aj;), where aj; = aji;

A = (aj};), where aj; = ajj;

A* =47 ;

o= k}'_'_:Z") is a permutation: ¢ (i) = k;; the permutation ( k}"'_‘_zn) is often abbrevi-
ated to (k;...kn);

1 ifoiseven,

1 =(-1)% =
sign o = (-1) {—1 if o is odd:

Span(ey, ..., ey) is the linear space spanned by the vectorsey,. .., e,.
Given basesey,...,e,and ey, ..., e, inspaces V" and W™ respectively, we assign
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X1
to a matrix A the operator A4 : V" — W™ which sends the vector { : | into the
Xn
Yt ay ... an X1
vector | @ | = . :
Ym aml --- A4mn Xn

n
Since y; = Y a;x;, we have
j=1

n m n
A E xjej | = E E ajjXjEj,
j=1

i=1 j=1

in particular, de; = 3 ajje;;

13
everywhere except for §37 the notations 4 > 0, 4 > 0, 4 < 0, or A < 0 mean
that a real symmetric or Hermitian matrix A is positive definite, nonnegative definite,
negative definite, or nonpositive definite, respectively; A > B means that A — B > 0;
whereas in §37 they mean that a;; > 0 for all i, j, etc.
Card M is the cardinality of the set M, i.e, the number of elements of M
Alw denotes the restriction of the operator 4 : ¥ — V onto the subspace
W cv;
sup is the least upper bound (supremum);
Z,Q,R,C,H, O denote, as usual, the sets of all integer, rational, real, complex,
quaternion and octonion numbers, respectively;
N denotes the set of all positive integers (without 0);
1 ifi=j,
0ij = { )
0 otherwise.



CHAPTER 1

DETERMINANTS

The notion of a determinant appeared at the end of the 17th century in works
of Leibniz (1646-1716) and a Japanese mathematician, Seki Kova, also known as
Takakazu (1642-1708). Leibniz did not publish the results of his studies related to
determinants. The best known is his letter to PHdspital (1693) in which Leibniz writes
down the determinant condition of compatibility for a system of three linear equations
in two unknowns. Leibniz particularly emphasized the usefulness of two indices when
expressing the coefficients of the equations. In modern terms he actually wrote about
the indices 7, j in the expression x; = ) : a;;y;.

Seki arrived at the notion of a determinant while solving the problem of finding
common roots of algebraic equations.

In Europe, the search for common roots of algebraic equations soon also became
the main trend associated with determinants. Newton, Bezout, and Euler studied this
problem.

Seki did not have the general notion of the derivative at his disposal, but he actually
got an algebraic expression equivalent to the derivative of a polynomial. He searched
for multiple roots of a polynomial f(x) as common roots of f(x) and f’(x). To
find common roots of polynomials f(x) and g(x) (for f and g of small degrees) Seki
got determinant expressions. The main treatise by Seki was published in 1674; there
applications of the method are published, rather than the method itself. He kept the
main method secret confiding only in his closest pupils.

In Europe, the first publication related to determinants, due to Cramer, appeared in
1750. In this work Cramer gave a determinant expression for a solution of the problem
of finding the conic through 5 fixed points (this problem reduces to a system of linear
equations).

The general theorems on determinants were proved only ad hoc when they were
needed to solve some other problem. Therefore, the theory of determinants developed
slowly, left behind as compared with the general development of mathematics. A
systematic presentation of the theory of determinants is mainly associated with the
names of Cauchy (1789-1857) and Jacobi (1804-1851).

1. Basic properties of determinants

The determinant of a square matrix A = ||a;;|| is the alternated sum

> (1)’ a1450)8200) - - - Ano(n)»

g
where the summation is over all permutations ¢ € S,,. The determinant of the matrix
A = ||a;; ||;1 is denoted by det 4 or |a;;|!. If det 4 # 0, then A4 is called invertible or
nonsingular.
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over C the polynomials f and g have a nontrivial common divisor and, therefore, f
and g have a nontrivial common divisor, r, over Q as well. Since f is an irreducible
polynomial with the leading coefficient 1, it follows thatr = £f. 0O

A.2. TuroreM (Eisenstein’s criterion). Let
f(x)=ap+ayx+---+ apx"

be a polynomial with integer coefficients and let p be a prime such that the coefficient a,,
is not divisible by p whereas ay, ..., an_1 are, and ay is not divisible by p>. Then the
polynomial f is irreducible over Z.

PRrOOF. Suppose that f = gh = (3 b x*)(3" c;x!), where g and 4 are not con-
stants. The number bycy = qy is divisible by p and, therefore, one of the numbers b
or ¢ is divisible by p. Let, for definiteness sake, by be divisible by p. Then ¢y is not
divisible by p because ay = bycy is not divisible by p?. If all numbers b; are divisible
by p, then a, is divisible by p. Therefore, b; is not divisible by p for some i with
0<i<degg<n.

We may assume that 7 is the least index for which the number b; is nondivisible by
p. On the one hand, by the assumption, the number a; is divisible by p. On the other
hand, a; = bjco + b;_j¢1 + - - - + boc; and all numbers b;_;cy, ..., boc; are divisible
by p whereas b; ¢ is not divisible by p. Contradiction. [

COROLLARY. If p is a prime, then the polynomial f(x) = xP~V + .-+ x+ 1is
irreducible over Z.

Indeed, we can apply Eisenstein’s criterion to the polynomial

f<x+1>=(("x—fll)p—_‘%=x”"+ (fl’)xp-z+...+ (,,’il)-

A.3. THEOREM. Suppose the numbers

1 -1 1 w1
J’I; yf )’~'~1 y}al ): veey ,Vn, yl(‘l): sy y}(‘la )
are given at points xy, ... , Xp andm = ay +- - -+ oy, — . Then there exists a polynomial

H,,,(x) of degree not greater than m for which H,,(x;) = y; and H,(,i)(xj) = ](.i).
ProoF. Let k = max(a;,...,an). For k = 1 we can make use of the Lagrange

interpolation polynomial

Ly(x)= i ( (x—x1)...(x —xi—l)(x —Xj+1)...(x — xn)

Xj —xl)...(xj —xj_l)(x]- —x,-+1)...(xj —xn) i

=1
Let wy(x) = (x — x1)...(x — x,,). Take an arbitrary polynomial H,,_,, of degree not

greater than m — n and assign to it the polynomial Hy, (x) = Ly (x) + @p (%) Hpm—n(x).
It is clear that H,,(x;) = y; for any polynomial H,,_,. Besides,

Hp, (x) = Ly (x) + 0y, (x) Hm—n(x) + wn(x) Hppy _p (%),
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ie, Hpy,(xj) = L, (xj)+w)(x;) Hm-n(x;). Since w},(x;) # 0, then at points where the
values of H},,(x;) are given, we may determine the corresponding values of Hy, . (x;).
Furthermore,

Hy,(xj) = Ly(xj) + @, (xj)Hm—n(xj) + 20p,(x;)Hp, _p(x;).

Therefore, at points where the values of H,,(x;) are given we can determine the
corresponding values of H;,, _,(x;), etc. Thus, our problem reduces to the construction

of a polynomial Hy,_,(x) of degree not greater than m — n for which H,(,';)_,, (xj) = z;i)
fori =0,...,a; — 2 (if &j = 1, then there are no restrictions on the values of Hy,_p,
and its derivatives at x;). It is also clear that m —n = 3 (aj — 1) — 1. Afterk — 1 of
similar operations it remains to construct Lagrange’s interpolation polynomial. O

A.4. Hilbert’s Nullstellensatz. We will only need the following special case of
Hilbert’s Nullstellensatz.

THEOREM. Let f1, ..., fr be polynomials in n indeterminates over C without common
zeros. Then there exist polynomials gy, ..., gr such that f1g\+---+ frgr =1

ProoF. Let I(f1,..., fr) be the ideal of the polynomial ring C[xi,...,xn] = K
generated by f1, ..., fr. Suppose that there are no polynomials gi, ... , g, such that
figir+--+ frgr=1.ThenI(fy,..., fr) # K. Let I be a nontrivial maximal ideal
containing I(f,..., fr). Asis easy to verify, K/I is a field. Indeed, if f ¢ I, then
I + K f is the ideal strictly containing I and, therefore, this ideal coincides with K. It
follows that there exist polynomials g € K and 4 € I such that 1 = 4 + fg. Then the
class g € K/I is the inverse of f € K/I.

Now, let us prove that the field 4 = K/I coincides with C.

Let o; be the image of x; under the natural projection

p:Clx1,...,xn] — Clxy,...,xn}/I = A.

Then _ .
A= {Zzil...i,,af’ oo | zi, € C} =Clay,...,an]

Further, let 49 = C and 4; = Clay,...,a5]. Then 45, = {Zaia§+1|ai € As} =
As[as+1). Let us prove by induction on s that there exists a ring homomorphism
f : As — C (which sends 1 to 1). For s = 0 the statement is obvious. Now, let us
show how to construct a homomorphism g : 4541 — C from the homomorphism
f + As — C. For this let us consider two cases.

a) The element x = aj is transcendental over 45. Then for any ¢ € C we can
define a homomorphism g such that g(a,x" + --- 4+ ag) = f(an)é" + -+ + f(ap).
Setting £ = 0 we get a homomorphism g such that g(1) = 1.

b) The element x = oy is algebraic over Ay, i.e., by x™ +bpm_1x" 14+ 4by =0
for certain b; € As. Then for all ¢ € C such that f (b;,)E™ + --- + f(bg) = 0 there is
determined a homomorphism g (3 axx*) = 3 f(ax)&* which sends 1 to 1.

As a result we get a homomorphism /4 : 4 — C such that (1) = 1. Itis also clear
that 2~1(0) is an ideal and there are no nontrivial ideals in the field 4. Hence, & is a
monomorphism. Since 49 = C C 4 and the restriction of 4 to Ay is the identity map
h is an isomorphism.
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Thus, we may assume that a; € C. The projection p maps the polynomial
filx1,...,xn) € K to filey,...,an) € C. Since fi,..., fr € I, we have p(f;) =
0 € C. Therefore, f;(ai,...,an) = 0. Contradiction. O

A.5. THEOREM. Let the polynomials fi(xy,...,xn) = x| + Pi(x1,...,Xn), where
i=1,...,n, be such that deg P; < m; andlet I(f,..., fn) be the ideal generated by
fi, .-, fn

a) Let P(xy,...,xn) be a nonzero polynomial of the form a,-,m,-"xf' . X[ where
ix <my forallk=1,...,n. Then P &€ I(f1,..., fn)

b) The system of equations x;" + Pi(x1,...,xn) = 0 (i = 1,...,n) is always
solvable over C and the number of solutions is finite.

PRrOOF. Substituting the polynomial (f;— P;)" x4 instead of x;"" Lt where0 < t;
and 0 < ¢; < m;, we see that any polynomial Q(x,...,x,) can be represented in the
form

O(x1,...,xn) = Q" (x1,.. ., X0, f15-- -5 fn) =Za,-sx{‘ L LI

where j; < my, ..., jn < mp. Let us prove that such a representation Q* is uniquely
determined. It suffices to verify that by substituting f; = x;"" + Pi(x1,...,%xn)
in any nonzero polynomial Q*(xy,...,Xn, f1,..., fn) We get a nonzero polynomial
Q(x1 ,...,Xn). Among the terms of the polynomial Q*, let us select the one for which
the sum (sym + j1) + - - - + (snmn + jn) = m is maximal. Clearly, deg O < m. Let
us compute the coefficient of the monomial x;'™*/1 ... x;»"*/» in Q. Since the sum

(simy + j1) + -+ + (snmn + jn)

is maximal, this monomial can only come from the monomial x{' ... x}" f{'... f;".

Therefore, the coefficients of these two monomials are equal and deg § = m.

Clearly, Q(xy,...,xn) € I(f1,..., fn) if and only if Q*(x),...,xn, f1,--.> fn)
is the sum of monomials for which s; + --- + s, > 1. Besides, if P(x},...,x,) =

Eail,_.i"xl"’ ...xIn where ij, < myg, then
P*(x],...,Xn,fl,...,fn) =P(x],...,Xn).

Hence, P € I(f1,..., fn).

b) If f1, ..., frn have no common zero, then by Hilbert’s Nullstellensatz the
ideal I(f),..., fn) coincides with the entire polynomial ring and, therefore, P €
I(f1,..., fn); thiscontradicts part a). Therefore, the given system of equations is solv-
able. Let & = (&,...,&,) be a solution of this system. Then & = —P;(&1,...,&n),
where deg P; < m;, and, therefore, any polynomial Q(&1,...¢&n) can be represented in

the form Q(&1,...,¢&n) =Y a;, i, &' - .. &', where iy < my and the coefficient a;, ;,
is the same for all solutions. Let m = m;...my,. The polynomials 1, &;, ..., &
can be linearly expressed in terms of the basic monomials &' ... &}, where ix < my.

Therefore, they are linearly dependent, i.e., bo+5b1&; +- - - +bm <" = 0, not all numbers
bo, . . . , b are zero and these numbers are the same for all solutions (do not depend on
i). The equation by + by x + - - - + by x™ = 0 has, clearly, finitely many solutions. O
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adjoint representation, 176
algebra, Cayley, 180, 183
algebra, Clifford, 188
algebra exterior, 124
algebra, Lie, 176

algebra octonion, 183
algebra of quaternions, 180
algebra, Grassmann, 124
algorithm, Euclid, 219
alternation, 123
annihilator, 41

Barnett matrix, 194

basis, orthogonal, 51

basis, orthonormal, 51
Bernoulli numbers, 24
Bezout matrix, 193
Bezoutian, 193
Binet-Cauchy’s formula, 10
bracket, 176

canonical form, cyclic, 80
canonical form, Frobenius, 80
canonical projection, 45
Cauchy, 1

Cauchy determinant, 3

Cayley algebra, 183

Cayley transformation, 104
Cayley-Hamilton’s theorem, 78
characteristic polynomial, 46, 63
Chebotarev’s theorem, 14
Clifford algebra, 188

cofactor of a minor, 11

cofactor of an element, 11
commutator, 176

complex structure, 57
complexification of a linear space, 55
complexification of an operator, 55
conjugation, 180 )
content of a polynomial, 219
convex linear combination, 48
Courant-Fischer’s theorem, 97
Cramer’s rule, 2

cyclic block, 80

decomposition, Lanczos, 86

SUBJECT INDEX

227

decomposition, Schur, 86
definite, nonnegative, 99
derivation, 176

determinant, 1

determinant, Cauchy, 3
diagonalization, simultaneous, 99
double, 180

eigenvalue, 46, 63
eigenvector, 63
Eisenstein’s criterion, 220
elementary divisors, 89
equation, Euler, 204
equation, Lax, 204
equation, Volterra, 206
ergodic theorem, 112
Euclid’s algorithm, 219
Euler equation, 204
expontent of a matrix, 201

factorization, Gauss, 87
factorization, Gram, 87

first integral, 204

form bilinear, 95

form quadratic, 95

form quadratic positive definite, 95
form, Hermitian, 95

form, positive definite, 95

form, sesquilinear, 95

Fredholm alternative, 43
Frobenius block, 80

Frobenius’s inequality, 48
Frobenius’s matrix, 4
Frobenius-Konig’s theorem, 163

Gauss lemma, 219

Gershgorin discs, 152
Gram-Schmidt orthogonalization, 51
Grassmann, 36

Grassmann algebra, 124

Hadamard product, 157
Hadamard’s inequality, 146
Hankel matrix, 200
Haynsworth’s theorem, 18
Hermitian adjoint, 56
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Hermitian form, 95

Hermitian product, 56

Hilbert’s Nullstellensatz, 221
Hoffman-Wielandt’s theorem, 164
Hurwitz-Radon’s theorem, 185

idempotent, 108

image, 42

inequality, Hadamard, 146
inequality, Oppenheim, 157
inequality, Schur, 150
inequality, Szasz, 146
inequality, Weyl, 151, 166
inertia, Sylvester’s law of, 96
inner product, 51

invariant factors, 88
involution, 112

Jacobi, 1

Jacobi identity, 176

Jacobi’s theorem, 13

Jordan basis, 69

Jordan block, 69

Jordan decomposition, additive, 72
Jordan decomposition, multiplicative, 72
Jordan matrix, 69

Jordan’s theorem, 69

kernel, 42

Kronecker product, 121
Kronecker theorem, 73
Kronecker-Capelli’s theorem, 43

I'Héspital, 1

Lagrange interpolation polynomial, 220
Lagrange’s theorem, 96

Lanczos decomposition, 86

Laplace’s theorem, 11

Lax differential equation, 204

Lax pair, 204

Leibniz, 1

Lie algebra, 176

Lieb’s theorem, 131

matrices commuting, 173

matrices similar, 68

matrices simultaneously
triangularizable, 178

matrix Barnett, 194

matrix centrally symmetric, 68

matrix circulant, 4

matrix (classical) adjoint of, 11

matrix companion, 4

matrix compound, 13

matrix doubly stochastic, 162

matrix expontent, 201

matrix Frobenius, 4

matrix generalized inverse of, 196

matrix Hankel, 200

matrix Hermitian, 95

SUBJECT INDEX

matrix invertible, 1
matrix irreducible, 158
matrix Jordan, 69
matrix nilpotant, 107
matrix nonnegative, 158
matrix nonsingular, 1
matrix normal, 105
matrix orthogonal, 103
matrix orthonormal, 51
matrix permutation, 72
matrix positive, 159
matrix rank of, 9
matrix reducible, 159
matrix skew-symmetric, 101
matrix Sylvester, 192
matrix symmetric, 95
matrix Toeplitz, 201
matrix tridiagonal, 5
matrix Vandermonde, 3
min-max property, 97
minor, pth order, 9
minor, basic, 9

minor, principal, 9
Moore-Penrose’s theorem, 196
multilinear map, 119

nonnegative definite, 98

norm Euclidean of a matrix, 154
norm operator of a martix, 153
norm spectral of a matrix, 153
normal form, Smith, 88

null space, 42

octonion algebra, 183
operator adjoint, 38
operator contraction, 85
operator diagonalizable, 64
operator Hermitian, 56
operator normal, 57, 105
operator semisimple, 64
operator skew-Hermitian, 56
operator unipotent, 72
operator unitary, 56
Oppenheim’s inequality, 157
order lexicographic, 127
orthogonal complement, 41
orthogonal projection, 52

partition of the number, 107

Pfaffian, 130

Pliicker relations, 134

polar decomposition, 84

polynomial irreducible, 219

polynomial, annihilating of a vector, 78

polynomial, annihilating of an
operator, 77

polynomial, minimal of an operator, 77

polynomial, the content of, 219

product, Hadamard, 157



product, vector, 187
product, wedge, 124
projection, 108
projection parallel to, 109

quaternion, imaginary part of, 181
quaternion, real part of, 181
quaternions, 180

quotient space, 45

range, 42

rank of a tensor, 135

rank of an operator, 42
realification of a linear space, 55
realification of an operator, 55
resultant, 192

row (echelon) expansion, 2

Schur complement, 17
Schur’s inequality, 150
Schur’s theorem, 86, 157
Seki Kova, 1

singular values, 152
skew-symmetrization, 123
Smith normal form, 88
snake in a matrix, 163
space, dual, 38

space, Hermitian, 56
space, unitary, 56

spectral radius, 153
Strassen’s algorithm, 136
Sylvester matrix, 192
Sylvester’s criterion, 96
Sylvester’s identity, 14, 128
Sylvester’s inequality, 49
Sylvester’s law of inertia, 96
symmetric functions, 19
symmetrization, 123
Szasz’s inequality, 146

Takakazu, 1

tensor decomposable, 132

tensor product of operators, 121
tensor product of vector spaces, 119
tensor rank, 135

tensor simple, 132

tensor skew-symmetric, 123

tensor split, 132

tensor symmetric, 123

tensor, convolution of, 121

tensor, coordinates of, 120

tensor, type of, 120

tensor, valency of, 120

theorem on commuting operators, 174
theorem, Cayley-Hamilton, 78
theorem, Chebotareyv, 14

theorem, Courant-Fischer, 97
theorem, ergodic, 112

theorem, Frobenius-Ko6nig, 163
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theorem, Haynsworth, 18
theorem, Hoffman-Wielandt, 164
theorem, Hurwitz-Radon, 185
theorem, Jacobi, 13

theorem, Lagrange, 96
theorem, Laplace, 11
theorem, Lieb, 131

theorem, Moore-Penrose, 196
theorem, Schur, 86, 157

Toda lattice, 204

Toeplitz matrix, 201

trace, 63

unipotent operator, 72
units of a matrix ring, 89

Vandermonde determinant, 3
Vandermonde matrix, 3

vector contravariant, 38

vector covariant, 38

vector extremal, 158

vector fields linearly independent, 187
vector positive, 158

vector product, 187

vector product of quaternions, 185
vector skew-symmetric, 68

vector symmetric, 68

Volterra equation, 206

W. R. Hamilton, 36
wedge product, 124
Weyl’s inequality, 151, 166
Weyl’s theorem, 151

Young tableau, 107
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